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Abstract

Non-Small Cell Lung Cancer (NSCLC) demonstrates remarkable molecular diversity. With the 

completion of The Cancer Genome Atlas (TCGA), there is opportunity for systematic analyses of 

the entire TCGA NSCLC cohort, including comparisons and contrasts between different disease 

subsets. On the basis of multidimensional and comprehensive molecular characterization 

(including DNA methylation and copy, and RNA and protein expression), 1023 NSCLC cases—

519 from TCGA adenocarcinoma (AD) project and 504 from TCGA squamous cell (SQCC) 

project—were classified using a “cluster-of-clusters” analytic approach. Patterns from TCGA 

NSCLC subsets were examined in independent external databases, including the PROSPECT 

(Profiling of Resistance patterns and Oncogenic Signaling Pathways in Evaluation of Cancers of 

the Thorax) NSCLC dataset. Nine genomic subtypes of NSCLC were identified, three within 

SQCC and six within AD. SQCC subtypes were associated with transcriptional targets of SOX2 or 

p63. One predominately AD subtype (with a large proportion of SQCC) shared molecular features 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence to: Chad J. Creighton (creighto@bcm.edu).
*co-first authors

Competing Financial Interests statement: The authors have no competing interests.

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2017 April 24.

Published in final edited form as:
Oncogene. 2017 March ; 36(10): 1384–1393. doi:10.1038/onc.2016.303.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with neuroendocrine tumors. Two AD subtypes manifested a CpG island methylator phenotype 

(CIMP). Three AD subtypes showed high p38 and mTOR pathway activation. AD subtypes 

associated with low differentiation showed relatively worse prognosis. SQCC subtypes and two of 

the AD subtypes expressed cancer-testis antigen genes, while three AD subtypes expressed several 

immune checkpoint genes including PDL1 and PDL2, corresponding with patterns of greater 

immune cell infiltration. Subtype associations for several immune-related markers—including 

PD1, PDL1, CD3, and CD8—were confirmed in the PROSPECT cohort using 

immunohistochemistry. NSCLC molecular subtypes have therapeutic implications and lend 

support to a personalized approach to NSCLC management based on molecular characterization.

INTRODUCTION

Non-small-cell lung cancers (NSCLCs) represent a heterogeneous set of diseases with 

diverse pathological, genetic, and cellular features, with the two predominant NSCLC 

histological phenotypes being adenocarcinoma (AD, representing ~50% of cases) and 

squamous cell carcinoma (SQCC, ~40%)1. Lung ADs often have glandular histology and are 

believed to originate from the distal lung, while SQCCs are characterized by squamous 

differentiation, similar to the pseudostratified columnar epithelium lining the trachea and 

upper airways1. ADs and SQCCs frequently differ in their responses to therapy2. Gene 

expression profiling also reveals widespread molecular differences between AD and SQCC, 

as well as distinct disease subsets existing within AD or SQCC that may transcend current 

pathological classifications3–7.

Recently, The Cancer Genome Atlas (TCGA) carried out separate studies of lung AD and 

lung SQCC—to comprehensively profile each of these diseases at the molecular level, 

uncovering insights into the molecular basis of each subtype of NSCLC6, 7. Although for a 

large proportion of TCGA lung cancer cases an identifiable driver oncogene was not found, 

transcriptional and epigenetic profiling revealed disease subtypes thought to reflect the 

downstream consequences of oncogenic processes7. Less than half of the >1000 lung 

cancers cases now represented in TCGA were analyzed in the first TCGA-led lung cancer 

studies, with additional cases having data generated subsequent to the earlier studies. With 

the recent conclusion of the data generation phase of TCGA, there is opportunity for 

systematic analyses of the entire TCGA NSCLC cohort, allowing for comparisons and 

contrasts to be made between the different diseases, as well as offering a much larger dataset 

for increased power in detecting significant molecular patterns. In addition, molecular 

profiling datasets external to TCGA lung datasets can be leveraged, in order to bring 

meaningful context or validation to the diverse molecular patterns represented by the various 

NSCLC subtypes.

