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Abstract

Immune tolerance is necessary to prevent the immune system from reacting against self, and thus 

to avoid the development of autoimmune diseases. Here, we review key findings that position 

dendritic cells (DCs) as critical modulators of both thymic and peripheral immune tolerance. 

Although DCs are important for inducing both immunity and tolerance, increased autoimmunity 

associated with decreased DCs suggests their non-redundant role in tolerance induction. DC-

mediated T cell immune tolerance is an active process that is influenced by genetic variants, 

environmental signals as well as the nature of the specific DC subset presenting antigen to T cells. 

Answering the many open questions with regards to the role of DC in immune tolerance could 

lead to the development of novel therapies for the prevention of autoimmune diseases.
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Introduction

APCs, namely B cells, macrophages and dendritic cells (DCs) initiate both protective and 

autoimmune T cell responses, and DCs bear the highest antigen-presentation potential, as 

shown by stronger induction of naive T cell activation (1). DCs play a non-redundant role in 

the initiation of immune responses and the control of some pathogens. For instance, IRF8 
mutations in humans cause defects in DCs resulting in opportunistic infections and an 

increase in anergic T cells (2). In addition, DCs also play a key role in maintaining immune 

tolerance, as we will review here.

The importance of DCs in maintaining immune tolerance was shown by using mouse 

models to manipulate the number of DCs in vivo. For one, the CD11c-Cre/ROSA-diphtheria 

toxin A (CD11c-DTA) transgenic mouse model allows for specific depletion of CD11c+ 

cells (3). CD11c is an integrin expressed at high levels by DCs and at much lower levels by 

many cellular subsets, namely neutrophils, macrophages, natural killer cells as well activated 

monocytes and T cells. Selective depletion of CD11c+ cells induces an increase in effector 

Th1 and Th17 cells and strong autoimmune symptoms, such as lymphadenopathy, 

splenomegaly, and infiltration of non-lymphoid organs (3–5). Elimination of DCs in mice 

thus is sufficient to break immune tolerance and lead to autoimmune pathology, suggesting 

that DCs play a central role in the maintenance of immune tolerance. Notably, these findings 

were recently confirmed in a model that permits more selective elimination of DCs. Indeed, 

within the hematopoietic system, the Zbtb46 transcription factor is exclusively expressed in 

DCs (6). The specific depletion of DCs in Zbtb46-diphtheria toxin receptor (DTR) adult 

mice via diphtheria toxin injection causes lymphoangiogenesis and myeloproliferative 

disorders, thus confirming the importance of DCs in the maintenance of immune tolerance 

(7, 8). Interestingly, the autoimmune pathology was less severe in the Zbtb46-DTR mice 

when compared to the CD11c-DTA mice, possibly because of either the more selective 

nature of the Zbtb46-DTR model or the timing of DC deletion. CD11c-DTA model 

continuously delete DCs from early development, but the deletion of DCs in Zbtb46-DTR 

mice is transiently induced in adult mice. Nevertheless, both experimental settings show that 

elimination of DCs in mice is sufficient to break immune tolerance and lead to autoimmune 

pathology, suggesting that DCs play a central role in the maintenance of immune tolerance.

If depletion of DCs leads to autoimmune phenotypes, one could postulate that increasing the 

prevalence of DCs would strengthen immune tolerance and prevent autoimmune disease 

occurrence. To that effect, Flt3 ligand injection increases the proportion of DCs in vivo and 

prevents autoimmune diabetes onset in NOD mice (9). Yet, a break in immune tolerance is 

observed in mouse models where DC number is increased by inhibiting DC apoptosis. 

Specifically, transgenic mice with CD11c promoter-driven p35, a caspase inhibitor that 

blocks apoptosis, present with an accumulation of DCs in lymphoid organs over time (10). 

Consequently, CD11c-p35 transgenic mice exhibit lymphocytic infiltration in non-lymphoid 

organs, activation of both T and B cells and production of anti-DNA antibody (10). Also, 

DC-specific knock-out of Bim decreases DC apoptosis, which leads to an increase in DCs 

and results in inflammation (11). Therefore, depending on the context, increase in the 

number of DCs can either increase or decrease T cell tolerance. This is perhaps due to 

distinct impacts on the DC phenotype, such that expansion of DCs either by stimulating 
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hematopoiesis or by blocking DC apoptosis may yield different outcomes in the 

maintenance of immune tolerance. Still, because DCs are capable of both immunity and 

tolerance, manipulation of numbers alone may not be a consistent way to alter the balance of 

immunity and tolerance.

Induction of stable tolerogenic DC could provide a powerful platform for antigen-specific 

treatment of autoimmune diseases. In vitro protocols to induce DC with tolerogenic 

properties (tol-DC) include the differentiation of DC precursors in media complemented 

with agents such as dexamethasone, IL-10 or TGF-β (12). These tol-DC can then be loaded 

with specific antigens and, upon injection in vivo, are expected to provide antigen-specific 

immune tolerance through different means, such as by promoting antigen-specific regulatory 

T cells (Tregs) differentiation or by producing IDO and/or NO (13). Various DC populations 

that facilitate immune tolerance have also been identified in vivo (14). For example, spleen 

CD11clowCD45RB+ DC induce antigen-specific differentiation of Tregs via antigen-

presentation and IL-10 production (15, 16). In addition, CD11clowCD11bhiI-Alow DCs 

create a tolerogenic environment by secreting high levels of IL-10 and NO (17). Therefore, 

understanding the mechanisms by which DCs can induce and maintain both central and 

peripheral immune tolerance may inform treatments for autoimmunity. In this review, we 

will discuss the mechanisms by which DC subsets can induce steady state immune 

tolerance, and how an inflammatory/autoimmune disease context can change DC-mediated 

tolerance.

Thymic tolerance

The process of central tolerance in the thymus eliminates potentially autoreactive 

thymocytes by negative selection and promotes T cell differentiation into various Treg cell 

subsets via additional selection processes (18–22). Central tolerance is, in fact, highly 

dependent on the presentation of self-antigens to T cells by both thymic epithelial cells and 

APCs (23–25). Early work showed that MHC expression on thymic bone marrow-derived 

APCs contributes to central tolerance induction (26). Among these APCs, DCs clearly 

contribute to elimination of maturing autoreactive thymocytes, as DC-specific expression of 

MHC-II I-E is sufficient to negatively select thymocytes specific for endogenous 

superantigens in a manner comparable to that of mice expressing the I-Eα transgene on all 

APCs (27). MHC expression on DCs thus appears sufficient, at least in the context of 

superantigens, to induce effective central tolerance (27). In comparison to macrophages and 

B cells, only DCs were able to induce negative selection of thymocytes in reaggregate 

thymus organ cultures (RTOCs) (25), showing the dominant role of DCs in central tolerance. 

More recently, it was shown that DCs are not simply bystanders in the thymocyte selection 

process. They actively attract post-positive selection thymocytes by producing CCR4 ligand 

to facilitate the negative selection process (28). Interestingly, and likely due to the 

experimental challenges associated with separating central and peripheral tolerance 

processes, the general outcome of a defect in DC-mediated central tolerance on the potential 

development of an autoimmune phenotype has yet to be clearly defined.

Although all thymic DCs contribute to central tolerance, they do so through different means 

(Figure 1). Three thymic DC subsets contribute to central tolerance, namely resident DC 
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(CD8α+SIRPα-), migratory DC (CD8α-CD11b+SIRPα+) and plasmacytoid DC (pDC, 

CD11cintCD45RAint) (29–32). Resident DCs that develop from thymic lymphoid precursors 

are the most abundant subset and are primarily localized in the medulla (29, 31, 33, 34). 

They contribute to the elimination of autoreactive thymocytes by presenting a wide array of 

self-antigens, and by cross-presenting both blood-derived antigen and tissue specific 

antigens from medullary thymic epithelial cells (35–37). Migratory SIRPα+ DCs also 

contribute to central tolerance. They develop in periphery and, as shown in parabiosis 

experiments, migrate to the thymus via CCR2/α4 integrin where they mostly localize to the 

cortical-medullary junction to present peripheral self-antigens to developing thymocytes (34, 

38, 39). pDCs also develop in periphery and use CCR9/α4 integrin signals to migrate to the 

thymus and contribute to the maintenance of immune tolerance (32). Interestingly, in RTOCs 

experiments, pDCs were shown to only minimally contribute to the induction of negative 

selection (25). The reason for this discrepancy is not clear, but may be due to the different 

localization of cells in RTOCs. Still, all the DC subsets contribute to immune tolerance by 

presenting self-antigens and inducing negative selection of developing thymocytes that 

present with a high affinity to self-ligands. While pDC and migratory DC specialize in the 

presentation of peripheral antigens, resident DCs provide immature T cells with a distinct 

self-antigenic repertoire. In addition, although thymic resident and migratory cDC can 

uptake MHC-I and MHC-II from thymic epithelial cells in a cell-contact dependent manner, 

this process is dependent on PI3K pathway only for CD8α+ resident cDCs (40), further 

supporting the view that each DC subset provides a non-redundant role in antigen-

presentation to T cells and in the maintenance of central tolerance.

In addition to inducing negative selection, thymic DCs are also important for the selection of 

natural Tregs during thymocyte differentiation. Proietto et al. constructed mixed bone 

marrow chimeric mice, with T cells specific to a given antigen (from OT-II.Rag2−/− mice) 

and DCs as the only source of APC presenting this antigen (from CD11c-OVA mice). In 

these mice, DCs successfully induced the differentiation of natural antigen-specific Tregs in 

the thymus (41). Specifically, both resident and migratory DCs, but not pDCs, are able to 

induce Tregs in vitro (25, 41, 42), but the mechanisms by which they induce Tregs are 

distinct (Figure 1). Resident DCs promote Treg cell survival via their expression of CD70, 

whereas CD70-deficient migratory DCs effectively induce Tregs through an undefined 

pathway (42). Yet, the capacity to induce Tregs is not restricted to DCs. When high 

concentrations of self-antigens are present, Tregs can differentiate in RTOCs devoid of 

APCs suggesting that epithelial cells can sometimes induce Tregs (25). As such, thymic Treg 

numbers are normal in mice that only express MHC-II on epithelial cells (43). Therefore, 

both thymic epithelial cells and DCs play an active role in the induction of central tolerance 

through both the elimination of potentially autoreactive thymocytes and in facilitating the 

generation of Tregs. As thymic epithelial cells and DCs bear distinct immunopeptidomes, 

one can presume that these roles are not fully redundant. Indeed, both have the capacity to 

uptake antigens from different sources and exploit different proteolytic pathways resulting in 

distinct peptide repertoires each contributing towards effective induction of central tolerance 

(20).
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DC-mediated peripheral tolerance mechanisms

Although thymic selection efficiently eliminates many self-reactive T cells, some remain and 

must be kept in check with additional peripheral tolerance mechanisms to avoid 

autoimmunity. In the absence of inflammation, DCs can present self-antigens to T cells, 

providing transient T cell activation that can lead to either anergy or deletion of these T cells 

(44). DC-mediated tolerance is thus an active process that requires TCR signalling (45). T 

cell clonal deletion is mediated by the activation of Fas-, Bim- or TNF-dependent apoptosis 

and inhibition of NF-κB signalling (46–48). Many DC factors contribute to the balance of 

tolerance and immunity, including maturation states defined by their gene signature, and the 

level of antigen presentation; therefore it is necessary to understand the conditions under 

which DCs remain immature or become activated (37, 49, 50).

Steady state DCs that normally express low levels of DC maturation markers and promote 

tolerance induction are termed immature DCs (51). Once activated by pathogen or damage 

associated molecular patterns, DCs turn on different metabolic, cellular and gene 

transcription programs that initiate increased DC migration out of peripheral tissue into 

draining lymph nodes where antigen presentation to T cells occurs (52–54). DC maturation 

is marked by increased expression of molecules relevant for T cell activation including 

MHC-II, costimulatory proteins such as CD40, CD80/CD86 and inflammatory cytokines or 

chemokines (55–57). However functional capacity of DCs to induce T cell activation does 

not always directly correlate with common maturation markers, in part because Tregs use 

some of the same signals including CD80/CD86 (58–60). Therefore, tolerogenic and 

immunogenic DC should ideally be defined based on the signals they give to conventional or 

regulatory T cells (37).

Steady state DCs are exposed to commensal microorganisms and other tonic inflammatory 

signals that can induce the expression of maturation markers at low levels, which are not 

sufficient to break self-tolerance in most individuals. The ability of steady-state DCs to 

remain in an immature/non-activated form likely depends on the timing, dose, and signal 

strength of the factors interacting with DCs. Steady-state DC migration is associated with 

considerable transcriptional changes, suggesting that immunoregulatory function of steady-

state DCs is an active process (37). Indeed, regulators such as A20 can modulate NF-κB 

signalling and contribute to maintaining tolerance (61–64). Upregulation in DC of IDO 

synthesis, a rate-limiting enzyme of tryptophan catabolism, contributes in tolerance by 

depleting tryptophan and causing apoptosis of effector T cells (65–67). Negative 

costimulation via CTLA4-CD80/CD86 or PD-1-PD-L1/ PD-L2 is also implicated in the 

induction of tolerance, but, these proteins display minimal expression on steady state DCs 

suggesting that these inhibitory signals may be more important for dampening activation in 

the context of inflammatory signals (68–70).

