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Abstract

Background

Melanoma therapy is challenging, especially in advanced cases, due to multiple developed

tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant

treatment, because of its bimodal action: tumor destruction and immune system awakening.

In this study, a combination of PDT mediated by a metal substituted phthalocyanine—Gal-

lium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The

study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible bene-

ficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining

cell killing and anti-angiogenic effects.

Methods

Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous

Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskele-

ton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry,

confocal microscopy, spectrophotometry, ELISA, Western Blotting.

Results

GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mech-

anisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in

the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear

transcription factor (NF)-κB activation and tumor necrosis factor (TNF)—related apoptosis-
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inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Met-

formin diminished the anti-angiogenic effect of PDT.

Conclusions

Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative

damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic

effects.

General significance

Combination of Metformin and PDT might represent a solution to enhance the efficacy, lead-

ing to a potential adjuvant role of PDT in melanoma therapy.

Introduction

Melanoma is a malignant tumor derived from melanocytes with one of the most rapidly

increasing incidence in the world. In the past 50 years the mortality has also increased, without

any clear path to melanoma prevention [1]. Melanoma registered globally approximately 160

000 new cases and 48 000 deaths/year [2]. Once distant sites from the skin become seeded,

melanoma becomes one of the most aggressive tumors, with a life expectancy lower than 12

months. Many treatment strategies like: surgery, chemotherapy, radiotherapy, BRAF and

mitogen-activated protein kinase (MAPK) pathway inhibitors, immunotherapy and anti-

angiogenic therapies are used related to the stage of the disease. However, tumor resistance

mechanisms hinder the efficacy of therapy; therefore future approaches need to focus on this

direction. One possible solution might be the old molecule Metformin, due to the inhibition

of the stemness character of melanoma cells [3]. Metformin is used as a hypoglicemiant drug

in type 2 diabetes mellitus and lately became a promising drug in oncology. Retrospective

studies revealed decreased cancer incidence and cancer-related mortality in obese and diabetic

patients treated with Metformin [4]. Metformin triggers antitumor activity in several cancers

(e.g. lung, breast, prostate and pancreas) [5]. In melanoma, Metformin was shown to induce

cell death and arrested melanoma invasion and metastasis, via pro-apoptotic mechanisms [6].

In anti-melanoma therapy there are three ongoing clinical trials that are recruiting patients

and are using Metformin in combination with BRAF inhibitors (ClinicalTrials.gov, Identifier:

NCT01638676 and NCT02143050) and also in association with Dacarbazine (ClinicalTrials.

gov, Identifier: NCT02190838). In a previous study conducted by our group, association of

Metformin to PDT in Walker-256 carcinosarcoma experimental model improved the overall

anti-tumor effects [7]. Based on these findings, the current research aims to study the possible

anti-tumor role of Metformin as an adjuvant in photodynamic therapy against melanoma.

Photodynamic therapy (PDT) is a two steps oncological therapy: (1) administration of a

photosensitizer (PS) (2) and tumor irradiation by light of a specific wavelength [8]. Light acti-

vation of the PS generates reactive oxygen species (ROS) in the targeted tumor area [9], that

destroy tumor cells through cell death induction, destruction of tumor vessels and activation

of an immune response [10].

Thus, PDT might be considered an ideal anticancer therapy, because of the primary tumor

destruction and also immune activation. This immune reaction should be able to track down

and destroy any remaining tumor cells of the primary tumor or distant micro metastases [11].

Photodynamic therapy mediated by Gallium phthalocyanine in melanoma
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However, melanoma may be often resistant to PDT. The most important resistance mecha-

nisms are: presence of melanin that absorbs PDT light and has an anti-oxidant effect, seques-

tration of the PS into melanosomes, apoptotic pathways errors and antioxidant defense that

eventually lead to further tumor development [12]. Recent studies gave a new hope by provid-

ing encouraging PDT strategies to overcome the aggressiveness of melanoma [13, 14]. These

strategies include finding new PS molecules, able to accumulate within tumor cells and to gen-

erate enough ROS upon light activation to overcome the resistance of melanoma cells. One

group of these photosensitizers is represented by phthalocyanines (Pc). Phtalocyanines are

macrocyle compounds activated by the same light wavelengths as porphyrins. Pc are second-

generation PS that exhibit important effective tissue penetration due to their chemical stability,

high yields of ROS generation and good spectroscopic properties [15]. These make them more

suitable in melanoma PDT since they might overcome the melanoma defense. Unfortunately,

there is insufficient data regarding their applicability in oncology. In anti-melanoma therapy

one report states that aluminium tetrasulfophthalocyanines used at a photosensitizing concen-

tration of 40 μg/mL in combination with a light dose of 4.5 J/cm2 induced melanoma cell

death [16]. Gallium phthalocyanine (GaPc), indium (III) and iron (III) phthalocyanine chlo-

ride at a concentration of 2 μg/mL were potently phototoxic towards lung cancer cells in vitro

upon light regimen exposures of 2.5 J/cm2, 4.5 J/cm2 and 8.5 J/cm2[17].

The present study evaluates the antitumor effects induced by the combined regimen of

Gallium phthalocyanine chloride mediated-PDT with Metformin, used as an adjuvant, on

two human lightly pigmented melanoma cell lines with different stages of development and

aggression: a radial growth phase (WM35) and a metastatic cell line (M1-15), with focus on

different mechanisms involved in oxidative stress induced cellular death, angiogenesis and

inflammation.

Materials and methods

Chloro-gallium (III) phthalocyanine synthesis and characterisation

The preparation of Chloro-gallium (III) phthalocyanine (GaPc) was achieved, following a pre-

viously reported method [18]. Phthalonitrile (2.00 g, 0.72 mmol) and GaCl3 (0.315 g, 0.27

mmol) were placed in a preheated oil bath (215˚C); after that 1-chloronaphthalene (0.35 mL)

has been added. The reaction mixture was refluxed under dry inert gas (N2) for 1.5–2 h at the

same temperature. After cooling, the product was added to methanol; the precipitate was fil-

tered, washed intensely with methanol and acetone, and dried in vacuum. The products were

purified by elution with CHCl3 through a short column (� 5 cm) of Al2O3 (Degree 3). Yield:

0.75 g (23%). Chemical formula is presented in Fig 1. UV/Vis (DMSO): λmax (ε) / (nm/M-1.

cm-1); 680 (138038), 645 (83170), 610 (10000), 355 (26300). IR (KBr): νmax/cm-1; 1500

(C = C); 1H NMR (DMSO-d6) δ, ppm; 9.80 (8H, d, Pc), 8.60 (8H, d, Pc). MS: m/z = 1059.80.

