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Abstract

The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and 

toxicologists. However, this protein has fundamental roles in biology that are being revealed 

through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in 

most major groups of modern bilaterian animals, including deuterostomes (chordates, 

hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans 

(e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR 

homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the 

genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade 

Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The 

presence of AHR homologs in modern representatives of all these groups indicates that the 

original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates 

reveal parallel functions of AHR in the development and function of sensory neural systems, 

suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion 

and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into 

at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution 

of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of 

halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions 

involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The 

existence of multiple AHRs may have facilitated subfunction partitioning and specialization of 

specific AHR types in some taxa. Additional research in diverse model and non-model species will 

continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
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1. Introduction

The aryl hydrocarbon receptor (AHR) was initially identified because of its role in 

regulating the induction of drug-metabolizing enzymes and in mediating the extreme toxic 

potency of chlorinated dibenzo-p-dioxins and related compounds [1,2]. For two decades 

after its discovery, this protein was of interest only to pharmacologists and toxicologists [3–

5]. However, early on it was recognized by some investigators that study of this receptor and 

its high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) offered potential 

insights into fundamental biological processes, in the same way that other potent toxins and 

toxicants have been used to understand cellular functions [6]. Now, it is widely 

acknowledged that the AHR has multiple functions beyond toxicology [7–10], and the past 

decade has ushered in a new and exciting era in AHR biology as experts from a variety of 

fields in biomedicine have turned their attention to elucidate the roles of this pleiotropic 

protein in cell and developmental biology, immunology, and human disease.

Despite the emerging understanding of the AHR, fundamental questions remain concerning 

its molecular mechanisms of action (including possible non-genomic mechanisms), target 

genes beyond the well-known genes encoding biotransformation enzymes, and networks of 

interactions with other signaling pathways. Similarly, the precise mechanisms underlying 

most AHR-dependent toxic effects of AHR ligands are not yet known. Complementing the 

studies of biomedical scientists, research by biologists in other fields has provided a 

comparative perspective that has yielded insights into the variety of biological functions 

carried out by AHRs in diverse species. The identification and characterization of AHRs in 

powerful model species such as Mus musculus [11,12], Caenorhabditis elegans [13], 

Drosophila melanogaster [14], Danio rerio [15], and Nematostella vectensis [16] has been 

especially valuable because the tools available for those species have facilitated manipulative 

experiments to assess AHR functions. Understanding the variety of AHR functions in 

biology may enable a better understanding of the mechanisms by which exposure to AHR 

ligands leads to toxicity.

Beyond the established model systems, a broader elucidation of the evolutionary history of 

the AHR, and of the bHLH-PAS (basic helix-loop-helix Per-Arnt-Sim) family to which it 

belongs, can provide a foundation for understanding shared and novel features of AHR 

biology, foster insight into toxic mechanisms, and support extrapolation and prediction of 

responses to chemicals among species [17,18]. To understand AHR evolution, we look at 

modern representatives of early-diverging groups. In what organisms did AHR first appear? 

What were the original functions? Are there fundamental features of AHR action that are 

conserved throughout its evolutionary history? What new features and roles have evolved 

and how do they vary among taxa?

2. AHR origins: The AHR is an ancient protein

What were the first organisms to have an AHR? Early studies using radioligand binding 

assays with [3H]TCDD or 2-azido-3-[125I]iodo-7,8-dibromodibenzo-p-dioxin suggested that 

AHR was a vertebrate protein [19,20]. Subsequently, the identification of AHR homologs in 
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C. elegans [13,21] and D. melanogaster [14] revealed that AHR was more broadly 

distributed in multiple animal phyla. We now know that AHR is present throughout 

metazoans (Fig. 1). When did it first emerge? We cannot know for sure, but we can obtain 

clues by looking at genomes of modern descendants of some of the earliest diverging 

metazoans and their relatives.

Filastereans (represented by the genus Capsaspora) are not metazoans, but they are the 

closest unicellular relatives of metazoans and possess many of the transcription factors that 

are important for metazoan development [22,23]. Capsaspora has four bHLH-PAS proteins 

but no recognizable AHR homolog [22].