Peripheral DCs are subdivided in functional subsets with various locations and roles in both 

immunity and tolerance, namely pDC, monocyte-derived DC (moDC) and conventional DC 

(cDC). The latter are further subdivided in 2 populations, the CD8α+/CD103+ and the 

CD11b+ (71). moDCs (CD11c+CD11bhiMHCII+) are usually inflammatory and separated 

from the cDCs by higher CD11b expression and lack of cDC-specific markers such as CD4 
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and DCIR2 (54, 72). Because many studies do no separate cDCs from moDCs in their 

analysis, it is not yet clear if moDCs can contribute to tolerance induction, whereas strong 

evidence support a clear role for both cDCs and pDCs in the maintenance of immune 

tolerance.

cDCs prime T cells via antigen presentation and other signals, leading to immunogenicity or 

tolerance (49, 70, 73–75). Delivering antigen to particular cDC subsets via chimeric 

antibodies specific for lectin cell surface receptors can elucidate the role of these subsets in 

T cell tolerance induction (Figure 2). CD8α+ cDCs express DEC205 and are located in the T 

cell zone in the spleen where they can cross-present exogenous antigen to CD8+ T cells via 

MHC-I. DCIR2, another DC lectin receptor, is expressed by murine CD11b+ cDCs and 

some human DCs (76–78) In mice, CD11b+DCIR2+ DCs located in the red pulp and 

marginal zone area of the spleen can migrate to the edge of the T cell zone where they 

primarily stimulate CD4+ T cells (79–82). Both DEC205 and DCIR2 are efficiently 

internalized upon receptor-ligand interaction and these receptors are directed to endosomal/

lysosomal compartments for antigen presentation (79, 83). In mice that have been 

challenged with anti-DEC205 or anti-DCIR2-mediated antigen delivery to cDCs during 

steady state, antigen-specific T cells are rapidly deleted and the remaining antigen specific T 

cells become unresponsive upon in vitro stimulation (65, 75, 79). Some studies have 

proposed that natural ligands for DEC205 such as apoptotic, necrotic materials or CpG may 

stimulate CD8α+ cDCs and possibly contribute to their maturation (84, 85). Still, many 

lectins can impart maturation or inhibitory signals upon binding ligand or antibody (86, 87), 

and recent evidence points to DCIR2 in providing a negative signal to cDCs, further adding 

to the role of DCIR2 in the cDC-mediated maintenance of steady-state tolerance (88).

cDCs not only induce tolerance by deleting antigen-specific T cells or by inducing anergy, 

they can also promote Treg cell differentiaton or function (Figure 2). While CD8α+ cDCs 

are more efficient in providing TGF-β for de novo FoxP3+ Treg cell generation, likely 

potentiated by BLTA expression (89), CD11b+ cDCs enhance activation and proliferation of 

existing CD4+FoxP3+ Tregs (90). Interestingly, Tregs play a very important role in steady 

state cDC-mediated tolerance. Depletion of FoxP3+ Tregs increases cDC numbers as well as 

the surface expression of costimulatory molecules, resulting in enhanced T cell responses 

(91). This strongly suggests that Tregs also contribute to the peripheral tolerance by 

maintaining cDCs in immature state (91, 92).

pDCs are a specialized subset of DC that rapidly make a large amount of type 1 IFN in 

response to signals such as viral infections (Figure 2). In the steady state, pDCs express very 

low levels of MHC-II and costimulatory molecules and may contribute to T cell 

unresponsiveness. Though pDCs are not as efficient as cDCs for antigen presentation to T 

cells, pDCs can upregulate MHC-II molecules on their surface and migrate to the T cell 

area, induce T cell proliferation and Treg generation (93, 94). Activated pDCs can have 

enhanced MHC-II expression (95, 96), allowing for prolonged T cell activation that may 

contribute to Treg development as increased MHC-II on pDCs is required for Treg 

homeostasis (97). Type 1 IFN and IL-10 produced by pDCs may also contribute to Treg 

generation (98). pDCs can produce IDO and express PD-L1 that correlate with an increased 

Treg frequency (99, 100). Tolerogenic pDCs have been reported in many inflammatory 
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disorders including acute graft-versus-host disease (GVHD), autoimmune arthritis, and oral 

tolerance, where they promote tolerance by modulating Treg function or by maintaining 

antigen-specific T cell tolerance (101–103).

