Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Oct;80(19):6101–6104. doi: 10.1073/pnas.80.19.6101

Ouabain-like activity in human cerebrospinal fluid.

J Halperín, R Schaeffer, L Galvez, S Malavé
PMCID: PMC534368  PMID: 6310614

Abstract

Human cerebrospinal fluid has been found to mimic the effect of ouabain on net Na+ efflux and 86Rb+ influx across erythrocyte membranes and on the in vitro activity of a purified Na+/K+-ATPase (ATP phosphohydrolase, EC 3.6.1.3) derived from canine kidney. These results indicate the possible existence in human cerebrospinal fluid of an endogenous factor with ouabain-like activity, which might be linked to sodium metabolism.

Full text

PDF
6103

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
  2. Bricker N. S., Schmidt R. W., Favre H., Fine L., Bourgoignie J. J. On the biology of sodium excretion: The search for a natriuretic hormone. Yale J Biol Med. 1975 Sep;48(4):293–303. [PMC free article] [PubMed] [Google Scholar]
  3. Canessa M., Adragna N., Solomon H. S., Connolly T. M., Tosteson D. C. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med. 1980 Apr 3;302(14):772–776. doi: 10.1056/NEJM198004033021403. [DOI] [PubMed] [Google Scholar]
  4. DE WARDENER H. E., MILLS I. H., CLAPHAM W. F., HAYTER C. J. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci. 1961 Oct;21:249–258. [PubMed] [Google Scholar]
  5. Dagher G., Garay R. P. A Na+,K+ co-transport assay for essential hypertension. Can J Biochem. 1980 Oct;58(10):1069–1074. doi: 10.1139/o80-144. [DOI] [PubMed] [Google Scholar]
  6. Dahl L. K., Knudsen K. D., Iwai J. Humoral transmission of hypertension: evidence from parabiosis. Circ Res. 1969 May;24(5 Suppl):21–33. [PubMed] [Google Scholar]
  7. De Luise M., Blackburn G. L., Flier J. S. Reduced activity of the red-cell sodium-potassium pump in human obesity. N Engl J Med. 1980 Oct 30;303(18):1017–1022. doi: 10.1056/NEJM198010303031801. [DOI] [PubMed] [Google Scholar]
  8. De Wardener H. E. Natriuretic hormone. Clin Sci Mol Med. 1977 Jul;53(1):1–8. doi: 10.1042/cs0530001. [DOI] [PubMed] [Google Scholar]
  9. Fishman M. C. Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4661–4663. doi: 10.1073/pnas.76.9.4661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garay R. P., Dagher G., Pernollet M. G., Devynck M. A., Meyer P. Inherited defect in a Na+, K-co-transport system in erythrocytes from essential hypertensive patients. Nature. 1980 Mar 20;284(5753):281–283. doi: 10.1038/284281a0. [DOI] [PubMed] [Google Scholar]
  11. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  12. Gruber K. A., Whitaker J. M., Buckalew V. M., Jr Endogenous digitalis-like substance in plasma of volume-expanded dogs. Nature. 1980 Oct 23;287(5784):743–745. doi: 10.1038/287743a0. [DOI] [PubMed] [Google Scholar]
  13. Haddy F. J. Mechanism, prevention and therapy of sodium-dependent hypertension. Am J Med. 1980 Nov;69(5):746–758. doi: 10.1016/0002-9343(80)90445-3. [DOI] [PubMed] [Google Scholar]
  14. Haddy F. J., Overbeck H. W. The role of humoral agents in volume expanded hypertension. Life Sci. 1976 Oct 1;19(7):935–947. doi: 10.1016/0024-3205(76)90284-8. [DOI] [PubMed] [Google Scholar]
  15. Haddy F. J., Pamnani M. B., Clough D. L. Humoral factors and the sodium-potassium pump in volume expanded hypertension. Life Sci. 1979 Jun 4;24(23):2105–2117. doi: 10.1016/0024-3205(79)90108-5. [DOI] [PubMed] [Google Scholar]
  16. Haupert G. T., Jr, Sancho J. M. Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4658–4660. doi: 10.1073/pnas.76.9.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LEONARD E. Alteration of contractile response of artery strips by a potassium-free solution, cardiac glycosides and changes in stimulation frequency. Am J Physiol. 1957 Apr;189(1):185–190. doi: 10.1152/ajplegacy.1957.189.1.185. [DOI] [PubMed] [Google Scholar]
  18. Lichtstein D., Samuelov S. Endogenous 'ouabain like' activity in rat brain. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1518–1523. doi: 10.1016/0006-291x(80)91346-7. [DOI] [PubMed] [Google Scholar]
  19. Poston L., Sewell R. B., Wilkinson S. P., Richardson P. J., Williams R., Clarkson E. M., MacGregor G. A., de Wardener H. E. Evidence for a circulating sodium transport inhibitor in essential hypertension. Br Med J (Clin Res Ed) 1981 Mar 14;282(6267):847–849. doi: 10.1136/bmj.282.6267.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Walseth T. F., Johnson R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochim Biophys Acta. 1979 Mar 28;562(1):11–31. doi: 10.1016/0005-2787(79)90122-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES