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Multimodal MRI profiling of focal cortical
dysplasia type II

ABSTRACT

Objective: To characterize in vivo MRI signatures of focal cortical dysplasia (FCD) type IIA and
type IIB through combined analysis of morphology, intensity, microstructure, and function.

Methods: We carried out a multimodal 3T MRI profiling of 33 histologically proven FCD type IIA (9)
and IIB (24) lesions. A multisurface approach operating on manual consensus labels systematically
sampled intracortical and subcortical lesional features. Geodesic distance mapping quantified the
same features in the lesion perimeter. Logistic regression assessed the relationship between MRI
and histology, while supervised pattern learning was used for individualized subtype prediction.

Results: FCD type IIB was characterized by abnormal morphology, intensity, diffusivity, and func-
tion across all surfaces, while type IIA lesions presented only with increased fluid-attenuated
inversion recovery signal and reduced diffusion anisotropy close to the gray–white matter
interface. Similar to lesional patterns, perilesional anomalies were more marked in type IIB ex-
tending up to 16 mm. Structural MRI markers correlated with categorical histologic character-
istics. A profile-based classifier predicted FCD subtypes with equal sensitivity of 85%, while
maintaining a high specificity of 94% against healthy and disease controls.

Conclusions: Image processing applied to widely available MRI contrasts has the ability to disso-
ciate FCD subtypes at a mesoscopic level. Integrating in vivo staging of pathologic traits with
automated lesion detection is likely to provide an objective definition of lesional boundary and
assist emerging approaches, such as minimally invasive thermal ablation, which do not supply tis-
sue specimen. Neurology® 2017;88:734–742

GLOSSARY
ALFF 5 amplitude of low-frequency fluctuations; d-MRI 5 diffusion-weighted MRI; FA 5 fractional anisotropy; FCD 5 focal
cortical dysplasia; FLAIR 5 fluid-attenuated inversion recovery; FWHM 5 full width at half maximum; GM 5 gray matter;
MD 5 mean diffusivity; MNI 5 Montreal Neurological Institute; ReHo 5 regional homogeneity; rs-fMRI 5 resting-state
functional MRI; SVM 5 support vector machine; TE 5 echo time; TR 5 repetition time; WM 5 white matter.

Focal cortical dysplasia (FCD) type II is a developmental malformation, primarily characterized
by intracortical dyslamination and dysmorphic neurons, either in isolation (FCD type IIA) or
together with balloon cells (FCD type IIB).1 Despite clear cytomorphologic differences, FCD
subtypes cannot be reliably distinguished on conventional MRI,2 even though qualitative studies
have reported a tendency for more subtle anomalies in type IIA.3 It has been suggested that
identifying subtype-specific imaging signatures has potential clinical utility.1,2,4 Notably, this
ability may become increasingly relevant with the emergence of minimally invasive surgical
procedures,5 which do not supply specimens for histologic diagnosis.

The current study carried out a multimodal MRI analysis that combines morphometry with
metrics interrogating tissue intensity, microstructure, and function in a cohort of patients with
histopathologically validated FCD type II. We designed a multisurface approach to systemati-
cally assess intracortical and subcortical lesional features. Motivated by reports showing patho-
logic extension outside the lesional margin,6,7 we furthermore evaluated the integrity of brain
tissue adjacent to the lesion using a novel geodesic distance mapping and feature sampling
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procedure. Univariate and multivariate statis-
tics were used to identify structural and func-
tional signatures of FCD subtypes, logistic
regression assessed the relationship between
MRI and histology, while supervised pattern
learning was used for individualized subtype
prediction.

