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Peptido-mimetic inhibitor of apoptosis protein (IAP) antagonists (Smac mimetics (SMs)) can kill tumour cells by depleting
endogenous IAPs and thereby inducing tumour necrosis factor (TNF) production. We found that interferon-γ (IFNγ) synergises
with SMs to kill cancer cells independently of TNF− and other cell death receptor signalling pathways. Surprisingly, CRISPR/Cas9
HT29 cells doubly deficient for caspase-8 and the necroptotic pathway mediators RIPK3 or MLKL were still sensitive to IFNγ/SM-
induced killing. Triple CRISPR/Cas9-knockout HT29 cells lacking caspase-10 in addition to caspase-8 and RIPK3 or MLKL were
resistant to IFNγ/SM killing. Caspase-8 and RIPK1 deficiency was, however, sufficient to protect cells from IFNγ/SM-induced cell
death, implying a role for RIPK1 in the activation of caspase-10. These data show that RIPK1 and caspase-10 mediate cell death in
HT29 cells when caspase-8-mediated apoptosis and necroptosis are blocked and help to clarify how SMs operate as
chemotherapeutic agents.
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Inhibitor of apoptosis proteins (IAPs) were first identified in
baculoviruses where they prevent host cell apoptosis.1

Mammalian IAPs can be antagonised by endogenous proteins
such as Smac/DIABLO and HtrA2/Omi,2,3 and the finding that
cell-permeable peptides containing the four N-terminal resi-
dues of Smac-sensitised tumour cells to apoptosis4 hastened
the development of synthetic Smac mimetics (SMs) that
proved similarly efficacious.5–8

cIAPs play a central role in regulating tumour necrosis factor
receptor 1 (TNFR1) signalling. Stimulation of TNFR1 by TNF
promotes the formation of a membrane-bound intracellular
signalling complex, Complex I, that can contain TRADD,9,10

RIPK1,10,11 TRAF2,12 cIAP1/2 and LUBAC.13 Several com-
ponents of this complex become ubiquitylated by cIAPs and
LUBAC.2,13,14 This ubiquitylation provides a platform for the
recruitment of IKK- and TAK1-containing complexes, ulti-
mately resulting in the activation of NF-κB and MAP kinases
and the transcription of prosurvival proteins and proinflamma-
tory cytokines.15 SM-induced cIAP degradation prevents
ubiquitylation and formation of this ubiquitin platform. The
failure to correctly form Complex I leads to the activation of
caspase-8 in a secondary cytoplasmic complex (complex II)
that contains TRADD, FADD and RIPK110 and apoptosis.
The caspase-8 homodimer and the caspase-8/cFLIPL

heterodimer that may also be present in complex II cleave
RIPK1 and thereby prevent an alternative cell death
pathway, called necroptosis.16–19 When caspase-8 is inhib-
ited, or absent, necroptosis occurs following activation and

autophosphorylation of RIPK1 and RIPK3. Active RIPK3
phosphorylates the pseudokinase MLKL, leading to its
oligomerisation and MLKL-mediated membrane
permeabilisation.20

Similar to SMs, TWEAK, a TNF superfamily ligand, can
synergise with TNF to kill tumour cells,21–24 and cells that are
sensitive to TWEAK-induced death are also sensitive to
SMs.24 Earlier reports demonstrated that TWEAK not only
synergises with cell death ligands such as TNF, TRAIL and
Fas but also with interferon-γ (IFNγ) to kill cancer cells.25,26

Classical IFNγ receptor signalling, which involves the SOCS1-
inhibitable JAK/STAT pathway,27 differs significantly from
typical cell death receptor pathways. It has however been
implicated in causing apoptosis,28,29 and this has been
attributed to, among other things, IFNγ-induced upregulation
of proapoptotic proteins such as Puma, FasL, TRAIL27,30,31

and caspase-8.32

We hypothesised that, similar to TWEAK, SMs would
synergise with IFNγ to induce cell death. We found that
IFNγ/SM-induced death in primary mouse dermal fibroblasts
(MDFs) occurred via RIPK3- and caspase-8-dependent
apoptosis. However, human cell lines, and in particular
human colorectal adenocarcinoma HT29 cells, behaved
differently to MDFs. IFNγ/SM-induced killing of HT29 cells
was not prevented by caspase inhibition. Furthermore,
CASP8− /−RIPK3− /− or CASP8− /−MLKL− /− HT29 cells
remained sensitive to IFNγ/SM treatment. Surprisingly, how-
ever, combined loss of caspase-8 andRIPK1 largely protected
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HT29 cells from IFNγ/SM, indicating that this treatment
induced a novel type of RIPK1-dependent cell death. We
observed that caspase-10 was significantly upregulated
following IFNγ treatment, and HT29 cells deficient for
caspase-10, caspase-8 and either MLKL or RIPK3 were
resistant to IFNγ/SM. This suggests that the human-specific
caspase-10 may have an important role in IFNγ-
induced death.

