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Abstract

IMPORTANCE—Preclinical models and studies in the metastatic and neoadjuvant settings 

suggest that single nucleotide polymorphisms in FCGR3A and FCGR2A may be associated with 

differential response to trastuzumab in the treatment of ERBB2/HER2–positive breast cancer, by 

modulating antibody-dependent cell-mediated cytotoxic effects.

OBJECTIVE—To evaluate the effect of FCGR2A and FCGR3A polymorphisms on trastuzumab 

efficacy in the adjuvant treatment of ERBB2/HER2–positive breast cancer.

DESIGN, SETTING, AND PARTICIPANTS—This is a retrospective analysis of patients 

enrolled in the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-31 trial, a phase 

3 cooperative group study conducted between 2000 and 2005. The NSABP B-31 trial randomized 

2119 women with surgically resected node-positive, ERBB2/HER2–positive breast cancer to 

treatment with doxorubicin and cyclophosphamide followed by paclitaxel or the same regimen 

with the addition of 1 year of weekly trastuzumab. Patients were accrued at cooperative group sites 

across the United States and Canada. This analysis was performed between 2013 and 2016.

INTERVENTIONS—Doxorubicin and cyclophosphamide followed by paclitaxel or the same 

regimen with the addition of 1 year of weekly trastuzumab.

MAIN OUTCOMES AND MEASURES—Disease-free survival.

RESULTS—The genotyped cohort (N = 1251) resembled the entire B-31 cohort based on clinical 

variables and the degree of benefit from trastuzumab. Median follow-up time was 8.2 years in the 

genotyped samples. The disease-free survival probability at 3, 5, and 8 years was 74% (95%CI, 

71%–79%), 66%(95%CI, 62%–71%), and 58%(95%CI, 54%–63%) in patients who received ACT 

and 86%(95%CI, 83%–89%), 82%(95%CI, 79%–85%), and 78%(95%CI, 74%–81%) in patients 

who received ACTH. Addition of trastuzumab significantly improved patient outcome (hazard 

ratio [HR], 0.46; 95%CI, 0.37–0.57; P < .001). The expected trend for interaction between 

polymorphisms and trastuzumab was observed for both genes, but only FCGR3A-158 

polymorphism reached statistical significance for interaction (P < .001). As hypothesized, patients 

with genotypes FCB3A-158V/V or FCB3A-158V/F received greater benefit from trastuzumab 

(HR, 0.31; 95%CI, 0.22–0.43; P < .001) than patients who were homozygous for the low-affinity 

allele (HR, 0.71; 95%CI, 0.51–1.01; P = .05).

CONCLUSIONS AND RELEVANCE—The FCGR3A-158 polymorphism is predictive of 

trastuzumab efficacy in this cohort of patients with early ERBB2/HER2–positive breast cancer. 

Patients who are homozygous for phenylalanine at this position represent a considerable 

proportion of the population and, in contrast to previously reported analyses from similarly 

designed trials, our results indicate that trastuzumab may be less efficacious in these patients.

TRIAL REGISTRATION—clinicaltrials.gov Identifier for NSABP B-31: NCT00004067

Clinical trial National Surgical Adjuvant Breast and Bowel Project (NSABP) B-31, analyzed 

jointly with the North Central Cancer Treatment Group (NCCTG) N9831, established the 

benefit of adding trastuzumab, a monoclonal antibody targeting the ERBB2/HER2 protein, 

to standard chemotherapy in patients with early stage ERBB2/HER2–positive breast cancer. 

However, only about one-third to one-half of patients benefit from this therapy in advanced 

or adjuvant settings, respectively.1,2 Although treatment is generally well tolerated, its high 

Gavin et al. Page 2

JAMA Oncol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cost, associated cardiotoxic effects, and the availability of promising alternatives warrant an 

attempt to identify patients who will not benefit.

Although many mechanisms have been attributed to the success of trastuzumab, the original 

patent described 2 primary potential mechanisms. First, by binding to ERBB2/HER2 on the 

cancer cell membrane, it prevents ERBB2/HER2 dimerization, blocks downstream 

signaling, and subsequently blocks proliferation. Second, it triggers the host immune system 

to attack and kill trastuzumab-bound tumor cells. This immune response, known as 

antibody-dependent cell-mediated cytotoxic effect (ADCC), is initiated when the FCγ 
receptor on natural killer cells (NK) binds to the Fc portion of trastuzumab. As a result, NK 

cells release factors including IFN-γ, perforins, and granzymes, which cause tumor cell 

death via apoptosis. A similar process, known as antibody-dependent cellular phagocytosis 

(ADCP), is initiated when the FCγ receptor on a macrophage binds to trastuzumab and 

results in tumor cell death by phagocytosis.