METHODS Patients. From a database of patients with drug-

resistant neocortical epilepsy admitted to our institution between

2009 and 2012, we selected 33 consecutive patients with

histologically proven FCD type II (17 male; mean 6 SD age

28 6 10 years).1 The presurgical workup included seizure

history, neurologic examination, neuroimaging, and video-EEG

monitoring. EEG interictal activity and ictal onset were

concordant with the location of FCD lesions in 31 (94%) and

24 (73%) patients, respectively. In 15, surgery was preceded by

invasive monitoring using stereotactic depth electrodes; all

displayed high interictal activity and focal changes at seizure

onset in electrodes targeting the lesion. At a mean 6 SD

postoperative follow-up8 of 4.1 6 1.4 years, 21 patients

became seizure-free (Engel I), 8 had rare disabling seizures

(Engel II), and 4 had worthwhile improvement (Engel III).

Serial 5-mm paraffin-embedded sections of lesional tissue

were stained with hematoxylin & eosin or Bielschowsky, and

others were immunostained using antibodies against glial fibril-

lary acid protein, phosphorylated neurofilaments (SMI-32 mono-

clonal), microtubule-associated protein–2, and neuronal specific

nuclear protein. FCD type II was defined as disrupted cortical

lamination with dysmorphic neurons seen in isolation (type IIA,

n 5 9) or together with balloon cells (type IIB, n 5 24). We

evaluated severity of cortical dyslamination, blurring of cortical

interface, and gliosis using categorical scoring (1 5 mild, 2 5

moderate, 3 5 severe).

Our study included healthy controls (n5 41; 21 male, 306

7 years) and disease controls consisting of patients with drug-

resistant temporal lobe epilepsy (n 5 24; 9 male, 31 6 8 years)

who had undergone a selective amygdalohippocampectomy, with

histologically confirmed hippocampal sclerosis and who were

seizure-free (Engel I, follow-up: 3.9 6 1.7 years). Demographic,

clinical, and histologic data are shown in table 1.

Standard protocol approvals, registrations, and patient
consents. The ethics committee of the Montreal Neurological

Institute and Hospital approved the study and written informed

consent was obtained from all participants in accordance with the

Declaration of Helsinki.

MRI acquisition. Images were acquired on a 3T Siemens

(Munich, Germany) scanner using a 32-channel head coil,

including 3D T1-weighted magnetization-prepared rapid gradient

echo (T1-weighted; repetition time [TR] 2,300 ms, echo time [TE]

2.98 ms, flip angle 98, voxel size 1 3 1 3 1 mm3), 3D fluid-

attenuated inversion recovery (FLAIR) (TR 5,000 ms, TE 389 ms,

flip angle 1208, 0.9 3 0.9 3 0.9 mm3), 2D twice-refocused

echoplanar diffusion-weighted images with axial slices (d-MRI; TR

8,400 ms, TE 90 ms, flip angle 908, 2 3 2 3 2 mm3, 64

directions, b 5 1,000 s/mm2), and resting-state functional MRI

with oblique axial orientation (rs-fMRI; TR 2,020 ms, TE 30 ms,

flip angle 908, 34 slices, 4 3 4 3 4 mm3, 150 volumes).

Preprocessing and data fusion. T1-weighted and FLAIR

images underwent intensity nonuniformity correction9 and

normalization (figure 1, A and B). T1-weighted images were

linearly registered to the Montreal Neurological Institute

(MNI) 152 symmetric template, followed by classification into

white matter (WM), gray matter (GM), and CSF.10 The d-MRI,

analyzed using FSL (fmrib.ox.ac.uk/fsl), underwent distortion

correction based on a gradient echo field map acquired within

the same imaging session, correction for motion and eddy

currents. A tensor fitted at every voxel derived fractional

anisotropy (FA) and mean diffusivity (MD). The rs-fMRI was

analyzed using DPARSF (rfmri.org/DPARSF): after discarding

the first 5 volumes, data underwent slice-time and motion

correction, and realignment, followed by statistical correction

for nuisance effects of WM and CSF signals and head motion.