Results

IFNγ and SMs act synergistically to kill cancer cells.
Consistent with earlier reports, we observed that IFNγ
synergises with TWEAK to kill HT29, D645 and KATOIII
cells26 (Figure 1a). TWEAK and SMs cause similar cellular
responses;24,33,34 therefore, we tested whether SM and IFNγ
synergised to kill IFNγ/TWEAK-sensitive cells, which they did

(Figure 1b). Several other cell types were also sensitive to the
combination of IFNγ/SM (Supplementary Figure S1A). To test
whether loss of a specific IAP was responsible for IFNγ/SM-
induced cell death, we used primary MDFs and keratinocytes
deficient for either XIAP, cIAP1 or cIAP2, and found that loss
of individual IAPs did not sensitise cells to IFNγ death
(Supplementary Figures S1B and C). This suggests that pan-
IAP inhibition is required for cell death induction.
IFNγ might synergise with SMs by enhancing SM-induced

cIAP degradation. However, on the contrary, IFNγ treatment
strongly increased the expression of cIAP2 in HT29s
(Figure 1c). IFNγ transcriptionally upregulates multiple genes
via JAK-STAT and SMs activate NF-κB.33,34 We therefore
tested whether transcription and protein synthesis are
required for IFNγ/SM-induced killing. We inhibited protein
synthesis with cycloheximide, and despite the fact that
cycloheximide is toxic to cells (Figure 1d), this treatment

HT29
D645
KATOIII

0

20

40

60

80

100

UT IFNγ+SMIFNγSMUT IFNγ+TWEAKIFNγTWEAK

HT29
D645
KATOIII

0

20

40

60

80

100

UT
IFNγ+SM

20

40

60

80

100

0

20

40

60

80

100
UT
IFNγ+SM

       SOCS1

0
ind.

UT
IFNγ+SM

Anti IκB

Anti Actin

Anti Flag

Anti Actin

 - +  - +

37

42

37

42

induction

++ - -++ - - ++ - - ++ - -

+ -

HT29 HT29D645 D645

%
 d

ea
d 

ce
lls

 (P
I +

ve
)

%
 d

ea
d 

ce
lls

 (P
I +

ve
)

induction

ind.

%
 d

ea
d 

ce
lls

 (P
I +

ve
)

CHX
HT29

Anti cIAP1

Anti cIAP2

Anti XIAP

HT29 D645

- +- + +--
-

SM
IFNγ

+ -
D645

62

57

62

12 24h

WB:

WB:

WB:

+ -- + +-
- +- + +--

-
12 24h

+ -- + +-

kD

kD kD

SR

WB:

WB:

WB:

WB:

IκBα

20

40

60

80

100

0%
 d

ea
d 

ce
lls

 (P
I +

ve
)

24h 24h

%
 d

ea
d 

ce
lls

 (P
I +

ve
)

Figure 1 SMs and IFNγ act synergistically to kill cancer cells. (a and b) HT29, D645, KATOIII cells were treated as indicated with 30 ng/ml of human recombinant IFNγ and
100 ng/ml of TWEAK (a) or 500 nM SM (b) or not further treated (UT) for 48 h. The same concentrations were used throughout the paper. Cell death was quantified by measuring
propidium iodide (PI)-permeable (PI-positive) cells using flow cytometry. Data are plotted as mean±S.E.M. (n≥ 3). (c) Western blot of HT29 and D645 cells treated with IFNγ
and SM for 12 and 24 h as indicated. Degradation of IAPs was determined by immunoblotting for cIAP1, cIAP2 and XIAP. (d) HT29 and D645 cells were treated with 10 μg/ml
cycloheximide 1 h before stimulation with IFNγ and SM (white bars) or no stimulation (UT) (black/grey bars) for 48 h. Cell death was analysed as in (a). Data are plotted as
mean± S.E.M. (n≥ 3). (e) HT29 and D645 cells were infected with an inducible IκBαSR lentiviral construct. After pre-treatment with 100 nM of 4-OHT for 24 h to induce IκBαSR or
no treatment, cells were treated with IFNγ/SM or not treated (UT) for a further 48 h. Cell death was analysed as in (a). Data are plotted as mean± S.E.M. (n≥ 3). (Top panel)
Western blots showing induction of IκBSR. (f) HT29 and D645 cells were infected with an inducible SOCS1 lentiviral construct. Cells were treated as described in (e). Data are
plotted as mean± S.E.M. (n≥ 6). (Top panel) Western blots showing induction of SOCS1
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inhibited IFNγ/SM-induced death in HT29 and D645 cells
(Figure 1d). We inhibited NF-κB activation with an inducible
IκBα super-repressor (IκBSR)33 and this reduced IFNγ/SM-
induced death in HT29 and D645 cells (Figure 1e). Similarly,
overexpression of the JAK-STAT inhibitor SOCS1 protected
HT29 and D645 cells from IFNγ/SM-induced cell death
(Figure 1f). These results demonstrated that transcription
downstream of both NF-κB and JAK-STAT is required for IFNγ/
SM-induced death.