GaPcCl was solubilized in dimethylsulfoxide (DMSO) to prepare a stock solution of 10 μg/ml

that was further used to prepare the final solutions in medium immediately before use for cell

treatment. The DMSO final concentration in the medium was <0.05%, not toxic to the cells

[19].

Melanoma bioassays

Cell cultures. The assessment was performed on radial growth phase-WM35 human mel-

anoma (Wistar Institute, Philadelphia, PA, USA) [20] cells and a highly metastatic melanoma

cell line M1-15 [21], donated by professor Andras Falus, Genetics Department, University

Semmelweis, Budapest. Melanoma cells were cultured in RPMI medium supplemented with

5% fetal calf serum, 50 μg/ml gentamicin and 5 ng/ml amphotericin, all from Biochrom AG
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(Berlin, Germany), to avoid the medium influence on the cell lines properties, as previously

described [22, 23]. For all experiments, the cells were used within 4 passages, to preserve their

original melanoma characteristics [24, 25]. Cultures were fed twice weekly and incubated in a

humid atmosphere at 37˚C and 5% CO2. All experiments were conducted in triplicate in sub-

dued light, as previously described [26].

Light source. PDT irradiation was done by a red light lamp obtained from OSRAM Opto

Semiconductors, Bucharest, Romania (wave length 630 nm, lamp power 11.83 mW/cm2, mea-

sured at a distance of 5 cm from the lamp) with doses of 2.5 J/cm2 and respectively 5 J/cm2.

Fig 1. Chemical formula. Chloro-gallium (III) phthalocyanine (a) and Metformin (b).

doi:10.1371/journal.pone.0173241.g001
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Cytotoxicity assay. The cells were seeded at a density of 104/well in ELISA 96 wells micro

titration flat bottom plaques and allowed to settle for 24 h. Then cells were exposed for 24 h

either to Metformin chloride (8 mM) (Sigma Chemical Co., St. Louis, MO, USA) solved in

medium [27] or medium, washed then treated with GaPc, prepared as described above, in con-

centrations ranging from: 1–2000 μg/ml (1, 10, 25, 50, 100, 200, 500 and 1000) in medium for

24 h. Cells were then washed, afterwards irradiated with 2.5 J/cm2 and 5 J/cm2 and further

incubated for 24 h with fresh medium. Experiments using single Metformin exposure in doses

ranging from: 0–128 mM (0, 2, 4, 8, 16, 32, 128) were also performed. These cells were then

exposed to irradiation in a dose of 2.5 J/cm2 to quantify the combined Metformin irradiation

effect on cell viability. Viability was measured by colorimetric measurement of formazan, a

coloured compound generated by mitochondrial reductase activity in viable cells using CellTi-

ter 961 AQueous Non-Radioactive Cell Proliferation Assay (Promega Corporation, Madison,

WI 53711 USA), as indicated by the producer, readings were done using an ELISA plate reader

at 540 nm (Tecan, Männedorf, Switzerland). Untreated cultures exposed to medium were used

as controls. Cytotoxicity is presented as OD 540. Pictures were taken through an inverted

microscope (Olympus CKX 41, Hamburg, Germany), using a digital camera (Olympus, E 330)

and original magnification 10 times.

Experimental design. Melanoma cells (WM35 and M1-15) seeded in Petri dishes at a

density of 104/cm2 were exposed to either Metformin, or GaPc, or GaPc with previous Metfor-

min treatment, untreated cells were used as controls. For confocal microscopy studies, WM35

cells were seeded on chamber slides, at a density of 5x103/cm2 (Nalgene, Rochester, NY, USA).

Following the different exposure regimens, cells were washed, further incubated for 24 h with

medium and afterwards tested for cell death induction (Annexin-FITC/PI staining- flowcyto-

metry, confocal microscopy, TNF—related apoptosis-inducing ligand—TRAIL, ELISA), oxi-

dative stress induced damage and alterations like (malondialdehyde—MDA, nitric oxide (NO)

formation spectrophotometry, NF-κB activation, WB), melanogenesis (total melanin content

spectrophotometry, tyrosinase protein, microftalmia transcription factor -MITF, WB) inflam-

mation (tumor necrosis factor α -TNF-α, ELISA), cytoskeleton alterations (phalloidin staining,

confocal microscopy) and also angiogenesis [vascular endothelial growth factor—VEGF,

ELISA; hypoxia inducible factor (HIF)-1α, WB]. The melanin content of the cells was low and

had no influence on the methods used for quantification. Moreover, the same method was

used for control and treated groups.

Cell death mechanism. For the assessment of cell death mechanism, treated cells (as

described in section 2.2.4) were stained with Annexin V-fluorescein isothiocyanate (FITC)/

vital dye propidium iodide (PI) (BD Pharmingen Biosciences, San Jose, CA, USA). Viable cells

were Annexin V (-)/ PI (-), early apoptotic cells were identified as Annexin V-FITC positive

(green) cells, while necrotic cells were PI positive (red fluorescence), late apoptosis was shown

by Annexin V (+)/PI (+). Differentiation among these cell populations was done by flow cyto-

metric detection using a BD FACS Canto II flow cytometer (Becton Dickinson & Company,

Franklin Lakes, NJ, USA) equipped with two lasers as excitation sources: blue (488 nm, air

cooled, 20 mW solid state) and red (633 nm, 17 mW HeNe), as previously described [28]. For

confocal microscopy assessment of cell death, cells, treated as above (section 2.5) were stained

with Annexin V-FITC/PI, according to the manufacturer’s instructions and then fixed in 2%

paraformaldehyde.

Cytoskeleton morphology. Phalloidin—FITC 50 μg/ml (Sigma Chemical Co., St. Louis,

MO, USA) a marker for the actin miofilaments (green) was used in combination with DRAQ5

(Sigma) staining (red) for nuclei. Images were recorded using a 63 times oil immersion apoc-

hromat Zeiss objective (Zeiss LSM 710 Confocal Laser Scanning unit, Carl Zeiss AG, Oberko-

chen, Germany). For the annexin—FITC and Phalloidin—FITC excitation/emission of 490/

Photodynamic therapy mediated by Gallium phthalocyanine in melanoma
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525 nm, for PI a 630/680 nm excitation/emission, for DRAQ5 a 646 nm excitation/detection at

681 nm was used. Image combining, processing, and analysis were performed using the stan-

dard ZEN software package (Carl Zeiss MicroImaging GmbH, Oberkochen, Germany) [29].