Choanoflagellates such as Monosiga and Salpingoeca also are single-celled but at certain 

stages can form aggregates held together by cell adhesion proteins, considered a primitive 

type of multicellularity [24–26]. Choanoflagellates have a few bHLH-PAS proteins but no 

clear AHR homolog [22].

Sponges (phylum Porifera; e.g. genus Amphimedon), which exhibit embryonic and larval 

stages and possess a large set of metazoan-specific developmental transcription factors, are 

considered the oldest extant metazoan lineage [27]. The Amphimedon genome encodes three 

bHLH-PAS proteins that resemble the ARNT/BMAL, HIF/SIM/TRH, and CLOCK proteins 

of more recently diverging animals, but again no AHR [28].

The most ancient metazoan lineage with a clearly recognizable AHR in its genome is the 

placozoan Trichoplax [29,30]. Placozoans have three cell layers and a variety of 

transcription factors involved in metazoan development and cell fate specification, but no 

recognizable specialized sensory or nerve cells. The three bHLH-PAS proteins in Trichoplax 
include an AHR homolog that shows high amino acid sequence similarity to human AHR in 

its bHLH domain (84%), and substantial but lower similarity in its PAS-A (43%) and PAS-B 

(51%) domains. Nothing is known about the function of the placozoan AHR.

An AHR homolog is also found in a cnidarian, the starlet sea anemone Nematostella 
vectensis. This species, which is often studied because of its phylogenetic position basal to 

the bilaterian metazoans, has a nervous system, sensory organs, and a full toolkit of 

metazoan developmental regulatory proteins, including many shown to interact with AHR 

signaling in mammals (e.g. notch, hes, wnt, fgf). The N. vectensis genome encodes seven 

bHLH-PAS proteins, including homologs of HIF, SIM/TRH, ARNT, BMAL, and CLOCK in 

addition to the AHR and a second AHR-like protein [16,31]. Functional characterization of 

the AHR suggests differences compared to AHRs of vertebrate animals. For example, when 

expressed in vitro the N. vectensis AHR protein does not exhibit specific binding of 

[3H]TCDD or [3H]beta-naphthoflavone ([3H]BNF), prototypical ligands for vertebrate 

AHRs [16]. In addition, unlike vertebrate AHRs the N. vectensis AHR does not interact with 

ARNT or BMAL in vitro, suggesting that it may act independent of ARNT. In situ 
hybridization shows that AHR is expressed during larval development at the base of the 

apical tuft (a sensory structure) and later in the developing tentacles [16]. The expression 

patterns of AHR and ARNT are non-overlapping at most of these stages, providing 

additional evidence for ARNT-independent function of the N. vectensis AHR.
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The results in N. vectensis strongly suggest that the common ancestor of cnidarians and 

bilaterian animals already possessed the modern animal set of familiar bHLH-PAS proteins, 

including AHR. The functions of this early AHR are unknown, but studies in modern 

bilaterians (protostomes and deuterostomes) have provided some clues.

3. AHRs in protostomes: Key roles in development of sensory systems

The protostomes include most of the major invertebrate phyla and two key model species 

that have provided important insights into possible ancestral functions of AHR [32,33].

An AHR homolog (called AHR-1) in the nematode C. elegans [13,21] resembles the 

cnidarian AHR in its inability to bind typical AHR ligands [13,34]. AHR-1 is expressed 

during embryonic and larval development and primarily in developing neurons, including 

touch receptor neurons, GABAergic motor neurons, interneurons, and sensory neurons that 

contact the pseudocoelomic fluid [35]. Loss of AHR-1 function results in defective neuronal 

migration and axonal pathfinding, altered touch neuron fate, and changes in locomotor and 

social feeding behaviors [35–37]. The role of AHR-1 in neuronal development requires 

ARNT (AHA-1) [35,36] and may involve regulation of wnt signaling [38]. In addition to its 

roles in development, AHR-1 appears to have an ongoing role in regulating the expression of 

oxygen-sensing guanylate cyclases involved in the control of feeding behavior [39,40]. 

Together, these results support a role for AHR-1 in neuronal differentiation, migration, and 

cell fate determination [32] as well as post-embryonic neuronal functions.