Death receptors are not essential for IFNγ/SM-induced
killing. IAP antagonists cause cell death in some cells by
promoting autocrine production of TNF and simultaneously
sensitising them to the cytotoxic activity of TNF.6,7,33,34 IFNγ
can also induce Fas and TRAIL31,35,36 and both these ligands
can synergise with SMs to kill cells.5,37 To investigate a
potential role for autocrine FasL, TNF or TRAIL in IFNγ/SM-
induced killing, we preincubated cells with blocking anti-
bodies. These antibodies blocked cell death induced by high
doses of recombinant FasL- and TRAIL- as well as TNF/SM-
induced cell death (Supplementary Figure S2). However,
IFNγ/SM-induced cell death could not be blocked by single or
combined treatment with neutralising FasL, TNF or TRAIL
antibodies (Figure 2a).
We also analysed primaryMDFs and keratinocytes, isolated

from mutant and knockout mouse strains that were deficient
for cell death ligands and receptors. Faslgld/gldTnf-− /− and
Ifnar− /− MDFs, and Tnf− /−, Tnfrsf1a− /− (Tnfr1), Tnfrsf1b− /−

(Tnfr2), Faslgld/gld, Faslpr/lpr and Tnfrsf12a− /− (Fn14) keratino-
cytes all showed comparable sensitivity to IFNγ/SM-induced
death compared with their wild-type counterparts, whereas
Tnfrsf1a− /− MDFs showed modest protection (Figures 2b
and c). This indicates that IFNγ/SM-induced cell death is
largely or entirely independent of recognised extrinsic death
pathways in HT29s, MDFs and keratinocytes.

IFNγ/SM triggers RIPK3-dependent, caspase-8-mediated
apoptosis in MDFs. Stimulation of cell death receptors such
as Fas or TNFR1 in combination with SMs can trigger
recruitment of caspase-8 to the RIPK1-containing complex II,
resulting in caspase-8-mediated apoptosis. However,
caspase-8 can also be activated independently of death
receptors, for example, by Toll-like receptors or the Ripopto-
some, and RIPK3 can be activated by PKR.29,38 We therefore
generated MDFs lacking DAI, TRIF and PKR, which are
known to be upregulated by interferons39 and implicated in
cell death.29,38,40 Dai− /−, Trif− /− and Pkr− /− MDFs or MDFs
expressing a kinase-dead PKR variant (PKR K271R) were,
however, similar to MDFs lacking the pyroptotic mediator
caspase-1, still sensitive to IFNγ/SM, ruling out a role for
these proteins in IFNγ/SM killing in MDFs (Supplementary
Figures S3A–C). Consistently, doxycycline-induced expres-
sion of human PKR in HT29 cells did not kill cells in
combination with SM (Supplementary Figure S3D).
To determine the type of cell death induced by IFNγ/SM, we

generated primary MDFs lacking key mediators in the
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Figure 2 IFNγ/SM killing occurs independent of other cell death receptor signalling. (a) Following a 30 min pre-treatment with 10 μg/ml of blocking antibodies against FasL,
TNF or TRAIL, HT29 cells were treated with SM and IFNγ for a further 48 h or cells were not treated (UT). Cell death was analysed by measuring PI-permeable cells using flow
cytometry. Data are plotted as mean±S.E.M. (n= 4). (b and c) wild-type, Tnfrsf1a− /−, Faslgld/gld/Tnf-− /− , Ifnar− /− MDFs (b) and wild-type, Tnfrsf1a− /−, Tnfrsf1b− /−,
Faslgld/gld, Faslpr/lpr, Tnfrsf12a− /− keratinocytes (c) were treated with 500 nM SM and 30 ng/ml recombinant mouse IFNγ or left untreated (UT) as indicated for 48 h. Cell death
was analysed by measuring PI-permeable cells using flow cytometry. Data are plotted as mean±S.E.M. (n≥ 3), except Faslgld/gld (n= 2)
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necroptotic and extrinsic apoptotic pathways. Interestingly, in
contrast to Mlkl− /− MDFs, Ripk3− /− MDFs were largely
protected from IFNγ/SM-induced killing (Figure 3a), suggesting
a necroptosis-independent role for RIPK3 that is not
wholly unprecedented.41,42 Both Ripk3− /−Casp8− /− and
Mlkl− /−Casp8− /− MDFs were completely resistant to IFNγ/
SM-induced cell death, suggesting that IFNγ/SM treatment
causes a caspase-8-dependent apoptosis (Figure 3a). Inhibi-
tion of necroptosis using theMLKL inhibitor, compound 1,43 and
the RIPK1 inhibitor, Nec-1 (necrostatin-1),44 had no impact on
the sensitivity to IFNγ/SM killing (Figure 3b), but provided some
protection when combined with the caspase inhibitor, QVD
(Figure 3c). QVD alone did not stop IFNγ/SM killing because by
preventing apoptosis it triggered necroptosis (Figure 3c). We
consistently detected TNF-dependent reduction of RIPK1
levels in MDFs upon IFNγ/SM plus QVD treatment, indicating
that the absence of IAPs and inhibition of caspases destabilises
RIPK1 (Figure 3d). Overall, these data revealed that in MDFs,
IFNγ/SM treatment primarily activates RIPK3, which is followed

by caspase-8 activation. This is further supported by the
reduction of caspase-8 processing in Ripk3− /− MDFs com-
pared with wild-type MDFs detected by western blotting
(Figure 3d). If, however, apoptosis is inhibited, then necroptosis
occurs. Hence, both caspase-8-mediated apoptosis and
necroptosis must be blocked to protect MDFs from IFNγ/SM-
induced cell death.