Melanogenesis assessment. Total melanin content was determined through spectropho-

tometry (Sigma) as previously described [19]. Data were expressed as mg/ml. The enzymatic

activity of tyrosinase, as DOPA oxidase, was determined through spectrophotometry as previ-

ously described [19, 30]. Data were expressed as Units/mg protein. All reactive were purchased

from Sigma.

Inflammatory and neoangiogenesis markers. Were assessed by ELISA and Western Blot

(WB). TRAIL, VEGF and TNF-α ELISA Immunoassay kits from R&D Systems, Inc (Minneap-

olis, USA) were used. Melanoma cells supernatants were treated according to manufacturer’s

instructions; readings were done at 450 nm with correction wavelength set at 540 nm, using an

ELISA plate reader (Tecan).

The cell lysates used for the following determinations were prepared as previously described

[31]. Protein concentrations were determined by the Bradford method according to the manu-

facturer’s specifications (Biorad, Hercules, California, USA) and using bovine serum albumin

as standard. For all assays the lysates were corrected by total protein concentration. For West-

ern Blotting, lysates (20 μg protein/lane) were separated by electrophoresis on SDS PAGE gels

and transferred to polyvinylidenedifluoride membranes, using Biorad Miniprotean system

(BioRad, Hercules, Califormia, USA). Blots were blocked and then incubated with antibodies

against: NF-κB, phospho- pNF-κB p65 (Ser536) (93H1) (pNF-kB), IκKα, IκKβ (L570) (IP Pre-

ferred), phospho-IκK α/β (Ser176/180) (16A6) (pIκK α/β) (Cell Signaling Technology, Inc,

Danvers, USA), HIF1α, tyrosinase and MITF (Santa Cruz Biotechnology, Delaware Ave, Santa

Cruz, USA) then further washed and incubated with corresponding secondary peroxidase-

linked antibodies (Santa Cruz Biotechnology). Proteins were detected using Supersignal

West Femto Chemiluminiscent substrate (Thermo Fisher Scientific, Rockford IL, USA), and a

Gel Doc Imaging system equipped with a XRS camera and Quantity One analysis software

(Biorad). GAPDH (Trevigen Biotechnology Gaithersburg, MD, Maryland, USA) was used as a

protein loading control [24, 25].

Oxidative stress-induced damage. To investigate whether PDT can induce oxidative

stress, quantification of malondialdehyde (MDA) a marker for the peroxidation of membrane

lipids and nitric oxide (NO) formation were performed by spectrophotometry, as previously

described. All reactives were purchased from Sigma. Data were expressed as nM/mg protein

[32].

Statistical method

Statistical significance of the difference between treated and control group was evaluated by

the two-way ANOVA, TTEST and Tukey Posttests. p value less than 0.05 was considered to

represent a statistically significant difference. Inhibitory concentration 50% (IC50) was calcu-

lated for each cell line and irradiation dose. Statistical package Prism version 6.00 for Win-

dows, GraphPad Software, San Diego, California, USA, www.graphpad.com was used for data

analyses.

Results

Cell viability

Viability was quantified by colorimetry (Figs 2 and 3). In WM35 melanoma, GaPc-DT reduced

viability in a dose dependent manner (IC50 = 26.98 μg/ml at 2.5 J/cm2 and 20.11 μg/ml at 5

J/cm2) with no dark toxicity (IC50 = 161.5 μg/ml) at effective doses (Fig 3).

Photodynamic therapy mediated by Gallium phthalocyanine in melanoma
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Metformin induced a dose dependent decrease in cell viability in both cell lines (Fig 2),

independent of irradiation exposure (for WM35, IC50 = 49.5 mM and IC50 = 51.1 mM when

Metformin exposure was followed by 2.5 J/cm2 irradiation; for M1-15, IC50 = 28.9 mM and

IC50 = 29.5 mM with 2.5 J/cm2 irradiation). When only Metformin was used, the concentra-

tion of 8 mM induced a slight, not significant decrease of the viability for the metformin

treated cells (p� 0.061724) compared to the controls. Therefore, a concentration of 8 mM

Metformin, lower than therapeutically relevant plasma concentration of Metformin (20 mM/

L) was further used for the PDT combined treatment [33].

Combination treatment of GaPc PDT with Metformin increased dark toxicity (IC50 =

60.22 μg/ml) and phototoxic effects of PDT with IC50 = 11.82 μg/ml at 2.5 J/cm2 and 6.07 μg/

ml at 5 J/cm2. In the M1-15 metastatic melanoma line, PDT showed a similar pattern of viabil-

ity decrease, dependent on the light dose (IC50 = 21.71 μg/ml at 2.5 J/cm2 and 12.18 μg/ml at 5

Fig 2. Viability testing after Metformin exposure. Melanoma cell cultures exposed to different

concentrations of Metformin or Metformin and irradiation (a)WM35 and (b)M1-15. OD 540 graphs were

generated using GraphPad Software and show mean values ± standard deviation, n = 3 for each sample. Cell

viability of both cell lines was decreased by increasing concentrations of Metformin, in a dose dependent

manner; irradiation had no effect on the cell viability.

doi:10.1371/journal.pone.0173241.g002
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J/cm2), without dark toxicity (IC50 = 316.35 μg/ml). Improvement of the phototoxic effect due

to Metformin addition was discreet (IC50 = 19.56 μg/ml at 2.5 J/cm2 and 11.42 μg/ml at 5 J/

cm2), without increasing the dark toxicity of GaPc (IC50 = 327.3μg/ml). Based on these data,

the following experiments were done using the GaPc concentration of 7.5 μg/ml and 10 μg/ml

for ELISA measurements. PDT light dose was 2.5 J/cm2.

Cell death mechanism

Cell death mechanism was assessed by flowcytometric analysis and confocal microscopy follow-

ing annexin/PI staining of treated cells with 7.5 μg/ml GaPc (Fig 4). In both cell lines, GaPc

showed no significant cell death induction in the absence of irradiation. A high percentage of

cell death was obtained in the GaPc-PDT group, with a significant increased cell death from

15.8% to 28.1% for WM35 and from 18.4 to 40.2% for M1-15, when Metformin was added. The

main cell death mechanism was necrosis for WM35 and apoptosis for the M1-15 metastatic cell

line. Metformin exposure, followed by irradiation increased tumor cell killing in the M1-15

(9.6%), while in the WM35 melanoma cells, it produced no significant effect on cell death.