Early studies in ERBB2/HER2–positive breast cancer cell lines demonstrated potent ADCC 

caused by trastuzumab in vitro.3 Experiments in mice have demonstrated reduced 

trastuzumab efficacy if the Fc fragment is removed from the antibody or if the mouse is 

deficient in FCγ receptors.4,5 In addition, an increase in the infiltration of lymphoid cells 

into tumor samples was observed after trastuzumab treatment compared with paired 

pretreatment samples.6 Collectively, these findings support a strong role of ADCC or ADCP 

in the mechanism of trastuzumab efficacy.

Additional preclinical studies have demonstrated an association of single-nucleotide 

polymorphisms in the genes encoding FCγ receptors with the strength of the immune 

response. Many studies have focused on position 158 of FCGR3A, which encodes a valine 

or phenylalanine, and position 131 of FCGR2A, which encodes a histidine or arginine 

(reviewed in Mellor et al).7 In vitro ADCC assays demonstrated greater trastuzumab-

mediated ADCC with the FCGR3A-158 valine (V)/V genotype and a trend for association 

with the FCGR2A-131 histadine (H)/H genotype.8 Analyses of paired pretreatment and 

posttreatment peripheral blood mononuclear cells (PBMCs) demonstrated more differential 

changes in gene expression from patients with the V/V or H/H genotypes than did patients 

with phenylalanine (F)/F or arginine (R)/R genotypes, indicating a difference in the 

molecular response to trastuzumab according to genotype.9 These observations are 

consistent with the observation that the FCγRIIA-131H and FCγRIIIA-158V have a higher 

affinity to immunoglobin (IgG) than the proteins encoded by alternate alleles.10 Cells 

bearing the high-affinity alleles mediate ADCC more effectively.7

Clinical studies using therapeutic monoclonal antibodies such as rituximab for the treatment 

of lymphoma and cetuximab for the treatment of colon cancer have shown association of the 

FCGR3A and FCGR2A genotypes with patient outcomes.11–15 However, clinical studies 

examining the association of these single-nucleotide polymorphisms with trastuzumab 

benefit for patients with breast cancer are not clear. Tamura and colleagues16 demonstrated 

improved response rates to trastuzumab in patients with a FCGR2A-131 H/H genotype in 

the neoadjuvant setting and improved objective response rate in the metastatic setting. 

Musolino and colleagues8 observed improved objective response rate and progression-free 
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survival for patients with the FCGR3A-158 V/V genotype.8 However, while conducting our 

study, 2 large studies of patients enrolled in the NCCTG-N983117 and BCIRG-00618 clinical 

trials found no association of these loci with trastuzumab efficacy in the adjuvant treatment 

of ERBB2/HER2–positive breast cancer.

To explore this discrepancy, we retrospectively examined the FCGR3A-158 and 

FCGR2A-131 genotypes in all available pretreatment blood specimens from NSABPB-31. 

Our prespecified primary objective was to determine whether patients with breast cancer 

with FCGR3A-158 V/V or FCGR3A 158 V/F received greater benefit from trastuzumab 

than patients with the FCGR3A F/F genotype.

Methods

Patient Cohort

Detailed patient characteristics, eligibility criteria, adverse events, and clinical trial results 

have previously been reported.2,19,20 The NSABPB-31 trial randomly assigned women with 

surgically resected node-positive ERBB2/HER2–positive breast cancer to treatment with 

doxorubicin and cyclophosphamide followed by paclitaxel (ACT) or the same regimen with 

the addition of 1 year of weekly trastuzumab (ACTH). Patients were accrued between 

February 2000 and April 2005 at cooperative group sites across the United States and 

Canada. Treatment assignments were balanced according to nodal status, planned hormonal 

therapy, type of surgery, intended radiotherapy, and institution, with the use of a biased-coin 

minimization algorithm. Additional inclusion requirements for the current study include 

availability of clinical follow-up, appropriate informed consent, and availability of 

pretreatment blood specimens. Informed consent forms were approved by a local human 

investigations committee in accordance with an assurance filed with and approved by the US 

Department of Health and Human Services to permit use of banked tissue and blood 

samples. These trials were approved by local human investigations committees or 

institutional review boards in accordance with assurances filed with and approved by the 

Department of Health and Human Services. Written informed consent was obtained from 

participants in each trial.