IFNγ/SM triggers necroptosis in HT29 cells when cas-
pases are inhibited. In contrast to MDFs, QVD protected
D645 cells from IFNγ/SM-induced death (Figure 4a). Similar
to MDFs, however, HT29 and KATOIII cells still underwent
cell death in the presence of caspase inhibitors (Figure 4a).
To assess whether this caspase-independent cell death was
necroptosis, we inhibited RIPK1 using Nec-1.44 Nec-1 alone
did not prevent cell death, while the combination of QVD and
Nec-1 provided protection in KATOIII cells, but had little
impact on death in HT29 cells (Figure 4a). These results
suggested that HT29 cells exhibited a different type of cell
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Figure 3 Synergistic cell death induced by IFNγ/SM occurs via RIPK3-dependent- and caspase-8 mediated apoptosis in murine fibroblasts. (a) Wild-type, Ripk3− /−,
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processing products of caspases
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death in response to IFNγ/SM, such as autophagy. However,
when we knocked down the autophagy mediator ATG5
(autophagy protein 5) or treated these cells with autophagy
inhibitors (Supplementary Figures S4A and B), we failed to
detect any effect on IFNγ/SM killing.
While inhibitors can provide insights, genetic experiments

generally have fewer caveats. We therefore generated single-
cell HT29 clones deficient for apoptotic (CASP8− /−) or
necroptotic (RIPK1− /−, RIPK3− /− or MLKL− /−) cell death
pathways using CRISPR/Cas945,46 and validated them using
next-generation sequencing (Supplementary Figure S5).
Similar to their wild-type counterparts, CASP8− /− HT29 cells
were sensitive to IFNγ/SM treatment (Figure 4b). In other
systems, this would be explained by the fact that loss of
caspase-8 leads to the induction of necroptosis; however,
Nec-1 had no impact on IFNγ/SM-induced death ofCASP8− /−

cells. Furthermore,RIPK1− /−HT29 cells were only marginally

protected from IFNγ/SM killing (Figure 4c and Supplementary
Figure S7), even when QVD was added. These results show
that RIPK1 contributes to, but is not required for, cell death.
Consistent with the idea that IFNγ/SM induces necroptosis if

caspase-8 is inhibited, combined IFNγ/SM/QVD treatment of
wild-type cells resulted in phosphorylation of MLKL, which was
absent in RIPK1− /− and RIPK3− /− cell lines (Figure 4d).
However, RIPK3− /− andMLKL− /− HT29 cells, that cannot die
by necroptosis, were still sensitive to IFNγ/SM-induced death
(Figure 4c) and while blocking caspase-8 dependent apopto-
sis of these necroptosis deficient cells reduced killing, the end
result was still a substantial amount of cell death. Similarly, the
MLKL inhibitor (compound 1) failed to prevent IFNγ/SM-
induced death whether in the presence or absence of QVD
(Supplementary Figure S7A). These results show that
IFNγ/SM can activate caspase-8 and apoptosis which, if
inhibited, results in the activation of MLKL and necroptosis but
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that, inexplicably, cell death is not entirely dependent on either
of these pathways.
To explore this conundrum further, we generated HT29 cells

doubly deficient for caspase-8 and either RIPK1, RIPK3 or
MLKL and tested for their sensitivity to IFNγ/SM treatment
(Figure 5). Intriguingly, RIPK1− /−CASP8− /− cells were almost
completely protected from IFNγ/SM-induced cell death;
however, RIPK3− /−CASP8− /− and MLKL− /−CASP8− /− cells
remained sensitive (Figure 5a). The residual amount of cell
death in these lines could now be almost completely prevented
by QVD, strongly suggesting that cells are dying via caspase-8-
independent apoptosis. Furthermore, we detected substantial
amounts of cleaved caspase-3 in RIPK3− /−CASP8− /− and
MLKL− /−CASP8− /− HT29 cells following IFNγ/SM treatment,
which was reduced by QVD (Figure 5b). Taken together, these
data suggest that a Nec-1-independent RIPK1 activity is
required for a caspase-dependent IFNγ/SM-induced cell death.