Combination with GaPc potentiated the antitumor effect in both cell lines. These results show

that in both melanoma cell lines, Metformin effectively increased PDT induced cell death. This

effect is leading to a better therapeutic response overcoming the melanoma activation of sur-

vival mechanisms. Moreover, tumor killing was not influenced by the melanoma stage.

Cytoskeleton alterations

PDT alterations of the cytoskeleton were seen through confocal microscopy techniques, fol-

lowing phalloidin staining of the actin filaments (Fig 4c). Exposure to GaPc without irradiation

Fig 3. Viability testing after GaPc-PDT and Metformin exposure. WM35 (a, b), M1-15 (c, d) melanoma cell cultures exposed to

GaPc-PDT (a, c), respectively GaPc-PDT+ Metformin (b, d). OD 540 graphs were generated using GraphPad Software and show mean

values ± standard deviation, n = 3 for each sample. Cell viability of both cell lines was decreased by GaPc-PDT depending on GaPc

concentration and irradiation dose; Metformin increased the efficacy of GaPc-PDT especially in WM35 cells. e-images of WM35 (upper

panels) and M1-15 (lower panels) cells subjected to GaPc-PDT and Metformin. Cells exposed to GaPc w/o Metformin, showed a normal

morphology, compared to controls, while PDT irradiation of treated cells induced loss of cell adhesion, pleiomorphysm with spherical or

bipolar shaped cells, signs of treatment induced photo-toxicity.

doi:10.1371/journal.pone.0173241.g003
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did not induce any cytoskeleton alterations. However, in both cell lines exposed to PDT, the

actin filaments exhibited condensations, disrupted microtubule network, retraction of den-

drites, polymorphism with spherical shaped cells and loss of cell adhesion.

Oxidative stress damage

In order to quantify the oxidative stress and respectively nitrozative stress induced by PDT

and combined treatment, MDA, a marker of lipid peroxidation and NO formation were mea-

sured (Fig 5).

Malondyaldehide. In both cell lines, GaPc and the combination of GaPc and Metformin

without irradiation slightly increased lipid peroxidation. However, MDA levels were signifi-

cantly elevated (from ~ 0.9 nM/mg protein to 2.6 nM/mg protein in WM35 and from 0.26

nM/mg proteins to 7.9 nM/mg proteins in M1-15) in cells subjected to the combined GaPc-

PDT and Metformin therapy, as compared to controls. Moreover, Metformin addition proved

beneficial to the oxidative stress induced damage in the treated melanoma cells, compared to

GaPc-PDT.

Nitric oxide formation. In both cell lines, NO was increased with irradiation. Metformin

addition had a different effect in the melanoma cells. In WM35, Metformin significantly

Fig 4. Cell death assessment. Comparative FACS analysis following GaPc-PDT + Metformin treatment versus controls in

WM35 (a) and M1-15 (b) cells; c- confocal microscopy images of treated WM35 cells stained with annexin V-FITC/ PI (upper

panels) and phalloidin-FITC and DRAQ5 (lower panels), original magnification 63x; PDT exposed cells showed annexin V

positive (green) and some exhibit PI positive red fluorescence, while Metformin addition increased the number of annexin V/

PI positive cells, there are also present stress related morphological changes; phalloidin staining showed cytoskeleton

alterations like increased condensations of actin filaments, retraction of dendrites, spherical shaped cells and loss of cell

adhesion in PDT w/o Metformin treated cells. d, e quantitative FACS results for WM35 (d) and M1-15 (e) are expressed as %

of total dead cells—annexin V and PI positive cells, from the total cell number; ir = irradiated cells; # = not significant,

* = p<5.0E-02, ** = p<1.0E-02, *** = p<1.0E-03. Each bar represents mean ± standard deviation (n = 3).

doi:10.1371/journal.pone.0173241.g004
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increased the NO, while in the M1-15, it diminished the NO formation and both effects were

enhanced by irradiation. When GaPc-PDT was used, NO was highly increased in the WM35

from 0.38 nM/mg protein to 1.54 nM/mg protein. In M1-15 the NO generation, following

PDT was not significant. Metformin addition to GaPc-PDT increased NO levels only in M1-

15, compared to GaPc-PDT.

TNF-α and TRAIL expression. To assess the inflammation and its role in the induction

of cell death, the levels of TNF-α and the TNF-related apoptosis-inducing ligand were mea-

sured by means of ELISA. In the WM35 line, GaPc-PDT and Metformin highly increased

TNF-α levels, as well as TRAIL expression, compared to all other groups. This suggests that

association of Metformin with GaPc-PDT induced efficient pro-inflammatory and pro-apo-

ptotic responses (Fig 6). Moreover, the high levels of the inflammatory molecules were corre-

lated with oxidative stress (MDA level) and tumor cell death. This effect was different in the

case of M1-15. In the untreated M1-15, cells surprisingly secreted high levels of TNF-α, com-

pared to the therapeutical regimen GaPc-PDT and Metformin. This finding emphases the

intricate role of TNF-α in cancer. In the metastatic cell line, TNF-α might have a pro-tumoral

effect, which explains the high levels in the controls, helping the cells evade from the apoptotic

mechanisms. However, TNF-α level was strongly inhibited by the GaPc-PDT and Metformin

and this was combined with a high expression of TRAIL, leading to an increased apoptotic

cell death. To further study the effect of the therapy induced oxidative stress; we measured, by

means of Western Blot, NF-κB activation.

Fig 5. Oxidative stress assessment. Malondyaldehide (MDA), nitric oxide (NO) levels (nM/mg protein)

measurements in WM35 (upper panels) and M1-15 (lower panels) were done by spectrophotometry. Each

bar represents mean ± standard deviation (n = 3). ir = irradiated cells; # = not significant, * = p<5.0E-02,

** = p<1.0E-02, *** = p<1.0E-03.

doi:10.1371/journal.pone.0173241.g005
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NF-κB activation. In order to assess the role of the NF-κB pathway activation in the sur-

vival of the melanoma cells treated with PDT, western blot was performed to quantify the pro-

tein levels of the total NF-κB protein and the active form, pNF-κB—p65 (at Ser 536) and also

the IκKα, IκKβ and the phosphoryted pIκK. Phosphorylation of p65/RelA at Ser 536 regulates

activation, nuclear localization, protein-protein interaction and transcriptional activity. The

key in the NF-κB pathway activation involves a high molecular weight Ikappa Kinase (IκK)

complex, consisting of three associated IκK subunits. IκKα, and IκKβ serve as the catalytic

subunits of the kinase. Activation of the IκK depends on the phosphorylation at Ser 177 and

Ser 181 in the activation loop of IκKβ and Ser 176 and Ser 180 in IκKα.