To correct for residual motion, we included timepoints with

a framewise displacement .0.5 mm as covariates.11 FLAIR

images were linearly mapped to T1-weighted images in MNI

space. The rs-fMRI and d-MRI were registered to T1-weighted

volumes using a boundary-based approach that maximizes

alignment between intensity gradients of structural and

echoplanar data.12 In addition to verifying accuracy of the

intermodal registration visually, we calculated for each case

mean mutual information, an index of intensity dependence

between 2 images reflecting the registration quality, and did

not observe group differences between patients and healthy (or

disease) controls (p . 0.5; figure e-1 at Neurology.org).

Surface construction. The CLASP algorithm13 preprocessed

T1-weighted images to generate models of the GM–WM and

GM–CSF surfaces (figure 1C). CLASP iteratively warps

a surface to fit the GM–WM boundary and estimates the outer

surface by expanding the inner one along a Laplacian map.

Surfaces were aligned based on cortical folding, improving

Table 1 Demographic, electroclinical, and histologic data

FCD Controls

Type IIA Type IIB Healthy TLE-HS

No. of subjects 9 24 41 24

Male/female 5/4 11/13 21/20 9/15

Age, y, mean 6 SD 29.4 6 9.9 26.3 6 8.5 29.7 6 7.3 31.3 6 7.6

Age at onset, y, mean 6 SD 14.1 6 7.0 13.6 6 5.9 — 11.8 6 8.4

Duration, y, mean 6 SD 13.8 6 7.2 13.9 6 9.7 — 17.2 6 5.5

Seizure focus, L/R 6/3 10/14 — 10/14

Dyslamination, %

Mild 57 0 — —

Moderate 43 33 — —

Severe 0 67 — —

GM–WM blurring, %

Mild 43 0 — —

Moderate 43 39 — —

Severe 14 61 — —

Gliosis, %

Mild 43 0 — —

Moderate 57 17 — —

Severe 0 83 — —

Abbreviations: FCD 5 focal cortical dysplasia; GM 5 gray matter; TLE-HS 5 temporal lobe
epilepsy with hippocampal sclerosis and Engel I postsurgical outcome; WM 5 white matter.
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interindividual correspondence. To examine intracortical GM,

we positioned 3 surfaces between the inner and outer cortical

surfaces at 25%, 50%, and 75% cortical thickness,14 guided by

a straight line providing vertex correspondence across surfaces. To

assess the WM immediately beneath the cortex, we generated

surfaces guided by a Laplacian field running between the GM–

WM interface and the ventricles, with between-surface intervals

adapted to the resolution of each modality.

Surface-based feature extraction. Two experts (D.S., N.B.),

blinded to clinical information, segmented independently lesions

on coregistered T1-weighted and FLAIR images (figure 1D).

Interrater Dice agreement index (D 5 2jM1XM2j/
[jM1j1jM2j]; M1: 1st label, M2: 2nd label; M1XM2:

intersection of M1 and M2) was 0.91 6 0.11. This label was

intersected with all surfaces, generating a surface-based lesion

label on which profiling was performed. We calculated at each

label vertex morphologic, intensity, diffusion, and functional

features. To minimize interpolation during feature sampling,

we mapped surfaces to the native space of each modality using

the inverse transform of the initial coregistration.

Morphologic features. Cortical thickness.Wemeasured thick-

ness as the Euclidean distance between corresponding vertices on

GM–WM and GM–CSF surfaces.13

Sulcal depth and curvature. Small FCD lesions are located at

the bottom of a deep sulcus.15 The depth of vertices within sulci

was computed using the geodesic distance from gyral crown ver-

tices.16 Dysplastic lesions may also cause curvature changes15; we

measured absolute mean curvature along the 50% intracortical

surface.17

Intensity-based features. Normalized intensity. We divided

voxel-wise T1-weighted and FLAIR intensity by the average

GM–WM boundary intensity; this value was normalized with

respect to the mode of the T1-weighted and FLAIR intensity

histogram18 and mapped on each intracortical/subcortical

surface. We did not sample intensity on the GM–CSF surface

to avoid CSF contamination14; at remaining surfaces, we

corrected intensities for CSF partial volume effects.19

Gradient. At a vertex v, vertical gradient was computed as the

difference in normalized intensity between corresponding vertices

above and below v on neighboring surfaces, divided by their dis-

tance. Horizontal gradient was computed as mean intensity dif-

ference between v and its immediate surface neighbors, divided
by the mean distance between v and its neighbors. Values at