Caspase-10 mediates cell death in the absence of
caspase-8 and necroptosis. Despite some conflicting data,
it appears that caspase-10 can act as an initiator caspase in
extrinsic apoptosis pathways.10,47,48 To evaluate a role for
caspase-10 in IFNγ/SM-induced cell death, we immuno-
blotted for caspase-10 and observed markedly increased
levels when HT29 cells were treated with IFNγ for 24 h
(Figure 6a). HT29 cells treated with IFNγ/SM also upregu-
lated caspase-10, and various cleaved forms were detected
(Figure 6a). Addition of the pancaspase inhibitor IDN-6556, a
more potent caspase inhibitor than QVD,49 prevented the
formation of the smallest processed product of caspase-10
(p25), which served as the clearest signature of caspase-10
activation (Figure 6a). As expected, IFNγ/SM/IDN-6556
treatment also induced MLKL phosphorylation (Figure 6a).
RIPK3− /−CASP8− /− and MLKL− /−CASP8− /− cells treated
with IFNγ/SM activated caspase-10 similarly to their wild-type
counterpart, while cleaved caspase-3 levels were

significantly increased (Figure 6a), and both caspase-10
and caspase-3 processing were blocked by IDN-6556. Thus,
in the absence of caspase-8 and necroptosis effectors,
caspase-10 is strongly activated and caspase-3 is an
excellent substrate for it.
Caspase-10 upregulation andactivation upon IFNγ or IFNγ/SM

stimulation was not restricted to HT29s because we also
observed it in melanoma, glioblastoma, monocytic and other
colon cancer cell lines (Supplementary Figures S8A–G). To
determine the contribution of caspase-10 to IFNγ/SM-induced
cell death, we generated HT29 single-cell clones lacking
caspase-10 (Supplementary Figure S5). CASP10− /− cells were
as sensitive as the parental HT29 cells when treated with
IFNγ/SM (Figure 6b). Similarly, double deficiency of RIPK3 and
caspase-10 orMLKL and caspase-10 in HT29 cells had no effect
on the extent of cell death induced by IFNγ/SM, but these cells
were now well protected from cell death when IDN-6556
was added (Figure 6b). Most importantly, RIPK3− /−

CASP8− /−CASP10− /− and MLKL− /−CASP8− /−CASP10− /−

HT29 cells were largely resistant to IFNγ/SM-induced cell death
(Figure 6b). Consistent with this, we failed to detect an IFNγ/SM-
induced increase in cleaved caspase-3 in triple-knockout cells
(Figure 6c). Collectively, these data demonstrate that IFNγ/SM
primarily triggers extrinsic apoptosis through activation of
caspase-8 and caspase-10. If caspase-8-mediated apoptosis is
prevented, then necroptosis occurs. HT29 cells unable to
undergo caspase-8 mediated apoptosis and classic necroptosis
can, however, still die via caspase-10.

Caspase-10 requires RIPK1 to induce cell death and
cleaved caspase-10 is detected in a caspase-8-
containing complex in HT29 cells. Caspase-10 has been
shown to be recruited to the Ripoptosome complex upon TNF
stimulation.10,50 To examine whether a similar complex forms
upon IFNγ/SM treatment, we immunoprecipitated caspase-8
(Figure 7a and Supplementary Figure S7B). Because caspase

0

20

40

60

80

100

%
 d

ea
d 

ce
lls

 (P
I +

ve
)

RIPK3-/- CASP8-/-

MLKL-/-CASP8-/-

parental
RIPK1-/- CASP8-/-
HT29

Anti caspase-8

Anti cleaved
caspase-3

Anti RIPK1

Anti MLKL

Anti Actin

Anti pMLKL

45
35
25

+- + + +
- - -+ +
- - - + +

+- + + +
- - -+ +
- - - + +

+- + + +
- - -+ +
- - - + +

+- + + +
- - -+ +
- - - + +

+- + + +
- - -+ +
- - - + +

IFNγ+SM
Nec-1
QVD

45
66
45

45

25
19
14

QVD+
Nec-1

QVD

IFNγ+SM

UT

HT29
parental

RIPK3-/-
CASP8-/-

MLKL-/-
CASP8-/-

RIPK1-/-
CASP8-/-CASP8-/-

WB: kD

WB:

WB:

WB:

WB:

WB:

p18

p55/54

p17
p19

Figure 5 HT29 cells deficient for caspase-8-mediated apoptosis and necroptosis remain sensitive to IFNγ/SM-induced killing. (a) Wild-type and CRISPR/Cas9
RIPK1− /−CASP8− /− (red frame), RIPK3− /−CASP8− /− (blue frame) and MLKL− /−CASP8− /− (green frame) HT29 cells were treated with IFNγ/SM, QVD and Nec-1 or left
untreated (UT) as indicated for 48 h. Cell death was analysed by measuring PI-permeable cells using flow cytometry. Data are plotted as mean±S.E.M. (n≥ 3). (b) Wild-type
and CRISPR/Cas9 CASP8− /−, RIPK1− /−CASP8− /−, RIPK3− /−CASP8− /−, MLKL− /−CASP8− /− HT29 cells were treated with IFNγ/SM, QVD and Nec-1 or not treated for
24 h before SDS lysis, separation on SDS-PAGE and immunoblotting. Arrows indicate full-length and processing products of caspases