Genotyping

Whole blood was collected before treatment and stored at −80° C. Participant DNA was 

prepared from 100 μL of whole blood using the Mag-Bind Blood DNA HDQ kit (Omega 

Biotek) and quantified with picogreen (ThermoFisher). Genotyping of rs1801274 

(FCGR2A-131 R/H) and rs396991 (FCGR3A-158 V/F) was performed using iPLEX Pro 

chemistry and mass spectrometry (Agena) according to the manufacturer’s instructions. 

Nested polymerase chain reaction was used for FCGR3A-158 to achieve specificity against 

its homologue FCGR3B. Genotypes were determined with Typer software using default 

settings after autoclustering (Agena). Two-thirds of the rs396991 assays were performed in 

duplicate. Bacterial artificial chromosome clones RP11-5K23 (FCGR3A), RP11-100D4 

(FCGR3B), and an equimolar mixture of the 2 were used as controls to ensure the rs396991 

primers specifically amplified the 3A homologue. Detailed reaction conditions and primer 
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sequences are provided in eMethods in the Supplement. All assays were performed blinded 

to clinical outcome using deidentified specimens.

Statistical Methods

The use of patient blood specimens and a detailed statistical analysis plan were approved by 

the Cancer Therapy Evaluation Program (CTEP) of the National Cancer Institute (NCI) 

before starting the current investigation. The primary end point for survival analyses was 

disease-free survival. Disease-free survival events included local, regional, and distant 

recurrence; contralateral breast cancer; a second primary cancer; or death from any cause. 

Follow-up included events recorded before June 30, 2012. In 2005, during a planned joint 

analysis with NCCTG-N9831, the early-stopping boundary was reached and patients on the 

ACT arm were offered trastuzumab. Patients who crossed over to the trastuzumab arm were 

censored at the time of crossover. The treatment benefit and prognostic effect for each 

genotype was first investigated using the Kaplan-Meier method and treatment arms were 

compared using log-rank tests. As the primary aim, FCGR3A genotype by treatment 

interaction was tested using proportional hazard regression models. For purposes of the 

interaction tests, the high-affinity genotypes were combined (FCGR3A-158 V/V or V/F vs. 

F/F). Similar analyses were performed for FCGR2A as a secondary objective. Survival 

analyses provided here were adjusted for estrogen receptor (ER) (positive or negative), 

progesterone receptor (PR) (positive or negative), age (years), tumor size (cm), and nodal 

status (1–3, 4–9, or ≥10 positive lymph nodes). Univariable models are reported in the 

Supplement or are clearly indicated as such. Missing values in the covariates resulted in the 

exclusion of 8 cases for multivariable analyses of FCGR3A and 7 cases for FCGR2A. The 

Fisher exact test was used to test deviation from Hardy Weinberg Equilibrium and to test the 

association of genotype with clinical characteristics. Linkage disequilibrium was 

investigated in the subset of patients with results for both assays. All statistical tests were 2-

sided and performed in R.

Results

Patient Characteristics

Among 2006 eligible patients with follow-up and informed consent, pretreatment blood 

specimens were available for 1253 and DNA was successfully prepared for 1251. Details 

regarding the reasons for sample loss are shown in eFigure 1 in the Supplement. Clinical and 

pathological characteristics were well balanced in the treatment arms of the study population 

and closely resembled the entire B-31 cohort (eTable 1 and eTable 2 in the Supplement). 

Median follow-up time was 8.2 years in the genotyped samples. The disease-free survival 

probability at 3, 5, and 8 years was 74%(95%CI, 71%–79%), 66%(95%CI, 62%–71%), and 

58% (95% CI, 54%–63%) in patients who received ACT and 86% (95% CI, 83%–89%), 

82% (95% CI, 79%–85%), and 78% (95% CI, 74%–81%) in patients who received ACTH. 

Addition of trastuzumab significantly improved patient outcome (hazard ratio [HR], 0.46; 

95% CI, 0.37–0.57; P < .001).
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Genotyping Results

Of 883 assays performed in duplicate, 3 discordances were observed (0.3%) for 

FCGR3A-158 (rs396991). These 3 observations were excluded from further analysis. 