The local environment also plays an important role in modulating DC tolerogenic function. 

For example, migratory dermal DCs and Langerhan cells present in the both skin and skin-

draining lymph nodes appear to play a central role in Treg differentiation. DCs in skin 

draining lymph nodes are particularly effective at inducing Tregs, as Tregs converted from 

naïve CD4 T cells display enhanced immunoregulatory properties when isolated from the 

skin draining lymph nodes rather than the spleen of mice (104). In mice where langerin+ 

migratory DC are depleted using DT injections in Lang-DTR transgenic mice, anti-

DEC205-mediated antigen-specific delivery to DCs is no longer able to induce antigen-

specific Tregs in the spleen and skin-draining lymph nodes and results in a loss of immune 

tolerance (105, 106). Importantly, langerin+ migratory DCs may, in fact, uniquely contribute 

to the induction of Tregs and the maintainance of peripheral tolerance, as the specific 

depletion of langerin+ DCs has no effect on the initiation of anti-viral responses (107). This 

latter finding suggests that specific DC subsets found in unique environments may have 

specialized roles in immune tolerance. Further investigation of the role of langerin+ DC in 

the modulation of various immune responses is needed to clarify their contribution in 

pathogenic settings.

DCs found in the gut associated lymphoid tissues can also promote immune tolerance. As in 

the skin, CD103+ DCs in the gut tissue express high levels of the enzyme aldehyde 

dehydrogenase, which converts vitamin A into retinoic acid (RA), that in turn promotes the 

conversion of naïve T cells into Tregs (108, 109). A second mechanism by which gut DCs 

induce tolerance is through the production of IDO, that itself facilitates induction of Tregs 

(110). In fact, selective elimination of CD103+CD11b− DCs results in a decrease in IDO 

levels and an increased susceptibility to DSS-induced colitis (111). Finally, CD103+CD11b+ 

DCs also significantly contribute to immune tolerance through the expression of acyloxyacyl 

hydrolase, an enzyme able to inactivate LPS and thus to prevent effective TLR-4 activation 

that induces the differentiation of naïve T cells into effector Th17 cells (112). Altogether, 

these data support the view that DCs found in the gut microenvironment are geared to 

promote immune tolerance, likely because of the perpetual exposure to microflora and to 

food antigens (113).

How do DCs maintain/adjust tolerance against self-antigens in the context of inflammatory 

signals? Although activated DCs acquire strong phenotypic changes linked with enhanced 

effector T cell function and inflammatory cytokine production, DCs can also exert 

regulatory function under inflammatory situations. For example, pDCs promote persistence 

of viral infection in the liver (114). Even under strong activation due to allergen exposure, 

pulmonary DCs can stimulate the development of CD4+ T regulatory 1-like cells (115). 

Immunoregulatory-DCs in the context of infection have been defined based on the net sum 

of inhibitory versus stimulatory signals. Induction of inhibitory molecules including PD-1, 

TGF-β or IDO and down regulation of costimulatory molecules or cytokines are important 

correlates of regulatory DC function (116, 117). For example, upon infection with Listeria 
monocytogenes, DCs induce both stimulatory and regulatory molecules (118). Infected DCs 
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suppress T cell activity mainly by IL-10 and cyclooxygenase 2-mediated mechanisms (118, 

119). In certain contexts, signals associated with inflammation, such as TLR2, TNF-α and 

prostaglandin receptor can induce immunoregulatory-DC phenotypes (118). In chronic viral 

infection, DCs can become immunosuppressive, losing their surface expression of MHC 

class I and II and costimulatory molecules (120). DCs also upregulate PD-L1 during chronic 

viral infections such as HIV and hepatitis C virus (121–123). PD-L1 interacts with PD-1 on 

T cells which can induce T cell deletion and also increase Treg generation and function by 

enhancing FoxP3 expression, in human (124).