In WM35, irradiation, Metformin exposure and GaPc-PDT increased the expression of

NF-κB and pNF-κB, compared to controls. Furthermore, there was a significant increase

in NF-κB protein expression induced by GaPc-PDT and Metformin compared to GaPc-

PDT (Fig 7). However, only a modest part of NF-κB protein was represented by the

active form. In this respect, a higher amount of pNF-κB was obtained when cells were

exposed to PDT alone, suggesting that Metformin addition to these cells increased the total

NF-κB protein, but decreased NF-κB activation, a mechanism involved in survival of the

melanoma cells leading to resistance to PDT. In the M1-15 melanoma, NF-κB protein was

significantly increased following irradiation, Metformin and GaPc single exposure and

respectively GaPc-PDT, compared to controls. When Metformin was added to GaPc-PDT,

NF-κB decreased compared to GaPc-PDT. pNF-κB levels were higher when cells were

treated with GaPc and GaPc-PDT. Metformin and GaPc-PDT decreased pNF-κB at control

levels.

In both cell lines, IκK complex proteins were increased in cells exposed to Metformin and

GaPc, while PDT strongly inhibited both of them, leading to extremely low levels in Metfor-

min and GaPc-PDT groups. The active pIκK form was strongly inhibited in the last four

groups, when GaPc was used. This shows that even though there was a stimulation of the NF-

κB protein following GaPc-PDT, the activation pathway was strongly inhibited by the com-

bined Metformin and GaPc-PDT treatment.

Fig 6. Assessment of inflamatory and angiogenetic markers. Protein expressions of TNF-α, TRAIL,

VEGF (pg/ml) in melanoma cultures exposed to GaPc-PDT + Metformin were determined by ELISA, upper

panels (WM35), lower panels (M1-15); Each bar represents mean ± standard deviation (n = 3), ir = irradiated

cells; # = not significant, * = p<5.0E-02, ** = p<1.0E-02, *** = p<1.0E-03.

doi:10.1371/journal.pone.0173241.g006
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Melanogenesis

To assess the influence of the PDT and Metformin on melanogenesis in the melanoma cells,

the total melanin content and the enzymatic activity of tyrosinase (Fig 8), as DOPA oxidase

were measured by spectrophotometry. Expression levels of tyrosinase, the key melanogenic

enzyme, and the microftalmia transcription factor—MITF, involved in melanogenesis regula-

tion and also survival, differentiation and resistance to PDT were also quantified by means of

Western Blotting (Fig 8).

Melanin content. As expected, the melanin content was low, since both these cell lines are

lightly pigmented. Exposure to GaPc enhanced melanin content, while PDT exhibited a strong

inhibitory effect in both cell lines (Fig 8). Metformin and GaPc-PDT induced a melanogenic

level similar to the control in WM35 cells while in the M1-15, there was no significant differ-

ence between the PDT groups.

Tyrosinase. Tyrosinase activity correlated with the levels of melanin (Fig 8). PDT inhib-

ited the tyrosinase activity in both cell lines, while combined treatment only decreased tyrosi-

nase activity in M1-15 cells. In WM35 melanoma, the tyrosinase protein level was increased by

GaPc-PDT compared to controls, while Metformin and GaPc-PDT decreased tyrosinase, com-

pared to controls. In M1-15 cells, GaPc-PDT decreased the tyrosinase, and the combined regi-

men enhanced this effect (Figs 7 and 8).

MITF. MITF levels were inhibited in WM35 cells by PDT exposure and Metformin

potentiated this effect, when used in combination with PDT (Fig 7). Metformin exposure

increased MITF expression in both cell lines. In M1-15, MITF protein was enhanced following

GaPc-PDT, while Metformin and GaPc-PDT decreased MITF, compared to controls. Overall,

melanogenesis was decreased by PDT in the metastatic M1-15 cell line and this effect was

Fig 7. Protein expression measured by Western Blot. Protein expressions of NF-κB, pNF-kB, IκKα, IκKβ,

pIκK α/β, HIF1α, tyrosinase and MITF in melanoma cells treated with GaPc-PDT + Metformin, left panel

(WM35), right panel (M1-15) were measured by WB. Image analysis of WB bands was done by densitometry,

results were normalised to GAPDH.—WB images (upper panels) 1 = control, 2 = irradiated control,

3 = Metformin, 4 = irradiated Metformin, 5 = GaPc, 6 = GaPc-PDT, 7 = GaPc and Metformin, 8 = GaPc-PDT

and Metformin; graphical representation of quantitative WB results for WM35 and M1-15 (lower panels);

ir = irradiated cells; # = not significant, * = p<5.0E-02, ** = p<1.0E-02, *** = p<1.0E-03. Each bar represents

mean ± standard deviation (n = 3).

doi:10.1371/journal.pone.0173241.g007
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enhanced by combined treatment. In WM35 the effects were different. PDT increased melano-

genesis. Addition of Metformin strongly inhibited the protein levels of tyrosinase and MITF

and decreased melanin and tyrosinase activity compared to PDT alone. The inhibition exerted

by the combined treatment on MITF expression was seen in both cell lines.

Neoangiogenesis markers

To assess the possible anti-angiogenic effects of the PDT experimental setting, the hypoxia

inducible factor 1 (HIF-1α), involved in carcinomatous neoangiogenesis formation and it’s

target, the main neoangiogenesis stimulator, vascular endothelial growth factor (VEGF) were

measured by means of Western Blotting and ELISA (Figs 6 and 7).

HIF-1α. In WM35 cells, HIF1-α was increased by Metformin and GaPc treatment, and

also by GaPc-PDT. When Metformin was combined with GaPc-PDT, HIF-1α was strongly

inhibited (Fig 7). In the M1-15 cell line, HIF-1α basal level was increased. Metformin and

GaPc had almost no effect on the protein expression. PDT diminished HIF-1α compared to

controls and the combined treatment had a stronger effect.

VEGF. In both melanoma cell lines, GaPc-PDT and GaPc-PDT associated with Metfor-

min showed an important antiangiogenic activity in contrast with the high levels of VEGF in

the untreated cells (Fig 6). However, the combined treatment had a lower inhibitory effect on

VEGF compared with GaPc-PDT alone. Overall, PDT inhibited neoangiogenetic promoting

factors in both cell lines. This effect was stronger with the combined treatment in the case of

HIF-1α.