Another powerful model, the fruit fly D. melanogaster, has also provided important insights 

into the pleiotropic developmental roles of AHR. The fly AHR homolog, the product of the 

spineless (ss) locus, is expressed in larval eye-antennal imaginal discs, the regions destined 

to becoming adult eyes and antennae [14]. Loss-of-function mutations demonstrate that ss 

specifies the identity of the distal segments of antennae (multi-sensory structures) and legs 

and the formation of mechanosensory bristles (the loss of which is reflected in the name 

“spineless”) [14]; in the antennae ss appears to have a specific role in development of 

olfactory sensillae [41]. The action of ss in controlling development of antennae and distal 

leg require the fly ARNT homolog tango (tgo) [42] and may in part involve the repression of 

gene expression by ss/tgo complexes [43].

Later in development, ss has a role in specifying photoreceptor cell fate in ommatidia of the 

developing compound eye. Stochastic expression of ss in specific photoreceptors determines 

the type of rhodopsin that is expressed, thus controlling color sensitivity in D. melanogaster 
[44,45] and other insects [46]. As seen for antenna and leg development, the role of ss in 

controlling photoreceptor cell fate requires tgo (ARNT) [47]. The expression of ss is 

maintained in these ss-specified photoreceptor subtypes in adults [45] and thus may be 

necessary to maintain the pattern of rhodopsin expression.

Yet another developmental role of the D. melanogaster AHR homolog is in controlling 

dendrite morphology on dendritic arborization (da) sensory neurons in the fly peripheral 

nervous system [48,49]. The effect of ss varies in different types of da neurons, with the end 

result of diversifying dendrite morphology. Although this role was originally suggested to be 
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independent of tgo/ARNT [48], more recent results indicate that co-expression of tgo is in 

fact necessary [47]. Because the C. elegans AHR has a similar role in controlling dendritic 

branching complexity, this has been suggested as an ancestral role of AHR [37].

The common theme of the research in C. elegans and D. melanogaster, with circumstantial 

support from studies in the cnidarian N. vectensis, is one of pleiotropic roles of AHR in 

controlling the development (cell fate and differentiation) and function of sensory structures 

and neural systems [18,32,33,49]. These functions appear to involve both activation and 

repression of gene expression by AHR [37,43].

What is the role of ligands in the functions of protostome and cnidarian AHR homologs? 

Although these AHRs do not appear to bind typical (i.e. vertebrate) AHR ligands [13,16,34] 

and there is some evidence for constitutive, ligand-independent activity [32,42,50], it is also 

possible that there are endogenous ligands or other regulatory mechanisms involved [51–53]. 

Nevertheless, we refer to these proteins as “protoAHRs” (Table 1) to highlight the 

apparently substantial differences in ligand specificity between these proteins and their 

vertebrate homologs, which function (at least in part) as true “aryl hydrocarbon receptors.” It 

is important to note, however, that all of the evidence currently available is consistent with 

the idea that protoAHRs and vertebrate AHRs are true orthologs (i.e. descended from the 

same gene in the most recent common bilaterian ancestor [54]).

4. AHR in deuterostomes: Expansion through gene and genome 

duplications

The other major group of bilaterian animals, the deuterostomes, includes echinoderms, 

hemichordates, and chordates (Fig. 1). Predicted AHR homologs are found in genomes of 

the echinoderm Strongylocentrotus (sea urchin) [55,56], hemichordate Saccoglossus (acorn 

worm) [57], and invertebrate chordates such as the cephalochordate Branchiostoma 
(amphioxus) [58,59] and urochordate Ciona (sea squirt) [60]. The Ciona AHR, like other 

invertebrate AHRs, does not bind TCDD (unpublished data), but nothing is known about the 

function of the other invertebrate deuterostome AHRs.

In contrast to the echinoderms, hemichordates, and invertebrate chordates, the vertebrate 

chordate lineage is notable for the diversification of AHRs (and other bHLH-PAS proteins 

[61]) (Table 1), a result of vertebrate- and teleost-specific whole genome duplications as 

well as an early tandem duplication of AHR [61]. It is in the vertebrates where we first see 

AHRs that exhibit high-affinity binding of TCDD [18], AHR-dependent regulation of genes 

encoding xenobiotic-metabolizing CYP1 enzymes [62,63], and high sensitivity to toxic 

effects of dioxin-like compounds [64].