the GM–CSF surface were not considered. Decreased vertical/

horizontal gradients within cortical surfaces were interpreted as

proxies for radial/tangential dyslamination. Decreased vertical

gradient at the GM–WM interface modeled blurring.18

Diffusion parameters. FA and MD are surrogate markers of

fiber architecture and tissue microstructure.20 Given the lower

resolution of d-MRI compared to FLAIR and T1-weighted

MRI, parameters were interpolated at the 50% intracortical,

Figure 1 Image processing

(A) T1-weighted MRI undergoes intensity nonuniformity correction and intensity normalization. T1-weighted images are linearly registered to the Montreal
Neurological Institute 152 symmetric template and classified into tissue types. (B) Multimodal coregistrations map each modality to native T1-weighted
space. (C) Models of the GM-WM and GM–CSF interface are generated, followed by reconstruction of equidistant intracortical and subcortical WM surfaces.
(D) Features describing cortical and subcortical morphology, intensity, diffusion (FA, MD), and function are represented in a unified surface-based frame of
reference. ALFF5 amplitude of local functional fluctuation; d-MRI5 diffusion-weighted MRI; FA5 fractional anisotropy; FLAIR5 fluid-attenuated inversion
recovery; GM 5 gray matter; MD 5 mean diffusivity; ReHo 5 regional homogeneity; rs-fMRI 5 resting-state functional MRI.
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GM–WM, and subcortical surfaces running at 2 and 4 mm

depth.

Functional derivatives. We calculated markers of local func-

tion: amplitude of low-frequency fluctuations (ALFF), a measure

of bulk activation shown to relate to interictal spiking,21 and

regional homogeneity (ReHo),22 which estimates time-series

concordance between a voxel and its neighbors. Data were sam-

pled on the 50% intracortical surface.

Statistical analysis. We assessed group differences for continu-

ous variables (age, age at seizure onset, disease duration) using

2-sample t tests and categorical variables (sex, focus laterality)

using x2. For surface-based analysis, we assigned at each vertex

a unique vector of intracortical/subcortical structural, diffusion,

and functional features smoothed using a surface-based 5 mm full

width at half maximum (FWHM) Gaussian kernel and z
normalized with respect to the distribution in healthy controls.

Multisurface and distance-based profiling. MRI profiles

were obtained by averaging features along cortical and subcortical

surfaces within each patient’s consensus label. For individual

analysis, we calculated proportions of patients with abnormal

features (absolute z scores$ 1.5) and feature combinations (mul-

tivariate Mahalanobis z scores $ 1.5) averaged across surfaces,

and compared individual proportions between subtypes using

2-sample t tests.
To assess feature transitions between the lesion and adjacent

cortex, we computed the surface-based geodesic distance between

all cortical points outside the label to the lesional boundary.23

Compared to the Euclidian distance that measures the straight

line distance, the geodesic distance, defined as the length of the

shortest path between 2 vertices along the cortical surface, re-

spects topology. The distance map was discretized into bins of

2 mm for T1-weighted, FLAIR, and d-MRI, and 4 mm for rs-

fMRI and blurred using a minimal anisotropic smoothing

(FWHM 2 mm) to maximize local specificity.24

After confirming normality of data distribution (Kolmogorov-

Smirnov test), Student t tests compared patients to controls

and contrasted FCD subtypes. Significance of between-group

comparisons was also assessed using nonparametric Wilcoxon

rank-sum tests. Correction for multiple comparisons was done

using false discovery rate at q , 0.05.25

Correlation with histologic data. We applied multinomial

logistic regression between histology scores and structural MRI

markers (T1-weighted, FLAIR, d-MRI): cortical dyslamination

was modeled as decreased vertical gradients/intensity, blurring as

decreased vertical gradient at the GM–WM interface and sub-

cortical intensity, and gliosis as hyperintensity and increased MD.