Discussion

The present research investigates the possible benefits of using Metformin as an adjuvant in

PDT against two human melanoma cell lines with different degrees of aggression: WM35, a

Fig 8. Melanogenesis. Total melanin content (μg/ml) and tyrosinase enzymatic activity (Units/mg protein)

measurements in WM35 (upper panels) and M1-15 (lower panels) were done by spectrophotometry. Each

bar represents mean ± standard deviation (n = 3). ir = irradiated cells; # = not significant, * = p<5.0E-02,

** = p<1.0E-02, *** = p<1.0E-03.

doi:10.1371/journal.pone.0173241.g008
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radial growth phase line and M1-15, a metastatic melanoma line, with focus on cell death, oxi-

dative stress induced damage, inflammation and angiogenesis.

In addition, we also studied the efficiency of Gallium phthalocyanine chloride (GaPc) as a

photosensitizer in PDT against melanoma. In a previous study, we found good PDT efficacy

against WM35 melanoma cells using as PS an Indium substituted Pc: chloride indium (III) Pc

[ClIn (III)Pc], activated by red light at a dose of 6 J/cm2 [34].

In our study, GaPc decreased viability in both melanoma cell lines, in a dose related man-

ner, without dark toxicity. PDT efficiency was increased in the case of WM35. This is consis-

tent with results presented by others that found GaPc to be an efficient photosensitiser, in

different cancers such as: colon cancer Caco-2 cells or lung cancer cells [35, 35, 36] Although,

we found no evidence of GaPc-PDT assays in melanoma, another Pc used for PDT, aluminum

tetrasulfophthalocyanine showed efficient melanoma cells killing. Pc’s properties can be

improved by incorporating metals such as gallium, zinc and aluminium [17, 36]. Metallation

of PCs with diamagnetic ions: Zn 2+, Al 3+, and Ga 3+, was reported to increase photosensitiser

quantum yields and lifetimes (FT 0.56, 0.50 and 0.34 and τT 187, 126 and 35 μs) [37, 38]. This

potentially increases the photosensitiser capabilities. However, the problem of tumor delivery

still remains, mainly due to their lipophylic character, poor tumor specificity and the Pc ten-

dency to aggregate. A number of possible delivery strategies have been suggested, ranging

from the use of oil-in-water (o/w) emulsions to liposomes and nanoparticles as potential car-

rier vehicles reviewed in Josefson, et al [23, 39, 40, 41, 42, 43, 44] and to enhance the cellular

uptake and subsequent antitumor efficacy of PDT [45, 46, 47].

Addition of Metformin to the GaPc-PDT treatment increased the therapy efficiency in both

cell lines, similarly to our previous report for Walker carcinosarcoma PDT [7]. In the M1-15

metastatic melanoma, Metformin significantly increased PDT cell killing and induced apopto-

sis of the melanoma cells. However, the beneficial effect was relatively small in terms of viabil-

ity decrease, when PDT was concerned; GaPc-PDT and Metformin increased the induction of

apoptosis at a small dose of photosensitizer and light exposure.

The origin of the melanoma metastatic cells seems to be from a population of melanoma

initiating cells, that resemble stem cells characters and are resistant to chemotherapy [48, 49].

These tumors stem cells are CD133 positive and induce chemoresistance by activating differ-

ent survival proteins involved in the Akt/PKB and Bcl-2 pathway. Furthermore, activation of

Akt/PKB pathway induces cellular antiapoptotic effects, increases protein synthesis and prolif-

eration through rapamycin (mTOR) binding [50]. Metformin inhibits malignant metastatic

and stem cell growth through blocking of the metabolic pathway AKT/mTOR. These effects

were reported on different cell lines: hMCF-7 human mammary carcinoma and FSaII mouse

fibrosarcoma cells [51] and combined with doxorubicine on in vivo and in vitro breast cancer

tumors [52].

In cancerous cells, glucose metabolism is switched to aerobic glycolysis -Warburg effect,

and generates a high amount of energy, as well as metabolites like lactate and ketones that pro-

mote tumor cells “immortality”. Metformin interferes with the mitochondrial metabolism and

can lower both energy and glucose metabolites production [51]. These mechanisms might

explain the addictive effect of Metformin to PDT efficiency.

In both cell lines, cell death correlated with the alteration of the cytoskeleton filaments and

a high level of lipid peroxidation, indirect hallmarks of ROS, as a result of the Metformin

induced inhibition of the antioxidant defense in melanoma cells. This is consistent with previ-

ous reports about the roles of PDT induced ROS leading to DNA damage and subsequent cas-

pase activation followed by tumor cell death [53]. Cytoskeleton disorganization as a result of

PDT has been reported in different cell lines: in a chronic myelogenous leukemia-derived

cell line (K562), glioblastoma (D54Mg) in ALA mediated PDT, or WM35 in PDT with two
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mesoporphyrins meso-5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin (THOPP) and meso-

5-(4-hydroxyphenyl)-10, 15, 20- tris (4-methoxyphenyl) porphyrin (THOMPP) [24, 54, 55].

PDT with zinc(II)-phthalocyanine (ZnPc) of three cell lines indirectly induced changes in

microtubules and F-actin in HeLa cells, correlated with apoptosis [56].

In the current study we measured the protein levels of two members of the TNF family:

TNF-α and TRAIL, secreted by the melanoma cells as a result of GaPc-PDT w/o Metformin, in

an effort to understand their role in the switch between survival, leading to resistance to therapy

and apoptosis in the melanoma cells. Similarly, with ROS, TNF-α has a dual role in melanoma-

genesis and response to therapy. Through binding to specific receptors, TNF-α can induce more

than 5 pathways that end up with inflammation, apoptosis, proliferation, invasion, angiogenesis,

metastasis or morphogenesis. Furthermore, these pathways lead to contradictory effects: both

anti-apoptotic and pro-apoptotic [57]. Although, TNF-α is able to induce tumor cell death, its

primary role is pro-inflammatory [58]. TNF-α is a negative prognostic factor in surgery and cor-

relates with resistance to chemotherapy, while high tumor levels of TNF-α might be beneficial

for the melanoma immunotherapy [44]. Melanoma WM35 cell line was previously found to be

resistant to TNF-α but not to TRAIL induced apoptosis [59]. On the other hand, TRAIL selec-

tively induces apoptosis of tumor and premalignant cells, but not normal cells [54]. Unfortu-

nately, most primary cancer cells are resistant to TRAIL induced apoptosis due to preexistent

p53 mutations, absence of specific death receptors from cell surface or presence of abundant

decoy receptors [54]. TRAIL is involved in triggering the extrinsic pathway of apoptosis. Binding

of TRAIL to surface death receptors initiates their trimerization and starts recruiting Fas-associ-

ated death receptor (FADD) leading to caspase-8 activation [54]. In type I cells, caspase-8 activa-

tion is enough for apoptosis, while, in type II cells, the extrinsic pathway should be completed

with mitochondrial pathway activation to sustain the apoptotic process [60]. Expression of

TRAIL receptor 2 on melanoma cells was correlated to a better prognosis [61].