In the oldest extant vertebrate group, Agnatha (jawless fishes), represented by the lampreys 

Petromyzon marinus [65] and Lethenteron japonicum [66], we see a remarkable expansion, 

with five predicted AHR genes in each species ([67] and S. Karchner unpublished; Table 1). 

This increase in AHR genes was likely a result of the two whole genome duplications that 

occurred early in vertebrate evolution, more than 450 million years ago; current evidence 
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suggests that both of these preceded the divergence of agnathan cyclostomes (jawless 

vertebrates) and gnathostomes (jawed vertebrates) [65,68] (but see also [69]).

In the jawed vertebrates (Chondrichthyes [cartilaginous fishes] and Osteichthyes [bony 

fishes] and their descendants, including tetrapods), our current understanding—supported by 

phylogenetic analyses and information from shared synteny—is that there are at least five 

classes of AHR-related genes (Table 1). We use AHR to refer to vertebrate orthologs of the 

AHR originally identified in mammals [11,12]. AHR genes are found in nearly all 

vertebrates, including sharks, gar, and sturgeon. However, teleosts (the largest group of ray-

finned fishes) are notable in that most of those studied to date lack this AHR. The exception 

is zebrafish, where the enigmatic “AHR1a” [70–72] appears to be an AHR based on our 

recent analysis of shared synteny with human AHR and other AHR genes (Fig. 2A).

AHR1 and AHR2 are paralogs derived from a tandem gene duplication that occurred prior 

to the divergence of cartilaginous and bony fish lineages [21,61,71,73]. Although AHR1 was 

originally thought to be orthologous to mammalian AHR [73], more recent analysis of 

additional AHR sequences reveals that AHR and AHR1 represent distinct lineages (Table 1). 

AHR1 and AHR2 orthologs are found in tandem in cartilaginous fishes [74], bony fishes 

(which usually have duplicated AHR1-AHR2 pairs; see below) [61,71], coelacanth (a lobe-

finned fish) [75], birds [76,77], reptiles [78], and an early diverging marsupial mammal, the 

opossum Monodelphis ([79]; C. Panti, S. Karchner, M. Hahn, unpublished) (Table 1). Based 

on Xenopus genomes and other analyses, the AHR1/AHR2 pair has been lost from at least 

some amphibians [80] (Table 1). Although orthologs of AHR1 and AHR2 are not found in 

rodents or humans, there are predicted AHR2 genes in several genomes in the mammalian 

orders Carnivora, Cetartiodactyla, and Primates (both old world and new world monkeys, 

but not great apes; S. Karchner, R. Merson, and M. Hahn, unpublished) (Table 1). These 

occur without an adjacent AHR1, but the identity as AHR2 is supported by phylogenetic 

analyses (not shown) as well as by shared synteny with species possessing tandem AHR1-
AHR2 pairs (Fig. 2B).

AHR1 and AHR2 genes are often found as duplicated pairs in teleosts. Thus, most teleost 

genomes include both an AHR1a-AHR2a tandem pair and an AHR1b-AHR2b tandem pair 

[61,71,81]; these duplicated pairs are thought to have arisen as part of the teleost-specific 

whole-genome duplication [82,83]. A prominent exception is the zebrafish (D. rerio), which 

has only one AHR1-AHR2 pair (orthologous to AHR1b-AHR2b in other teleosts) [61,71] 

and a separate AHR (currently designated AHR1a, but likely an “AHR”, as noted above) 

[71,72]. Interestingly, the recently sequenced genome of gar, representing the holosteian 

lineage, which diverged prior to the teleost-specific genome duplication [84], does not 

contain an AHR1-AHR2 pair. However, it has—in addition to an AHR—an AHR2 that is 

orthologous to other fish AHR2 genes, based on phylogenetic analysis and shared synteny; 

thus, the tandem AHR1 appears to have been lost in this species. Similarly, sturgeon (a 

chondrosteian) has an AHR and an AHR2, but no AHR1 [85].