DC and autoimmune pathologies/diseases

Autoimmune diseases occur, in part, because of changes in DC function that result from 

genetic and environmental alterations (125–127). Disruption of the tolerance network 

contributed by each DC subsets can promote autoreactive T cell responses and pathology. 

Therefore, therapies targeting DCs may be effective treatment for autoimmunity. Identifying 

the DC signalling pathways that are altered in the context of autoimmunity and that can 

interrupt T cell tolerance induction will help define the signals that allow induction of stable 

tolerogenic DCs. In addition to the pattern recognition receptors that sense danger signals, 

host derived non-pathogen-associated chronic inflammatory signals are also playing a role in 

autoimmune pathology (75, 128). DC function could be altered under this persistent host-

derived inflamed situation (Figure 2).

One critical inflammatory signal in systemic autoimmunity is type 1 IFN. Patients with 

systemic lupus erythematosus display an increased interferon gene signature (129, 130) and 

pDCs from these patients are more prone to induce pathogenic T cell responses (131, 132). 

The pathogenic role of type 1 IFN in other autoimmune diseases is less clear, but may also 

contribute to these pathologies (133, 134). Prior to islet infiltration by autoreactive T cells, 

autoimmune-prone NOD mice already exhibit increased type 1 IFN and IFN response genes 

in the islets, and blocking type 1 IFN at this early stage inhibit diabetes pathogenesis (135–

137). This suggests that type 1 IFN is critical for the initial break in tolerance. But the role 

of chronic innate signals on DCs at later disease stages is less clear. Despite increased 

chronic type 1 IFN exposure, DCs from older prediabetic NOD mice display impaired type 1 

IFN responses due in part to down-modulation of IFN-A receptor (137, 138). Yet, NOD DCs 

and other APCs are hyperactive due to increased proinflammatory signals resulting from a 

defect in NFκB regulation that enhances antigen presention to CD8 T cells (139, 140). 

Therefore, the balance of different types of inflammatory signal is likely important for 

autoimmune pathogenesis, and type 1 IFN and IL-1 signals can counter-regulate each other 

(141–143). IL-1 and increased NFκB activation may be the dominant inflammatory signal 

for type 1 diabetes (144). Autoimmunity may also lead to changes in DC costimulatory 

molecule expression. DCs from prediabetic NOD mice have increased CD40 expression that 

is dependent on adaptive immune cells. Increased CD40 expression could be more indicative 

of inflammation, as blocking CD40 signals blocks NOD autoimmune diabetes pathogenesis 

(145–148).

The role of particular DC subsets in tolerance induction also differs in autoimmune contexts. 

Although both CD8α+DEC205+ and CD11b+DCIR2+ DCs are tolerogenic in normal mice, 
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only the CD11b+DCIR2+ DCs are able to induce CD4 tolerance in NOD mice (78). NOD 

mice have fewer CD8α+ DCs in the spleen and the function of this DC subset is altered; the 

cross-presentation capacity of NOD DCs is reduced relative to CD8α+ DC from non-

autoimmune prone mice (149). This significantly reduces the potential for cross-tolerance, a 

mechanism involved in maintaining immune tolerance (150). This more pathogenic role for 

CD8α+ DEC205+ DCs in NOD mice was further confirmed by the lack of diabetes 

development in NOD Batf3−/− mice that cannot develop these cross-presenting DCs (151). 

NOD mice also exhibit an increased proportion of recently described merocytic DCs (152, 

153). This unconventional DC subset is sufficient to break tolerance at steady state (154). In 

addition, the H2g7 specific MHC haplotype affects the spectrum of antigen presentation, 

which has been proposed to contribute to autoimmune susceptibility (155). In experimental 

autoimmune encephalitis (EAE), a mouse model of multiple sclerosis, the role of DCs for 

controlling immune tolerance was demonstrated with two complementary approaches. The 

lack of MHC-II on APCs using MHC class II-deficient bone marrow chimeric mice reduced 

EAE symptoms and histopathology scores. Conversely, MHC-II expression restricted to 

CD11c+ DCs is sufficient to induce EAE pathophysiology in mice bearing myelin 

oligodendocyte-specific T cells (156). pDCs are also important in regulating multiple 

sclerosis susceptibility, but their protective or detrimental role is highly dependent on the 

timing. Indeed, antibody-mediated depletion of pDCs at the onset of EAE exacerbates the 

pathophysiological response (157, 158). Similarly, in mice lacking MHC-II expression in 

pDCs, EAE severity was increased and this was linked to a decrease in Treg proliferation, 

suggesting that pDCs contribute to immune tolerance by activating Tregs (97). In contrast, 

pDC depletion during the priming phase decreases the onset and the severity of the disease 

(158). Therefore, the context and timing in which DCs transmit signals to other immune 

cells determine if they will contribute to exacerbating the immunopathology or confer 

immune tolerance.