Approximately 2% of FCGR2A-131 and 7% of FCGR3A-158 assays failed default 

genotyping quality controls in the Typer software, yielding 21 and 87 missing values, 

respectively. Some of the FCGR3A reactions excluded by the software may actually 

represent heterozygous patients with 3 germline copies of the gene.21 However, these wells 

are indistinguishable from wells with contamination or poor reaction conditions and their 

expected frequency of 2.5%limits our power to detect meaningful clinical significance. For 

these reasons, any sample that failed quality control was eliminated. Thirteen samples failed 

both assays, suggesting poor-quality DNA. The patients genotyped showed 25% H/H, 49% 

H/R, and 26% R/R alleles for FCGR2A-131 and 46%F/F, 42% F/V, and 12% V/V for 

FCGR3A-158. Both loci conform to the Hardy Weinberg Equilibrium in our data. In 1156 

specimens with both assays successful, linkage disequilibrium analysis indicated the 

FCGR3A and FCGR2A genes are strongly linked (D′ = 0.30; P < .001) as expected from 

their close genomic proximity and previous studies.18

FCGR Polymorphisms and Clinical Characteristics

FCGR3A-158 single-nucleotide polymorphisms were not associated with nodal status, ER, 

PR, tumor size, or race (eTable 3 in the Supplement). However, patients with the 

homozygous V/V genotype tended to be older (P < .001). The mean age was 52 years for 

V/V patients and 49 to 50 years for the other genotypes. FCGR2A-131 was not associated 

with nodal status, ER, PR, tumor size, or age. However, it was weakly associated with race 

(eTable 4 in the Supplement).

FCGR3A Polymorphism and Trastuzumab Efficacy

Patients with genotypes that included the higher-affinity alleles FCGR3A-158 V/V or V/F 

received greater benefit from trastuzumab (HR, 0.31; 95% CI, 0.22–0.43; P < .001) than 

patients who were homozygous for the low-affinity allele (HR,0.71; 95% CI,0.51–1.01; P = .

05) (Figure 1A and B). Genotype by treatment-interaction test indicates an association 

between FCGR3A-158 and benefit from trastuzumab (P < .001). In an exploratory analysis, 

the FCGR3A-158, high-affinity V/V homozygous patients received the most benefit (HR, 

0.12; 95% CI, 0.05–0.28; P < .001), heterozygous F/V patients received intermediate benefit 

(HR, 0.34; 95%CI, 0.23–0.48; P < .001), and homozygous low-affinity F/F patients received 

the least benefit (HR, 0.71; 95% CI, 0.51–1.01; P = .05) (Figure 2). Similar results were 

observed using invariable models.

FCGR2A Polymorphism and Trastuzumab Efficacy

The FCGR2A polymorphism demonstrated the trends expected from preclinical models 

(Figure 2). FCGR2A-131, high-affinity H/H homozygous patients received the most benefit 

(HR, 0.31; 95%CI, 0.19–0.49; P < .001), heterozygous H/R patients received intermediate 

benefit (HR, 0.50; 95% CI, 0.37–0.68; P < .001), and homozygous low-affinity R/R patients 

received the least benefit (HR, 0.57; 95%CI, 0.35–0.92; P = .02) (Figure 2). However, 
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treatment interaction tests indicate no difference in trastuzumab efficacy according to 

FCGR2A-131 (P = .24 for H/H or H/R vs. R/R).

FCGR Polymorphism and Prognosis

In an exploratory analysis in the ACT arm, patients with FCGR3A-158 V/For V/V had 

worse prognosis than patients with F/F (HR, 1.57; 95% CI, 1.15–2.14; P = .005) (eFigure 2 

in the Supplement). On the other hand, in the ACTH arm, patients with FCGR3A-158 V/F 

or V/V had better prognosis than patients with F/F (HR, 0.68; 95% CI, 0.48–0.96; P = .03). 

Univariable models demonstrated similar results. FCGR2A-131 genotypes showed no 

evidence of prognosis in either arm.