Mechanism of IAP antagonist and IFNγ cell killing (50/50)
MC Tanzer et al

486

Cell Death and Differentiation



inhibitors stabilise the Ripoptosome,37,50,51 we immunopreci-
pitated caspase-8 in HT29 cells in the presence and absence
of IDN-6556 (Figure 7a). At 24 h after IFNγ/SM treatment,
when the amount of cell death was still low, we observed
recruitment of RIPK1, FLIP and FADD to caspase-8 when
IDN-6556 was also added (Figure 7a). A similar pattern of
binding was also observed in cells treated with IDN-6556 and
SM alone. However, binding of cleaved caspase-10 and
caspase-8 was only detected in IFNγ/SM and IFNγ/SM- plus
IDN-6556 treated cells (Figure 7a). Overall, this shows that
cleaved and therefore presumably active caspase-10 is a
component of a caspase-8-, FADD-, RIPK1-containing com-
plex upon IFNγ/SM treatment, which provides further evidence
for a role of caspase-10 in IFNγ/SM-induced cell death.
RIPK1− /−CASP8− /− cells were largely protected from IFNγ/

SM-induced killing in contrast to RIPK3− /−CASP8− /− and
MLKL− /−CASP8− /− cells (Figure 5a). Therefore, we analysed
caspase-10 activation in cells where RIPK1 and caspase-8
were absent and detected reduced caspase-10 processing

compared with the parental HT29 cells or cells deficient for
MLKL and caspase-8 (Figure 7b). The smallest caspase-10
product was not detected when RIPK1 and caspase-8
were absent (Figure 7b). Reduced activation of caspase-10
coincided with reduced caspase-3 processing when
RIPK1− /−CASP8− /− cells were stimulated with IFNγ/SM
(Figure 7b). This suggests that independent of its function in
necroptosis, RIPK1 is required for full caspase-10 activation in
the context of IFNγ/SM stimulation.

Discussion

TNF binding to its receptor TNFR1 induces recruitment of a
number of components including cIAPs and RIPK1.15 Sub-
sequent ubiquitylation of RIPK1 by cIAPs and LUBAC
provides a binding platform for kinases such as TAK1, leading
to NF-κB and MAPK signalling and upregulation of prosurvival
proteins. Degradation of cIAPs induced by SMs stops efficient
formation of the TNFR1 signalling complex and prevents
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upregulation of prosurvival proteins. RIPK1, TRADD, FADD,
caspase-8 and, in human cells, the less studied caspase-10
form a cytoplasmic complex (complex II), which can lead to
caspase activation and apoptosis.10,50 Active caspase-8 not
only induces apoptosis but also inhibits necroptosis, pre-
dominantly as a heterodimer with cFLIP, by cleaving RIPK1.
Therefore, blocking caspase-8 not only prevents apoptosis but
also unleashes the brake on RIPK1, allowing necroptosis to
occur.19,52,53 cIAPs also inhibit activation of noncanonical
NF-κB and SMs can thereby cause production of autocrine
TNF.6,7,33,34 Thus, in some cells, SMs can induce cell death by
simultaneously up regulating TNF production and sensitising
those same cells to TNF-induced cell death.
The TNF superfamily ligand TWEAK, which, upon binding to

its receptor Fn14, promotes depletion of cIAPs in a manner
analogous to SMs, can also induce TNF in a subset of cells and
sensitise them to TNF killing.24 IFNγ also has an apoptotic
activity in some cell types,54 and the pivotal role of IFNγ in
inhibiting tumour cell growth has recently been highlighted by
new studies showing that tumours resistant to checkpoint
therapy acquire mutations in the IFNγ signalling pathway.55,56

We were intrigued by two old reports showing that IFNγ and
TWEAK synergise to kill tumour cell lines.25,26 We confirmed
these original observations and found that SMs can also
synergise with IFNγ to kill cells. IFNγ can transcriptionally
upregulate target genes and this was essential for IFNγ/SM
killing because this death could be blocked by SOCS1

overexpression. We suspected that IFNγ/SM-induced TNF
caused cell death; however, blocking TNF had no effect on
IFNγ/SM killing. IFNγ can also induce FasL and TRAIL54 and
these can synergise with SMs to kill cells.4,37 However, blocking
TNF, Fas and TRAIL did not prevent IFNγ/SM-induced cell death.
Although PKR has been claimed to have a role in IFNγ-

induced cell death,29 MDFs deficient in PKR or other targets of
IFNγ signalling such as DAI or TRIF were as sensitive to IFNγ/
SM treatment as wild-type cells. IFNγ did induce the
expression of MLKL in MDFs and HT29 cells as previously
reported for MEFs.29 While MLKL upregulation might prime
cells for necroptosis, we did not observe IFNγ-induced
necroptosis unless caspases were inhibited. IFNγ has also
been shown to upregulate caspase-8.32,57 Althoughwe did not
observe an increase in caspase-8 levels in MDFs, IFNγ/SM-
induced cell death was caspase-8-dependent. Furthermore,
RIPK3 was required upstream of caspase-8. Interestingly,
Mlkl− /− MDFs showed increased levels of cleaved caspase-8
levels compared with other genotypes tested. Potential
explanations of this phenomenon are either that MLKL
somehow directly inhibits caspase-8 or that the absence of
MLKL increases availability of RIPK3, resulting in a more
potent activation of caspase-8.
IFNγ/SM-induced killing in HT29 cells was more complex.