METHODS

TCGA Datasets

Multiplatform genomics datasets were generated by TCGA Research Network (http://

cancergenome.nih.gov/). In total, 1023 NSCLC cases assayed on at least three different 

molecular profiling platforms (RNA sequencing, DNA methylation arrays, miRNA 

Chen et al. Page 2

Oncogene. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/


sequencing, Affymetrix SNP arrays, whole exome sequencing, Reverse Phase Protein 

Arrays) were included in the analysis. Sequence files are available from CGHub (https://

cghub.ucsc.edu/). All other molecular, clinical and pathological data are available through 

the TCGA Data Commons (https://gdc.nci.nih.gov/). Informed consent was obtained from 

all subjects6, 7. For TCGA cohort, the median follow-up time for alive patients was 1.9 years 

(compared to 4.1 years for PROSPECT cohort), which was found to be insufficient for 

survival analyses.

Multiplatform-based subtype discovery

As described in Supplementary Methods, NSCLC cases were subtyped according to each of 

the individual data platforms for DNA methylation, DNA copy alteration, mRNA 

expression, miRNA expression, and protein expression. Subtypes defined from each 

platform were coded into a series of indicator variables for each subtype, with the matrix of 

1 and 0s then clustered by a Cluster of Cluster Analysis (COCA)8, 9 to define integrated 

subtypes. For the k=7 COCA subtype solution, we defined the top differential genes 

associated with each subtype; we first computed the two-sided t-test for each gene, 

comparing each subtype with the rest of the tumors, then selected the top 100 genes with the 

lowest p-value for each subtype.

Immune Cell Signature Analysis

To computationally infer the infiltration level of specific immune cell types using RNA-seq 

data, we used a set of 501 genes specifically overexpressed in one of 24 immune cell types 

from Bindea et al.10. For scoring TCGA cancer samples for each of these immune cell 

signatures, the average of the z-normalized gene expression values (transformed to standard 

deviations from the median of the TCGA NSCLC samples) was used. In addition, samples 

were scored for expression of Antigen Presentation MHC class I (APM1) genes (HLA-

A/B/C, B2M, TAP1/2, TAPBP) and for Antigen Presentation MHC class II (APM2) genes.

Analysis of External Lung Cancer Datasets

We examined two external gene expression profiling datasets of lung cancers11, 12, 

classifying each external tumor profile by genomic subtype as defined by TCGA data. Genes 

within each dataset were logged and centered. For each subtype, a classifier based on the top 

700 COCA-associated mRNAs was constructed as follows: for each gene, the associated 

value for the classifier was either “0” if the gene was not in the 100 mRNAs most specific to 

the subtype, “1” if the gene was relatively higher in the subtype and “−1” if the gene was 

relatively lower. For each profile in the external dataset, the Pearson’s correlation with each 

of the seven subtype-specific classifiers was calculated, and the highest correlation was used 

to select the genomic subtype to assign to the profile.

Immunohistochemistry

Four-micron-thick sequential histological tumor sections were obtained from a 

representative formalin-fixed, paraffin-embedded tumor block and used for 

immunohistochemistry (IHC) analysis. IHC was performed using an automated staining 

system as described in the Supplementary Methods. To measure the IHC expression of the 
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different markers and quantify the inflammatory cells expressing, the slides, containing 

whole tumor sections, were digitally scanned at ×200 magnification. The images were 

visualized and analyzed as described in Supplementary Methods.

RESULTS

Multiplatform analysis uncovers nine major genomic subtypes of NSCLC

TCGA collected a total of 1023 primary NSCLC specimens (Table S1), for which data were 

generated for at least three of the following molecular platforms: whole exome sequencing, 

DNA copy by SNP array, RNA-seq, microRNA-seq, DNA methylation array, and Reverse 

Phase Protein Array (RPPA). These specimens were divided between two TCGA-sponsored 

projects: “LUSC”, corresponding to the study of lung SQCC, and “LUAD”, corresponding 

to lung AD. Of the 1023 cases, 179 LUSC cases and 230 LUAD cases were analyzed 

previously by TCGA in two separate studies focusing respectively on lung SQCC6 and lung 

AD7.

In this present study, the 1023 TCGA NSCLC cases were subtyped according to each of the 

data platforms for DNA methylation, DNA copy alteration, mRNA expression, miRNA 

expression, and protein expression, with the various subtype calls for each sample then being 

consolidated to define multiplatform-based molecular subtypes. Each individual platform 

was used to define six different subtypes of NSCLC spanning LUAD and LUSC projects 

(Figure S1a), consistent with previous analyses that indicated on the order of three to four 

molecular subtypes existed within each of lung SQCC and lung AD disease groups6, 7. To 

provide an integrated level of assessment of NSCLC molecular-based subtypes, subtype 

calls made by the different molecular platforms were combined by a “cluster of clusters 

analysis” (COCA)8 approach (Figure 1a) to form seven different integrated subtypes 

(Figures S1b–S1d). For each of the COCA-based subtypes, the top 100 genes most 

differentially expressed in the given subtype versus the rest of the tumors were identified 

(Figure 1b and Table S2). On the basis of DNA methylation (Figure 1c), two of the COCA-

based subtypes were each further divided into two separate subtypes with similar expression 

patterns but distinctive methylation patterns, resulting in a total of nine molecular-based 

NSCLC subtypes (Table 1).