Combined Genotypes

Additional exploratory analyses revealed approximately 15%of the population are 

homozygous for both of the low-affinity alleles (FCGR3A-158 F/F and FCGR2A-131 R/R; 

n = 179) (Figure 3). Trastuzumab appears less effective in these patients (HR,0.81; 95%CI,

0.41–1.58; P = .53). However, treatment interaction tests of this population were not 

significant (P = .06 for F/F and R/R vs others).

Discussion

Analysis of FCGR3A-158 polymorphism in NSABP B-31 demonstrated differential 

trastuzumab benefit predicted by preclinical models, studies of other antibodies, and smaller 

studies of trastuzumab in the metastatic and neoadjuvant settings.7 Treatment interaction 

tests indicate polymorphisms at this position are associated with variability in the degree of 

benefit from adjuvant trastuzumab. Patients with the 158 F/F genotype have a better 

prognosis when treated with ACT and received less relative benefit (HR, 0.71) from the 

addition of trastuzumab, where as patients with 158 F/V or V/V have a worse prognosis with 

ACT and receive significantly more relative benefit from trastuzumab (HR, 0.31). These 

results indicate that ADCC may play a substantial component in the efficacy of trastuzumab 

for the treatment of breast cancer in the adjuvant setting; ADCC also activates tumor–

antigen-specific cellular immunity via intercellular crosstalk among NK and dendritic cells, 

which may also enhance the efficacy of anti-ERBB2/HER2 therapy.22,23

We also observed that the FCGR2A-131 polymorphism showed the expected trend for 

trastuzumab benefit but treatment interaction tests indicated no evidence of differential 

trastuzumab treatment effect according to FCGR2A genotypes. Perhaps this may be owing 

to the lack of expression of FCγRIIa on NK cells because NK cells are thought to be the 

main effectors of ADCC; although cytotoxic effects mediated through other effector cells via 

FCγRIIa have been reported.24 Our observation that the significant differential benefit from 

trastuzumab was limited to the FCGR3A-158 polymorphism and was not seen in the 

FCGR2A-131 single-nucleotide polymorphisms may also be owing to the fact that 

FCγRIIIa-158V was found to bind to IgG1 immune complexes at low concentrations but did 

not bind to FCγRIIIa-158F. Conversely, no binding differences were detected between 

FCγRIIa-131H and 131R at low IgG1 concentrations.25
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Our results differ from recent reports from the NCCTG-N983117 and BCIRG-006 trials,18 

which found no association of FCGR3A-V158 and benefit from trastuzumab. These trials 

also examined the addition of trastuzumab to ACT in the adjuvant treatment of ERBB2/

HER2–positive breast cancer and differed from NSABP B-31 primarily in the timing of the 

treatments. Both studies had sample sizes remarkably similar to our own and demonstrated 

substantial benefits from the addition of trastuzumab to chemotherapy. The methodologies 

used were rigorous: BCIRG-006 measured each single-nucleotide polymorphisms in 

quadruplicate (duplicate measurements on 2 platforms) and NCCTG-N9831 had 100% 

concordance in one-third of the population measured in duplicate. However, both of the 

previous FCGR studies suffered from sampling bias. In the BCIRG-006 study, the 1286 

patients who were genotyped did not show significant benefit from trastuzumab (HR, 0.84; P 
= .19) and the authors acknowledged that they cannot exclude a contribution of FCGR 
polymorphisms to the outcome of trastuzumab-treated patients due to the sampling bias. 

FCGR3A-158 also deviated from the Hardy Weinberg Equilibrium in the BCIRG-006 study. 

Blood for genotyping was collected from NCCTG-N9831 patients after the trial closed to 

accrual, leading to differences from the study population and the intent-to-treat population. 

The NCCTG-N9831–genotyped cohort included a greater proportion of trastuzumab-treated 

patients, less nodal disease, smaller tumors, a greater number of hormone receptor–positive 

tumors, and patients who were slightly older than the entire NCCTG-N9831 cohort. As a 

result, the genotyped patients had a substantially better disease-free survival than the entire 

NCCTG-N9831 cohort. For both studies, these biases resulted in a loss of events and as a 

result reduced power to detect genotype-treatment interaction.