Model fits were compared to null models using x2 tests.

Prediction of histologic subtypes. A multiclass support vec-

tor machine (SVM)26 tested the ability of imaging profiles to

discriminate FCD subtypes; inclusion of healthy and disease con-

trols assessed specificity. SVM incorporates several advantageous

properties to reduce overfitting and to provide good generaliza-

tion performance despite a small sample size.26 The classifier was

trained on imaging features derived from the consensus label in

FCD cases; these labels were intersected with surfaces of healthy

and disease controls to sample features in corresponding regions.

The classifier integrated predictions of 3 base SVMs to discrim-

inate between pairs (i.e., IIA vs IIB; IIA vs disease or healthy

controls; IIB vs disease or healthy controls) through a max-wins

voting scheme (i.e., the class with the most votes among the 3

binary classifications determined the final prediction).

Performance was evaluated across combinations of (1) global

features from single modalities (averaged across all surfaces); (2)

global features from multiple modalities; (3) multimodal

and multisurface features; and (4) multimodal, multisurface, and

distance-based features. Feature selection, training, and

performance evaluation were carried out using k-fold cross-

validations (at k 5 10 and 5) with 100 iterations. At each

iteration, the dataset was randomly split in k subsets; the classifier

was trained on k-1 subsets and tested on the remaining one. For the

evaluation performance, we applied a bagging (i.e., bootstrap

aggregation) procedure, which compensates for potential

imbalances in the training dataset and further reduces the risk of

overfitting by selecting a consistent classification result across

subsamples. A feed-forward procedure selected features best

separating groups. McNemar tests statistically compared the

classifier performance across feature combinations, while

permutation testing randomly shuffling class labels across 10,000

iterations assessed statistical significance of classification beyond

chance level.

RESULTS There was no difference in age or sex
across cohorts (p . 0.2), nor were there differences
in age at seizure onset, disease duration, or seizure
focus laterality between patient cohorts (p . 0.1).

Multimodal lesion profiling. Relative to controls, FCD
type IIB presented with FLAIR intensity increases
across all cortical and subcortical surfaces, while T1-
weighted intensity was decreased only subcortically
(figure 2). T1-weighted and FLAIR vertical gradients
(modeling cortical radial dyslamination and
blurring) were decreased at all intracortical surfaces
and at the GM–WM junction. Lesions also
displayed increased subcortical MD and altered
function, indexed by decreased ALFF and ReHo.
FCD type IIB also showed increased thickness and
sulcal depth (figure e-2).

FCD IIA did not show significant morphologic, dif-
fusion, or functional anomalies relative to controls after
correction for multiple comparisons. At uncorrected
thresholds (p, 0.05), we observed a marginal increase
in cortical thickness and ReHo as well as decreased FA
at the GM–WM interface and subcortical WM (power
analysis at a 5 0.025 and 12 b 5 0.8 revealed small
effects; .125 patients would have been required to
detect significant changes). On the other hand, inten-
sity features showed significant changes in this subtype,
which were characterized by decreased T1-weighted
and FLAIR gradients close the GM–WM interface,
and increased subcortical intensity.

Directly comparing patient cohorts revealed
increased thickness, sulcal depth, FLAIR intensity,
and decreased ALFF and ReHo in type IIB, while type
IIA showed decreased FA at the GM–WM interface.