AHR3 is a novel AHR found originally in elasmobranchs (a subclass of cartilaginous fishes 

encompassing true sharks, skates, and rays; R. Merson & M. Hahn, unpublished; see also 

[61]) (Table 1). In the shark Squalus acanthias both AHR2 and AHR3 (but not AHR1) bind 
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TCDD and are transcriptionally active in heterologous expression systems (Merson et al., in 

preparation). The genome of the elephant shark [86], a representative of the cartilaginous 

fish subclass Holocephali (chimaeras), contains two possible AHR3-like genes. AHR3-like 

genes are also found in some early diverging fishes such as lamprey, gar, and coelacanth 

(Table 1) but they form a distinct clade in phylogenetic analyses. The resolution of AHR3 
relationships will require analysis of additional species and the completion of genome 

assemblies to assess the genomic context of this locus. AHR3 and AHR3-like genes do not 

appear elsewhere in the vertebrates.

AHRR, first identified in mouse [87], is distinct from AHR, AHR1, AHR2, and AHR3 and 

acts via multiple mechanisms to repress signaling through AHR and some other pathways 

[88]. The PAS-B region of AHRR, which in other AHR-related proteins forms the ligand-

binding domain, is missing or highly divergent in AHRR [87]; consistent with that, AHRRs 

do not bind [3H]TCDD or [3H]BNF [89]. AHRR has been retained in nearly all vertebrate 

groups (Table 1), suggesting that it has an important physiological function. Recent findings 

regarding the possible roles of AHRR in the immune system [90,91], reproduction [92,93], 

and carcinogenesis [94,95] support that notion.

5. Functional divergence of a pleiotropic protein: Shared and divergent 

roles of metazoan AHRs

What are the ancestral roles of AHRs and how have they changed during metazoan 

evolution? We look for evidence in functions that may be shared among modern animals 

whose most recent common ancestor lived long ago, e.g. protostomes and deuterostomes, 

but these roles can be difficult to identify given the substantial developmental and 

physiological differences among long-diverged lineages.

Studies in protostomes provide evidence for pleiotropic roles of AHR in controlling the 

development and function of sensory structures and neural systems and these have been 

suggested as ancestral roles of AHR [18,32,33,37,49]. Possible roles of AHR in sensory/

neural systems are less well understood in vertebrate animals, but results from AHR loss-of-

function studies and effects of TCDD on neural development in fish and mammals [96–103] 

suggest that this is an area worth further exploration. For example, roles for AHR in 

developing GABAergic systems and in controlling dendrite growth may be shared by 

vertebrate and invertebrate species [36,37,96,99,102,104].

Other developmental and physiological roles of AHR have been identified in vertebrates, 

including some involving vascular development, reproductive function, immunological 

development, and stem cell biology [7,8,33,105–107]. Some of these developmental roles 

may explain the special sensitivity of vertebrate early life stages to disruption by AHR 

ligands [108,109]. However, the possible connection of these roles to those of invertebrate 

AHRs is not obvious. Conceivably, shared features of AHR function may be more readily 

identified at the level of molecular interactions such as those involving gene regulation or 

protein-protein interactions. For example, interaction with wnt signaling appears to be a 

shared, and thus possibly evolutionarily conserved, feature of vertebrate and invertebrate 

AHRs [38,110–113]. A comparative analysis of gene regulatory networks involving AHR in 
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a variety of vertebrate and invertebrate model systems could illuminate additional ancient 

molecular interactions [40,114–116].

What is the role of ARNT and AHR-ARNT interactions with AHR response elements 

(AHREs, also called DREs and XREs) in ancestral and modern functions of AHRs? At least 

some of the toxic effects of AHR ligands in mammals require both ARNT dimerization 

[117] and DNA binding [118]. Similarly, some of the developmental roles in invertebrate 

species are ARNT-dependent and/or involve interactions with AHRE sequences similar to 

those found in vertebrates [35,36,42,47]. Yet there also is evidence for ARNT-independent 

functions in Nematostella [16] and, increasingly, evidence for ARNT-independent or AHRE-

independent roles of AHR in vertebrates [119–122].