Maintenance of immune tolerance is also relevant in the context of GVHD where pathogenic 

alloimmunity develops. Depletion of DCs in GVHD setting via the utilization of CD11c-

DTR bone marrow decreases the expansion of allogenic T cells, suggesting that donor DCs 

contribute to the pathogenesis (159). Specifically, the CD103+CD11b− DC subset is 

sufficient to cause GVHD, as exemplified in Irf4-deficient bone marrow chimeras (159). 

However, pDCs were shown to protect against GVHD by inducing Tregs (101). MHC-II-

deficient DCs are also linked with a reduction in Tregs in the context of GVHD (160). These 

findings support an immunoregulatory role for DCs in GVHD, at least by the induction of 

Tregs. In addition to immune tolerance, DCs may help prevent GVHD by restoring immune 

T cell homeostasis, which is severely affected following bone marrow transplants. Although 

IL-7 treatment facilitates CD8+ T cell homeostatic proliferation, recent evidence suggests 

that adding either Flt3 or SDF1, two molecules that potentiate DC numbers in vivo, favours 

homeostatic reconstitution of CD4+ T cells (161). Immunoregulation by DCs is thus relevant 

for the prevention or treatment of GVHD.

A specific role for pDCs has also been delineated in vascular inflammatory settings. In 

vascularized grafts, as in GVHD, pDCs promote the development of Treg and prevent 

allograft rejection (162). pDCs similarly contribute to prevent atherosclerosis, where specific 

depletion of pDCs leads to a reduction in Tregs and an exacerbation of atherosclerosis 
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lesions (163). This latter study demonstrates that pDCs induce antigen-specific Treg via the 

production of IDO. Together, these studies support a tolerogenic role for pDCs through 

induction of Tregs.

Conclusion

DCs are potent APCs which, depending on the context, can either induce effective immune 

responses or contribute to immune tolerance. There are many challenges associated with 

studying the role of specific DC subsets at steady state, under inflammatory or pathological 

conditions to carefully dissect their contrasting immunoregulatory and immunogenic 

properties. To examine the fundamental tolerogenic function of DCs at steady state, various 

mouse models have been engineered to allow manipulation of DCs in an unscathed in vivo 

setting. Studies exploiting these models have established that DCs contribute to the 

maintenance of immune tolerance. As DCs efficiently maintain immune tolerance, various 

protocols have been attempted to effectively produce tol-DC for the potential treatment of 

autoimmune diseases. DCs are a rare heterogeneous cellular population and their phenotype 

and function is readily modulated by both tissue localization and inflammatory responses. 

Notably, the context in which a specific DC subset is found can dictate its role. For instance, 

the CD8α+ cDCs subset may exhibit at least three distinct functions depending on its 

location and activation status. Under homeostatic maturation signals in the thymus, they 

permit effective induction of T cell central tolerance whereas, in secondary lymphoid organs, 

they induce T cell cross-tolerance (37). In contrast, immunogenic activation of this same 

cDC subset will initiate effective anti-viral responses (37). Recent studies have begun to 

transpose the role of each murine DC subset to their human equivalent (164–166). This may 

help lead to the development of new therapeutic strategies for using DCs to establish 

immune tolerance and treat autoimmune diseases.
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Figure 1. 
DC-mediated central tolerance. Migratory CD11b+CCR2+DCs and CCR9+ pDCs migrate 

from periphery to the thymic cortex and induce tolerance to peripheral self-antigens by 

inducing apoptosis of autoreactive thymocytes. Migratory DCs also promote Treg 

differentiation. CD8a+ resident DCs induce apoptosis of thymocytes reactive to self-antigens 

and promote Treg differentiation and survival.
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Figure 2. 
DC-mediated peripheral tolerance. cDCs and pDCs induce tolerance by promoting Treg 

differentiation or function. cDCs can also induce periperhal tolerance by inducing T cell 

anergy (not shown) or T cell deletion. In inflammatory conditions, cDCs and pDCs promote 

T cell activation.
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