In our exploratory analysis, the observation that the FCGR3A low-affinity allele was 

associated with a better prognosis than the high-affinity allele in the ACT arm was 

unexpected. Chemotherapy has been shown to induce an immune response and possibly the 

differential binding affinity of FCγRIIIa-158V and FCγRIIIa-158F proteins to intrinsic 

antibodies may result in differential benefit from chemotherapy. Polymorphisms in other 

immune molecules such as TLR426 and P2RX727 have been reported as candidate 

biomarkers predicting progression-free survival associated with chemotherapy-elicited cell 

death in breast cancer. The observed direction for prognosis is in the opposite direction that 

might be expected based on the binding affinities of the 2 alleles and might represent a 

chance finding. However, the considerably diverse expression of this receptor on a number 

of different immune cells (macrophages, γΔT cells, and many others) taken together with a 

wide variety of functions that often vary depending on the local microenvironment suggests 

that clinical outcomes can be very difficult to predict.

We have shown that patients with breast cancer with 1 or 2 of the FCGR3A-158V alleles 

receive greater benefit from trastuzumab than patients who are homozygous for the 

FCGR3A-158F allele. Although multivariable analysis showed that patients with the F/F 

genotype had a slightly higher residual risk, this difference was not remarkable. Thus, 

genotyping does not seem to be sufficient for selection of patients for additional treatment.

Currently, many therapies, including new anti-ERBB2/HER2 monoclonal antibodies or pan-

tyrosine kinase inhibitors are being used in addition to trastuzumab to treat patients with 

breast cancer in the metastatic and neoadjuvant settings. These agents also engage the 
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immune system and boost trastuzumab-induced ADCC.28–30 Recent investigation of 

additional immune checkpoint inhibitors to anti-ERBB2/HER2 therapies in patients with 

ERBB2/HER2–positive metastatic breast cancer is based on the hypothesis that a substantial 

component of trastuzumab benefit is mediated through ADCC and cross-priming of antigen-

specific cytotoxic T cells,22,23,31 which could enable the inhibition of immune checkpoints 

to improve the long-term efficacy of anti-ERBB2/HER2 therapy. However, carefully 

designed clinical trials would be needed to determine if additional agents enhance 

trastuzumab activity in specific genotypes.

Studies on NK cell mediated therapies suggest that the Fc region on monoclonal antibodies 

such as trastuzumab could be re-engineered to augment the affinity for a variety of inhibitory 

and activating FCGR allelotypes.10,32,33 Single amino acid changes to the antibody at the 

binding site can strongly influence the binding strength. This notion also requires additional 

clinical studies.

Conclusions

This study supports the hypothesis that ADCC activity plays an important role in the 

efficacy of trastuzumab. However, a great number of different molecules are involved in 

determining ADCC activity, therefore it may be useful to collect peripheral blood monocytes 

from patients in future clinical trials so that functional ADCC activity can be assessed and 

associated with treatment efficacy of trastuzumab and other therapeutic monoclonal 

antibodies.34
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Key Points

Question

Do polymorphisms in FCγ receptors affect trastuzumab efficacy?

Findings

In this secondary analysis of 1251 patients with early-stage ERBB2/HER2–positive 

breast cancer enrolled in a randomized clinical trial, patients homozygous for 

FCGR3A-158 F benefited less from the addition of trastuzumab to chemotherapy than 

did patients with F/V or V/V genotypes.

Meaning

Significant association between polymorphisms of FCGR3A and trastuzumab benefit 

suggests that antibody-dependent cell-mediated cytotoxic effect plays a role in 

determining the efficacy of trastuzumab in the adjuvant treatment of ERBB2/HER2–

positive breast cancer.
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Figure 1. Treatment Effect According to FCGR Polymorphism
ACT indicates doxorubicin and cyclophosphamide followed by paclitaxel; ACTH, 

doxorubicin and cyclophosphamide followed by paclitaxel with the addition of 1 year of 

weekly trastuzumab; DFS, disease-free survival; HR, hazard ratio; M, multivariable; U, 

univariable.

Gavin et al. Page 13

JAMA Oncol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Cox Models Examining Treatment Affect According to Genotype
The box size is proportional to the precision. ACTH, doxorubicin and cyclophosphamide 

followed by paclitaxel with the addition of 1 year of weekly trastuzumab; HR, hazard ratio.
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Figure 3. Combined Genotypes
ACT indicates doxorubicin and cyclophosphamide followed by paclitaxel; ACTH, 

doxorubicin and cyclophosphamide followed by paclitaxel with the addition of 1 year of 

weekly trastuzumab; DFS, disease-free survival; HR, hazard ratio; M, multivariable; U, 

univariable.
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