In the WM35 melanoma cells, TNF-α as well as TRAIL expression and oxidative damage

were strongly increased by the combined GaPc-PDT associated with Metformin, as opposed

to single GaPc-PDT. In a previous PDT study, on WM35 cells, high levels of TNF-α generated

by PDT were mainly anti-apoptotic and led to NF-kB activation, a mechanism involved in cell

survival under oxidative stress [30]. In the current study, NF-kB expression, as well as the

phosphorilated form was diminished, therefore, this mechanism of survival was not efficient

in preventing oxidative cell death. Thus, the high expressions of both TNF family members led

to the activation of apoptosis. The pro-apoptotic effects were strongly enhanced by Metformin

treatment and are linked to the effects on mitochondrial glucose metabolism generated in the

melanoma cells [51] that rendered the cells susceptible to a higher oxidative damage induced

by PDT. This led to a combination of necrotic and apoptotic cell death. These effects were dif-

ferent in the highly metastatic M1-15 melanoma. M1-15 cells constitutively expressed high

levels of TNF-α and TRAIL. This is probably due to the tumor promotion exerted by these

molecules, by binding to pro-inflammatory receptors [62] and TRAIL decoy death receptors

with roles in proliferation or decreased TRAIL sensitivity [57], [60, 62]. Combined exposure to

Metformin and GaPc-PDT significantly decreased TNF-α, while endogenous TRAIL expres-

sion remained at high levels.

NO synthesis is mainly governed by iNOS, whose expression is regulated by the transcrip-

tion factor NF-κB [34, 63, 64]. NF-κB protein was enhanced following GaPc-PDT, but the acti-

vation pathway was strongly inhibited by PDT, as proved by the decreased levels of IKκ and

the phosphorilated form. The effect was increased by Metformin addition. As a result it also

inhibited the expression of iNOS and, therefore, NO production, especially in M1-15 cells.

On the other hand, NO may inhibit IKκ via S-nitrosylation, and decreases free NF- κB level,

which creats a negative-feedback loop [65].
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NF-κB and pNF-κB were slightly increased, following GaPc-PDT but this survival mecha-

nism was not enough to prevent cell death [21, 44]. In these conditions, TRAIL induced apopto-

sis might be explained by the sensitization of the M1-15 melanoma to TRAIL, following the

combined therapy. Sensitivity of tumor cells to TRAIL apoptosis may be restored by a number

of substances and biological agents [61–66]: proteasome inhibitors, mainly, but not restricted to

inhibition of NF-kB activation, AKT inhibition, mitogen-activated protein kinase (MAPK),

protein kinase C (PKC) activation, reactive oxygen species, interferon, resveratrol, tunicamycin,

histone deacetylase inhibitors, 2-methoxyestradiol, synthetic triterpenoids, peroxysome prolif-

erators-activated receptor agonists, betulinic acid and telomerase-dependent virotherapy [61,

66]. Metformin exposure was involved in AKT inhibition [52, 53] and the combination with

PDT increased therapeutically ROS induced damage, and decreased NF-κB activation. All

these, were able to restore TRAIL sensitivity in M1-15 cells, leading to apoptosis. This behavior

is consistent with a previous report, stating that inhibition of NF-κB in colon and mammary

carcinoma cells switched the inflammatory LPS-induced tumor growth to tumor regression.

This response was found to be independent of TNF-α, but dependent on TRAIL. Thus, an

interesting future direction for increasing PDT efficiency in melanoma could be linked to exog-

enous TRAIL addition to this line of therapy, which has the potential to take advantage of the

recovered TRAIL sensitivity in melanoma cells and to induce selective tumor cell apoptosis.

Both cell lines showed a low melanogenic level. Melanogenesis was inhibited by PDT in the

metastatic M1-15 cells, while in the radial growth phase WM35, the effect was the opposite.

Metformin seemed to have an inhibitory effect, while GaPc exposure increased melanogenesis.

As such, combined treatment decreased melanogenesis activation due to the GaPc exposure.

This is consistent with our previous PDT study, where we found increased melanogenesis fol-

lowing PDT with meso-substituted porphyrins on WM35 cells [29]. This effect was consis-

tently seen on the total melanin content and the activity of the key melanogenic enzyme,

tyrosinase. In WM35 cells, PDT induced a higher pigmentation level along with increased

tyrosinase activity but it decreased the tyrosinase protein level. These differences can be

explained by the activation of existing tyrosinase by PDT induced ROS [67]. However, ROS,

especially hydrogen peroxide, in a high amount, may also be responsible for the inactivation of

the tyrosinase [68]. Similarly, pigmentation could have been increased following PDT through

ROS oxidation of melanin precursors. These differences were mainly seen in the WM35 cells,

because of the low level of constitutive pigmentation that allowed the smaller modifications to

became apparent. In the case of WM35, PDT also induced necrotic cell death, at a lower lipid

peroxidation level compared to M1-15, possibly due to a lower melanoma resistance to oxida-

tive stress. In patients with melanoma, the prognosis was shown to be influenced by the pig-

mentation. In patients with early stage (I and II) melanoma, pigmentation was correlated with

a better survival, while in advanced stages, melanoma pigmentation impaired the prognosis