To determine the role of caspase-8 in IFNγ/SM-induced killing
in HT29 cells, we generated CRISPR/Cas9 HT29 cells
deficient for caspase-8. Three out of five CASP8− /− HT29
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cell cloneswere still sensitive to IFNγ/SM stimulation, whereas
the other two cell lines were largely protected (Supplementary
Figures S6A and B). This makes it difficult to be sure which is
the 'correct' phenotype. We believe that the sensitive
phenotype is the relevant phenotype because first IFNγ/SM-
induced cell death of HT29 cells could not be blocked by
Q-VD-OPh (QVD) and second even combined loss of RIPK3
or MLKL and caspase-8 did not prevent IFNγ/SM-induced
death. Because we only ever observed a sensitive phenotype
in CASP8− /−RIPK3− /− and CASP8− /−MLKL− /− HT29 cells,
we hypothesise that the resistant CASP8− /− clones acquired
additional changes that allowed them to overcome an unstable
state caused by caspase-8 deficiency.
IFNγ/SM treatment of CASP8− /−RIPK3− /− or CASP8− /−

MLKL− /− cells induced substantial amounts of cleaved
caspase-3. The human-specific caspase-10 can activate
caspase-3,58,59 suggesting that it might be involved in IFNγ/SM
killing. Supporting this hypothesis, we found that caspase-10
was strongly induced by IFNγ in HT29 and several other cell
lines. Furthermore, IFNγ/SM treatment induced processing of
caspase-10. However, loss of caspase-10 alone did not reduce
IFNγ/SM-induced death, and neither did it promote necroptosis.
Nevertheless, CASP8− /−CASP10− /−RIPK3− /− or CASP8− /−

CASP10− /−MLKL− /− triply deficient HT29 cells were, finally,
almost completely resistant to IFNγ/SM-induced death. Interest-
ingly, in HT29 cells, it appears that RIPK1 is required for full
caspase-10 activation because CASP8− /−RIPK1− /− were as
resistant to IFNγ/SM-induced death as the triple CASP8− /−

CASP10− /−RIPK3− /−-knockout cells. RIPK1 probably provides
a platform for caspase-10 activation via FADD.
This study highlights how complex cell death pathways can

be and their resilience to disruption, perhaps reflecting the
defensive nature of cell death. Intriguingly, immune checkpoint
inhibitors appear to require tumour cell intrinsic IFNγ signalling
to curemelanomas in patients55,56 and it was proposed that this
was, in part, due to the apoptotic activity of IFNγ. Because IFNγ
upregulates caspase-10 in multiple cell lines including human
melanoma cell lines, and that this contributes to SM-induced
killing our results open up the enticing possibility that SMs could
be combined with immune checkpoint inhibitors to increase
T-cell killing by synergising with T-cell-secreted IFNγ.

Materials and Methods
Cell culture, transfection, lentiviruses and lentiviral production.
MDFs and keratinocytes were generated as per Gerlach et al.14 and Etemadi
et al.60 and similar to 239Ts cultured in Dulbecco’s modified Eagle’s medium with
the addition of 8% FBS, 1 mM L-glutamine, 100 U/ml penicillin and 100 g/ml
streptomycin (purchased from Gibco, Melbourne, VIC, Australia) at 37 °C with 10%
CO2 in a humidified incubator. All other cell lines were cultured in HTRPMI,
respectively, with additives and conditions like that described above.
The inducible lentiviral system has been described,33 but briefly the inducible

transcriptional activator Gal4 ERT2 VP16 (GEV16) was cloned into the lentiviral vector
pFU PGK Hygro and infected with pF 5x UAS SV40 Puro vectors encoding for human
IκBSR61 and human SOCS1 in HT29 and D645 cells. The cDNA encoding for human
PKR was purchased by Addgene (Cambridge, MA, USA) and was cloned into the
pFTRE 3G vector, which was generated by Toru Okamoto, and allows doxycycline-
inducible expression.
For the generation of the CRISPR/Cas9 cell lines, we used two vectors generated

by Marco Herold: the vector pFU Cas9 Cherry, which allows constitutive expression of
the Cas9 protein, and the pF GH1t UTG vector, which allows doxycycline-inducible
expression of different guide RNA sequences complementary to their target
sequence.46

Infected cells were selected with 5 μg/ml of puromycin (for IκBαSR, SOCS1, PKR
selection) and/or 10–50 μg/ml of hygromycin (for GEV16 selection) or single cells
were sorted for GFP and mCherry (selection of CRISPR/Cas9 cell lines) into 96-well
plates. Lentiviral constructs were induced with 10 nM of 4-hydroxy tamoxifen or
20 ng/ml (for pFTRE 3G human PKR vector) and 1 μg/ml (for pF GH1t UTG vector)
doxycycline.

To knock down ATG5 in HT29 cells, cells were infected with pLKO.1 encoding for
the shRNA against ATG5, which is constitutively expressed.