The increased AHR diversity in vertebrate animals appears to have been accompanied by 

(and perhaps enabled) the emergence of new AHR adaptive functions, including regulation 

of the inducible expression of genes encoding xenobiotic-metabolizing enzymes such as 

cytochrome P450s (CYPs) in response to chemicals. Although CYPs and other 

biotransformation enzymes are inducible in C. elegans, the nematode AHR does not appear 

to be involved in this response [123]. In insects, there is evidence that AHR and ARNT 

homologs regulate the basal expression, but not the xenobiotic-inducible expression, of 

CYP6B1, which is involved in detoxification of dietary phytotoxins [124]. The first clear 

evidence for AHR-dependent regulation of inducible CYP1 genes is in jawed vertebrates 

[62,64]. How this association between AHR and CYP regulation evolved remains a mystery. 

However, one clue may be the intriguing tandem arrangement of AHR and CYP1-like genes 

in the urochordate Ciona [63], suggesting a possible mechanism whereby auto-regulation of 

AHR might have become co-opted by CYP1 through physical proximity on the 

chromosome.

As we have noted earlier, the evolution of the ability of AHR to engage in high-affinity 

ligand binding associated with ligand-dependent adaptive functions was a vertebrate 

innovation [18], perhaps driven by a need to detoxify halogenated marine natural products 

[125–128]. Ironically, this new ligand-dependence of AHR also introduced a mechanism by 

which some persistent halogenated aromatic hydrocarbons could cause toxicity through 

high-affinity AHR binding and sustained AHR activation. Invertebrate animals, which have 

AHRs that lack the ability to bind dioxin-like compounds, are generally insensitive to the 

toxicity of these chemicals [18,64].

Additional AHR-mediated adaptive functions that may have first emerged in vertebrate 

animals are those involving the regulation of innate and adaptive immunity [7,129]. Some of 

these immunological roles of AHR appear to involve endogenous and microbiota-derived 

ligands [130–134], although it is not yet known whether AHR affinity for some of these 

ligands (many of them indole derivatives) evolved in parallel with these immune functions.

In addition to novel functions, the AHR expansion in vertebrates may have enabled AHR 

isoform specialization, through subfunction partitioning and subsequent functional 

refinement. AHRR may be one example of that, whereby loss of ligand-binding through 
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degeneration of the PAS-B ligand-binding domain [89] led to a specialization for repression 

of gene expression.

Other examples of AHR specialization involve the apparent partitioning of tissue expression 

patterns, ligand specificity, and target gene specificity among multiple AHR paralogs in 

some non-mammalian vertebrates. Whereas most mammals have a single pleiotropic AHR, 

through which various classes of ligands must all act, there is evidence that the multiple 

AHRs of fishes, birds, reptiles, and amphibians have partitioned some of these functions. For 

example, the set of three AHR genes in zebrafish have evolved very different functional 

properties and expression patterns involving partitioning of ligand specificity and 

developmental versus adaptive roles [70–72,135–137]. Whereas zebrafish AHR2 appears to 

mediate most of the gene induction and developmental toxicity of TCDD, PCB-126, and 

some polycyclic aromatic hydrocarbons [138–143], AHR1a is preferentially involved in the 

response to some non-halogenated compounds such as leflunomide, pyrene, and oxygenated 

PAHs [70,136,144] and AHR1b may have a tissue-specific developmental role [137]. 

Similarly, AHR paralog-specific differences in ligand structure-activity relationships (e.g. 

for halogenated vs. non-halogenated ligands) or target gene specificity have been observed 

in chicken [76,145], alligator [78], and frog [146].

6. Conclusions

From the information summarized above (and other data that could not be covered in a brief 

review such as this) we offer some conclusions, some of which must necessarily be 

considered tentative.

Clearly, the AHR is an ancient protein, which has existed for more than 600 million years of 

animal evolution and should be considered part of the fundamental metazoan toolkit. In 

modern (living) invertebrates, AHR has roles in the development of sensory structures, 

including sensory neural systems; these may be some of the most ancient roles of metazoan 

AHRs. AHRs have undergone substantial diversification in the vertebrate chordates; this 

diversification was likely facilitated by the gene and genome duplications occurring prior to 

and after the vertebrate radiation. AHRs are pleiotropic, with multiple functions that vary by 

cell type and developmental stage within single species as well as among animal taxa. In 

some cases, those multiple functions are partitioned among AHR isoforms within a species. 