[69]. This is probably due to the melanogenesis process that can delay tumor growth when is

normal, while deregulation of pigment synthesis and/or pheomelanogenesis will have a stimu-

latory impact on tumor growth because of active melanin precursors, leading to ROS and

accumulating mutations [69]. TRPM1 (melastatin) expression loss occurred at the transition

of radial to vertical growth primary cutaneous melanoma [70]. Moreover, melanogenesis in

metastatic melanomas was related to resistance to radio [71] and chemotherapy and also

immunosuppressive effects [72], while the inhibition of melanogenesis restored melanoma

sensitivity to gamma rays [73], cyclophosphamide and reverted the immunosuppression due

to melanin synthesis [72]. Therefore, inhibition of melanogenesis is likely to improve the out-

come of the therapy of metastatic melanoma [71]. Therefore, inhibition of melanogenesis,

mostly seen in the metastatic M1-15 cell line represents a beneficial effect of the GaPc PDT,

enhanced by Metformin addition.
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Many factors were involved in stimulation of melanogenesis after UV exposure, like lipids

peroxidation, ROS production, MAPK, TNF-α pathway, DNA damage—DNA repair pro-

cesses enhanced by melanin [74, 75, 76]. Moreover, MITF expression was related to increased

survival following oxidative stress [77]. Increased MITF was related to a lower prognosis in

melanoma patients, resistance to therapies and particularly PDT, while decreased levels were

associated with a better PDT therapeutic response [31]. Since MITF is very widely expressed in

human melanomas, the found that the combination of PDT and Metformin had the ability to

inhibit it, along with the inhibition of NF-κB pathway activation seems really promising.

Moreover, this was consistent in both melanoma cell lines.

Neoangiogenesis is involved in tumor promotion, invasion and metastasis, critical steps in

melanoma progression. Thus, we investigated the effects of GaPc-PDT and Metformin on

the synthesis and expression of the main two factors involved in stimulating carcinomatous

neoangiogenesis: VEGF and HIF-1α. HIF-1α is the transcription factor in charge of the cellu-

lar response to hypoxia, including generated by a growing malignant tumor environment that

consists mainly in angiogenesis and apoptosis. Once stimulated, HIF-1α translocates into the

nucleus, binds to the hypoxia-response element, and up-regulates the expression of VEGF and

other angiogenic factors at mARN and protein levels [78, 79].

Our data showed that PDT and respectively Metformin and PDT inhibited the expression

of the VEGF and HIF-1α, in the melanoma cells. However, future in vitro studies on co-cul-

ture models and in vivo studies are necessary to support these findings [80]. There is a strong,

GaPc-PDT induced inhibition of VEGF and HIF-1α, consistent for both cell lines, while com-

bined regimen decreased this effect. Previously, we have reported that the combination of

Metformin and PDT reduced angiogenesis in vivo, on Walker carcinosarcoma [7]. There are

reports showing a beneficial role of Metformin in the inhibition of neoangiogenesis [81, 82,

83]. Metformin also induced increased survival, accelerated tumor growth and increased

VEGF-A in BRAF V600 mutant melanomas [84]. This is consistent with our findings of stimu-

lating effects of Metformin on VEGF and HIF-1α in WM35 melanoma, since this cell type

exhibits the BRAF-V600E-mutation. Interestingly, in the BRAF-V600E-mutated melanomas, it

was reported that association of Metformin with anti-angiogenic therapies has a cumulative

effect on cell killing [85]. In this respect, the combination of GaPc-PDT, with an inhibitory

effect on angiogenesis and Metformin might explain the strong beneficial effect of cell death

induction in WM35 cells. It was shown that HIF-1α is a direct target gene of NF-κB under

non-hypoxic and certain hypoxic conditions. Activation of NF-κB leads to increased HIF-1α
protein levels. HIF-1α also contributes to the activation of the NF-κB pathway; moreover, both

proteins seem to be regulated by the same pathways, involving IKKβ hydroxylation [86]. This

is consistent with our data, where there is a similar trend within these protein levels. Metfor-

min was described to inhibit NF-κB activation in normal cell lines [35,87] senescent cells [88]

and cancer cells [89]. The main antitumor mechanism seems to be related to reversible inhibi-

tion of the mitochondrial complex I function which has also been involved in the hypoxic

inhibition of HIF-1α. The effect requires an intact mitochondrial inner membrane potential.

Metformin reduced HIF-1α in colon cancer cells-HCT 116 p53−/− and significantly dimin-

ished downstream HIF dependent proteins like VEGF, and carbonic anhydrase 9 (CA9) in

these cells, under hypoxic conditions (1.5% O2), however, it slightly increased HIF-1α, VEGF

and CA9 under normal O2 concentration (21%)[87].

The aim of our study was to find if Metformin might increase melanoma cells sensitivity to

PDT and improve the overall treatment response. Therefore, in our experimental setting, cells

with prior 24h Metformin exposure were exposed to GaPc for 24h, irradiated then collected

after an additional 24h period, following PDT irradiation. Cells exposed to Metformin were

treated with medium in a similar manner. Since the Metformin inhibition of mithocondrial
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function is reversible [87], the time elapsed between exposure and the end of the experiments

diminished the Metformin effects and allowed the cells to recover, in the absence of PDT. This

could explain the reactive increase of NF-κB activation, HIF-1α and VEGF in groups without

PDT. When combined treatment was used, the angiogenetic markers like VEGF and at a

lower extent HIF-1α, although significantly inhibited compared to controls, remained at

higher levels, compared to PDT alone. This could be partially explained by the experimental

setting, as above, however, this effect might be also due to the stimulatory effect of Metformin

on these molecules in normoxic conditions [87]. In melanoma, induction of melanogenesis

was shown to increase HIF-1α and stimulate the expression of several downstream HIF-1 reg-

ulated genes, including VEGF. This was attributed to the role of melanogenesis intermediates

that lead to ROS and consumption of intracellular oxygen due to the activation of the melano-

genic pathway [90]. These are consistent with our data for the GaPc treated cells, where

increased HIF-1α, was correlated with high melanogenesis. When GaPc PDT was used, cells

exhibited higher HIF-1α in WM35 cells that correlated with the absence of melanogenesis

inhibition (lower melanin, but tyrosinase activity was similar to controls). In M1-15 cells,

lower HIF-1α correlated with inhibition of melanogenesis.

PDT is an ideal oncological approach because induces direct tumor cell photo damage and

also targets tumor vasculature and activates the immune response [91, 92]. Despite these

effects, there is a limited experience of PDT in melanoma and extensive clinical studies need to

be taken into consideration, using selected photosensitizers and standard irradiation protocols

and also several combination regimens with chemotherapy or immunotherapy, in order to

obtain an established antitumor effect [11].

Conclusions

GaPc proved an efficient PS in PDT against these low pigmented melanoma cell lines: WM35

and M1-15. The beneficial antimelanoma effects of Metformin addition to PDT resided mainly

in increased tumor cell killing through enhanced oxidative damage and induction of proapop-

totic mechanisms, while the inhibition of tumor angiogenesis promoted by PDT was decreased

by Metformin.
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