Univariate analysis of single features (table e-1)
confirmed more prevalent abnormalities in type IIB
compared to IIA (mean: 47% vs 23%, Wilcoxon
signed-rank test: p , 0.01). Conversely, multivariate
feature integration revealed comparable lesional load
in both FCD subtypes (IIA: 78%; IIB: 88%). In
controls, prevalence did not surpass 2%.
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Distance-based analysis. Structural neocortical features
were abnormal until 6 mm away from the lesional
boundary, while functional and subcortical diffusion
alterations extended up to 16 mm (figure 3). Anoma-
lies were more marked in type IIB, aside from FLAIR

cortical vertical gradient and subcortical intensity,
equally present in both subtypes. Conversely, reduced
cortical FA, specific to type IIA, extended up to 6 mm
outside the lesion. The extent of perilesional anomalies
did not correlate with lesion volume.

Figure 2 Multisurface lesion profiling

For eachMRI modality, individual patients (normalized with respect to corresponding regions in healthy controls) are plotted as a function of intracortical and
subcortical level, separately for type IIA (red dots) and type IIB (black dots); zero reference line indicates the mean of controls; mean values and SDs in pa-
tients are shown as horizontal lines, color coded by patient group. Asterisks indicate significant differences with controls and between cohort contrasts
after correction of multiple comparisons (false discovery rate [FDR] ,0.05); small dots indicate uncorrected findings at p , 0.05. Profiling was based on
a surface spacing that accommodated imaging resolution. An example case is shown in the upper left panel, with arrowheads pointing to the lesion. For
abbreviations, see figure 1.
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Histology–MRI correlations. We observed more
marked histologic anomalies in type IIB compared
to type IIA (x2 test; p , 0.005; table 1, figure e-3).
Their severity correlated with the corresponding MRI
profiles for dyslamination (R2 5 0.71; p , 0.005),
GM–WM blurring (R2 5 0.73; p , 0.003), and
gliosis (R2 5 0.55; p , 0.01).

FCD subtype prediction. For both the 5- and 10-fold
cross-validations (figure 4), maximal performance was
obtained when combining multisurface with distance-
based profiles with the multiclass SVM trained either on
healthy controls (5-fold: 87% 6 4%, McNemar
test: p 5 0.03; 10-fold: 91% 6 4%, p 5 0.02) or
disease controls (86% 6 4%, p 5 0.04; 89% 6 3%,

Figure 3 Distance-based profiling of the lesion perimeter

For each modality, features were normalized with respect to corresponding regions in healthy controls (HCs) and averaged across cortical and subcortical
surfaces. Normalized data are plotted relative to the geodesic distance from the primary lesion (in steps of 2 mm for T1-weighted, FLAIR, and d-MRI and
4 mm for rs-fMRI). The binning scheme is exemplified in the right bottom panel. For abbreviations, see figure 1.
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p 5 0.02). Permutation tests confirmed that accuracy
surpassed chance level (p , 0.001). Main metrics
chosen by feature selection procedures included T1-
weighted vertical gradient, ReHo, FLAIR vertical
gradient, T1-weighted cortical intensity, sulcal depth,
FLAIR subcortical intensity, cortical thickness,
perilesional cortical ReHo, and FA.

Across the 5- and 10-fold cross-validations, 84.3%
of FCD type IIB, 86.3% of type IIA, 96% of healthy
controls, and 92% of disease controls were correctly
predicted. Among FCD cases, 6.1% were classified
as healthy controls and 9.1% as disease controls,
whereas histologic subtypes were switched in 7.6%
of cases. A healthy or disease control was misclassified
as FCD in 4.9% and 8.3% of cases, respectively.

DISCUSSION Our multisurface analysis approach
integrating structural and functional MRI in a unified
framework allowed for dense sampling of FCD type II.
While the absence of digitized tissue samples prevented
a fully quantitative comparison betweenMRI and histol-
ogy, our imaging markers reflecting categorical variations
of main FCD features emphasize the ability of postpro-
cessing to capture histopathology at mesoscopic scale.
Pattern-learning paradigms validated between-group
differences at the level of individual patients by
accurately predicting subtypes while maintaining
specificity against healthy and disease controls.