Reagents. Recombinant mouse and human IFNγ were purchased from R&D
Systems (Minneapolis, MN, USA) and Q-VD-OPH was purchased from MP
Biomedicals (Seven Hills, NSW, Australia). SM also known as Compound A,33 Nec-
1 and the caspase inhibitor IDN-6556 were a gift from TetraLogic (Malvern, PA,
USA). 4-Hydroxy-tamoxifen, cycloheximide, propidium iodide, doxycycline, wort-
mannin, bafilomycin and 3-methyladenine were purchased from Sigma-Aldrich
(Castle Hill, NSW, Australia). Compound 1 (MLKL inhibitor) was a gift from
Guillaume Lessene and was generated in-house (WEHI). Fc-TWEAK and Fc-TNF
were generated in-house as described. TRAIL ligand was a gift from Prof. Henning
Walczak (Imperial College, London, UK) and the Fas ligand was purchased from
Peprotech (Rocky Hill, NJ, USA).

Statistical analyses. Error bars represent mean± S.E.M. of specified number
of independent and/or biological repeats of cell death assays.

Immunoblotting and co-immunoprecipitation. For co-immunoprecipi-
tation, HT29 cells were lysed in DISC lysis buffer (1% (v/v) Triton X-100, 150 mM
NaCl, 20 mM Tris, pH 7.5, 10% (v/v) glycerol, 2 mM EDTA) with complete protease
inhibitor cocktail (Roche, Dee Why, NSW, Australia), phosphatase inhibitors (2 mM
sodium orthovanadate, 10 mM sodium fluoride, 1 mM sodium molybdate, 5 mM β-
glycerophosphate, 2 mM sodium pyrophosphate) and 1 mM NEM (N-ethylmalei-
mide; Sigma, Castle Hill, NSW, Australia). Lysates were incubated overnight with
2 μg caspase-8 antibody (Santa Cruz, Santa Cruz, CA, USA; sc6136) and 20 μl
packed Sepharose Protein G beads were incubated overnight with 1% BSA in PBS.
The next day, lysates were incubated with beads for 2 h, washed four times in lysis
buffer and boiled for 5 min. For expression tests, cells were harvested from tissue
culture plates and washed with ice-cold PBS, and then either lysed in DISC lysis
buffer on ice for 20 min before the addition of SDS sample loading buffer or lysed
directly in SDS lysis buffer (126 mM Tris-HCl, pH 8, 20% (v/v) glycerol, 4% (w/v)
SDS, 0.02% (w/v) bromophenol blue, 5% (v/v) 2-mercaptoethanol) boiled and
sonicated. Separation occurred on 4–12% NuPAGE Bis-Tris gels (Life Technologies,
Scorseby, Vic, Australia) and transferred onto PVDF membranes (Millipore,
Bayswater, Vic, Australia). Membranes were blocked in 5% milk and antibodies
diluted in 2% BSA in PBST. Antibodies used for immunoblotting were as follows:
anti-human FADD (BD Pharmingen, North Ryde, NSW, Australia; 556402), anti-
human FLIP (Enzo Life Sciences, Redfern, NSW, Australia; ALX-804-961-0100),
anti-full-length mouse caspase-8 (Enzo Life Sciences; ALX-804-448-C100), anti-
cleaved mouse caspase-8 (Cell Signalling Technology, Danvers, MA, USA; 8592),
anti-cIAP1 and anti-cIAP2 (Alexis Biochemicals, San Diego, CA, USA; ALX-803-
341), anti-XIAP (MBL, M044-3), anti-FLAG M2 (Sigma; F-3165), anti-β-actin
(Sigma; A-1978), anti-mouse caspase-8 (Cell Signalling Technology; 4927), anti-
human caspase-8 (MBL, Woburn, MA, USA; M058-3), anti-caspase-10 (MBL;
M059-3), anti-cleaved caspase-3 (Cell Signalling Technology; 9661), anti-human
PKR (Santa Cruz; sc6282), anti-RIPK1 (BD Transduction Laboratories, North Ryde,
NSW, Australia, 610458), anti-mouse RIPK3 (Axxora, Farmingdale, NY, USA;
PSC-2283-c100), anti-human phospho-MLKL (Abcam, Milton, Cambridge, UK;
ab187091), anti-total mouse and human MLKL (housemade, 3H1). Antibodies used
for neutralisation/blocking assays were as follows: anti-TNF (MAB610), anti-FasL
(MAB126) and anti-TRAIL (MAB375) were purchased from R&D Systems (Noble
Park, Vic, Australia).

Death assays. Keratinocytes were treated like in Gerlach et al.,14 and MDFs
were left to settle in 24-well tissue plates for 24 h. All other cells were plated in
48-well tissue plates and left to settle for 48 h before treatment with Q-VD-OPH
(QVD; 10 μM), IDN-6556 (10 μM), Compound 1 (MLKL inhibitor; 1 μM), GSK872
(RIPK3 inhibitor, 5 μM), Nec-1 (RIPK1 inhibitor; 50 μM) and IFNγ (30 ng/ml)/SM
(500 nM) for 48 h. Blocking antibodies for TNF, Fas and TRAIL were used at 10 μg/
ml 30 min before cell death induction by IFNγ/SM or TNF (100 ng/ml), Fas (5 μg/ml)
or TRAIL (1 μg/ml). Cell death was subsequently measured by propidium iodide
(100 ng/ml in PBS) staining and flow cytometry.
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