The emergence of the adaptive functions of AHR in the vertebrates is associated with the 

acquisition of high-affinity binding of planar aromatic hydrocarbons, which appears to be a 

vertebrate innovation. This broadened the capacity for inducible detoxification of 

xenobiotics but also introduced a mechanism by which some persistent, high-affinity ligands 

could cause toxicity.

It is worth noting that all of the information we have about AHR functions—including 

ligand-binding, protein-protein interactions, DNA binding, gene regulation, and 

developmental roles—is from studies in modern animals. All of these species—from 

Trichoplax to humans—can be considered “advanced” in that they are the result of a long 

evolutionary process; i.e. they are the “survivors.” These modern animals are the 

descendants of earlier species in which resided the ancestral functions of AHR that we seek 
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to understand. Although we cannot turn the clock back to study these ancestors, it is now 

possible, through ancestral sequence reconstruction, to resurrect and study ancestral proteins 

[147,148]. The evolution of AHR ligand-dependence and ligand specificity, in particular, 

may be revealed by reconstruction and analysis of the ancestral AHR proteins that existed at 

key points in metazoan evolution, such as the emergence of bilaterians or the base of the 

vertebrate radiation.

There is an intuitive appeal to the hypothesis that the AHR had ancestral roles in the 

development of sensory structures and neurons that were later co-opted for novel roles in 

chemical sensing and adaptive responses. Studies of AHRs in new model and non-model 

systems will help to illuminate or refute that idea. One thing is indisputable: the AHR will 

continue to intrigue and surprise us over the next decade as its manifold roles are revealed.
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Highlights

• The AHR is an ancient protein, part of the fundamental eumetazoan genetic 

tool kit.

• Ancestral roles of AHR likely included control of sensory neural 

development.

• AHR has undergone expansion in vertebrates, generating at least 5 AHR 

types.

• Adaptive roles of AHR in xenobiotic sensing may have emerged in 

vertebrates.

• Modern AHRs exhibit both ancestral and recently evolved roles in cell 

biology.

Hahn et al. Page 20

Curr Opin Toxicol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Presence of AHR homologs in holozoans
The tree shows the relationships of selected metazoan (animal) taxa and related unicellular 

eukaryotes and whether they possess AHR homologs. Ecdysozoa and Lophotrochozoa 

together comprise the protostomes. Protostomes and deuterostomes are bilaterian animals 

(green-shaded box). Solid boxes represent groups containing species from which AHR 

homologs have been confirmed by cloning. Dashed boxes occur around groups with AHR 

homologs predicted from sequenced genomes. The large yellow-shaded box encompasses 

the eumetazoans, a group that includes all the taxa in which AHR has been identified to date. 

See text for additional information. Phylogenetic relationships of choanoflagellates and 

filastereans after Torruella [149].
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Figure 2. Analysis of shared synteny supports AHR classification
(A) Zebrafish AHR1a and related AHR genes in earlier-diverging fishes may be orthologous 

to human AHR and related AHR genes. (B) Predicted AHR2 genes found in several 

mammals exhibit shared synteny with AHR2 genes from fish and birds. Analysis of syntenic 

relationships was performed using Genomicus [150] and manual scanning of sequenced 

genomes.
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Table 1

Phylogenetic distribution of multiple AHR forms in metazoans.

This table presents a summary of our current thinking regarding AHR multiplicity and the phylogenetic distribution of various AHR forms. Results 
are derived from published papers and from our analyses of numerous phylogenetic trees and syntenic relationships (shared synteny). The 
conclusions here should be considered tentative and will be subject to revision as additional sequences and species are examined. See sections 3 
and 4 of text for details regarding the different types of AHRs.

Note: bold boxes indicate a demonstrated tandem arrangement of AHR1 and AHR2 genes.

*
The classification of these as AHR3 is uncertain. Resolution will require additional sequences and synteny information.
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