In line with histopathologic reports,27,28 abnormal
morphology, intensity, and gradients across GM and

WM compartments characterized FCD type IIB. Con-
versely, type IIA primarily displayed increased FLAIR
and decreased FA close to the GM–WM interface,
likely reflecting preferential occurrence of dysmorphic
neurons in deep cortical layers,29 while decreased FA
may speak to minimal demyelination and decreased
fiber membrane circumference without apparent
changes in density.20 Notably, increased subcortical
FLAIR in both subtypes is highly suggestive of gliosis,
which was equally prevalent in our cohorts.

Functional profiling provided independent support
for between-subtype divergence. Increased ReHo in
type IIA may reflect enhanced synchronization of local
epileptogenic circuits.30 Such anomalies, reported in
other focal syndromes31,32 and generalized epilepsies,33

suggest enhanced local connectivity as a common
marker of chronic seizure activity. Conversely,
decreased ReHo in type IIB may be specific to balloon
cells, not necessarily a marker of epileptogenicity.
Indeed, theoretical and experimental studies34,35 postu-
late that epileptogenicity in FCD type II may primarily
relate to dysmorphic neurons. It is thus conceivable
that aberrant neuronal activity may propagate more
freely in type IIA than in IIB, where balloon cells
would hinder local connectivity to surrounding net-
works or disrupt it, a hypothesis35–37 corroborated by
the decrease in both ALFF and ReHo.

Our multimodal MRI profiling offers opportuni-
ties to optimize the diagnosis and treatment of

Figure 4 Automated classification

(A) The plot shows the overall prediction accuracy across 100 iterations for classifiers operating on unimodal (i.e., lesional features derived from 1 modality) and
multimodal feature combinations (multisurface and distance-based) based on the 10-fold cross-validation. Results are shown separately for classifiers including
healthy controls (HC) (in black) and disease controls (DC) (in red). McNemar test compared accuracy across feature combinations. (B) Confusion matrix of median
performance for learners operating on multimodal (multisurface and distance-based) features. The diagonal cells show correct predictions, while nondiagonal cells
report incorrect predictions. Note that from the initial 53 MRI features per case (20 for T1-weighted, 17 for fluid-attenuated inversion recovery [FLAIR], 10 for dif-
fusion-weightedMRI [d-MRI] and6 for resting-state functionalMRI [rs-fMRI]), only a subsetwas chosenby the feature selection to train the classifier. The average for
the 5-/10-fold validation was 76 2/76 1 features, when training with healthy controls, and 76 2/96 1, when training with disease controls, respectively.
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cortical dysplasias. There is little consensus on
whether type II dysplasias have distinct or gradual
boundaries.6,27 Using distance-based feature profiling,
we showed that normal-appearing cortex in the lesion
perimeter presents with alterations resembling those
found in the FCD core. At the scale of neuroimaging,
our findings suggest a smooth transition from dys-
plastic to normal cortex that challenges visual appre-
ciation. Lack of proper estimation of the lesional
extent may lead to incomplete resection, potentially
compromising seizure outcome, or a large resection
that could encroach eloquent areas.

In light of recent data showing alterations in mTOR
signaling pathway as a pathogenic substrate of FCD,
and reduced seizure activity after administration of
mTOR inhibitors,38 in vivo staging of pathologic traits
may help guide the selection of novel molecules and
monitor treatment response. Such approaches may also
benefit minimally invasive thermal ablation, which
does not supply tissue specimen for analysis.39 Notably,
however, future studies are needed to assess generaliz-
ability and scalability of our algorithms across sites and
imaging platforms. Moreover, subtype-specific multi-
parametric models of FCD are likely to increase the
sensitivity of automatic lesion classification methods,
particularly for detection of subtle dysplasias.
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