The nine genomic subtypes of TCGA lung cancers included: three different subtypes of 

predominantly lung SQCC cases—designated here as “SQ.1” (n=259), “SQ.2a” (n=257), 

and “SQ.2b” (n=123)—and six different subtypes of predominantly lung AD cases—“AD.1” 

(n=128), “AD.2” (n=128), “AD.3” (n=106), “AD.4” (n=121), “AD.5a” (n=43) and “AD.5b” 

(n=74). Overall, the genomic subtypes segregated according to TCGA project designation 

(LUSC versus LUAD), though notably the AD.1 subtype consisted of 32% LUSC cases. 

Well-established gene expression markers distinguishing lung SQCC from lung AD1—

including NKX2-1, KRT7, KRT5, KRT6A, SOX2, and TP63—correlated with the assumed 

histologic subtype in TCGA cohort (Figure 1b). SQ.2a and SQ.2b showed similar global 

mRNA expression patterns but distinctive DNA methylation patterns, as was also the case 

for AD.5a and AD.5b. Interestingly, when examining a set of probes in CpG island promoter 

regions used previously by TCGA to identify “CIMP” lung AD cases7 (a different set of 
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probes than the ones used in the COCA subtyping), CIMP patterns were found exclusively 

within the AD.2 and AD.5a subtypes (Figure 1c).

Individual molecular features were informative in distinguishing the NSCLC genomic 

subtypes from each other (Figure 1d). Copy gain of SOX2 associated with lung SQCC-

associated subtypes, but events were more frequent in SQ.2a/SQ.2b tumors compared to SQ.

1 tumors, with SOX2 expression also higher in SQ.2a/SQ.2b. Within AD-associated 

subtypes, KRAS mutations were most frequent in AD.2 and AD.5b, and STK11 mutations 

were most frequent in AD.1 and AD.5b (Figures 1d and S2a). TP53 mutations coupled with 

lower expression of associated targets were most frequently observed in SQ.2a, SQ.2b, AD.

1, AD.2, and AD.3 subtypes (Figures 1d, S2a, and S2b). Compared to other lung AD 

subtypes, AD.5a and AD.5b had the highest proportion of patients who were never-smokers 

or long-term non-smokers (Figures 1d and S2c), as well as the highest proportion of patients 

with low manifestation of a mutation signature of C>A transversions related to smoking 

(Figure S2c). Of 14 LUAD cases found by pathology re-review to share histology features 

with Large Cell Neuroendocrine Cancers (LCNEC), 9 associated with AD.1 subtype, a 

significant enrichment (p<0.00001, one-sided Fisher’s exact test)(Figures 1d and S2a).

The nine genomic subtypes made across the entire TCGA lung cancer cohort showed high 

concordance with other subtype designations, previously called for a subset of these cases on 

the basis of gene expression or multi-platform analysis focusing on either SQCC or AD 

(Figures 1d and S2a). The LUSC gene expression-based subtypes of basal/secretory, 

classical, and primitive, showed significant correspondence to our SQ.1, SQ.2a/SQ.2b, and 

SQ.2b/AD.1 subtypes, respectively. The LUAD gene expression-based subtypes of 

proximal-proliferative, proximal inflammatory, and terminal respiratory unit, corresponded 

to our AD.1, AD.2/AD.3, and AD.4/AD.5a/AD.5b subtypes, respectively. In addition, our 

six AD-associated genomic subtypes each corresponded to one of six integrated subtypes by 

iCluster13 analysis on 230 LUAD cases7.

Distinctive biology and pathway-level differences represented by NSCLC genomic 
subtypes

Gene transcription signatures of specific pathways and processes were examined across the 

genomic subtypes, where each NSCLC profile was scored for the relative degree of 

manifestation of a given signature (Figure S2b). Cell cycle genes were more highly 

expressed in SQCC-associated subtypes relative to AD-associated subtypes, with expression 

lowest in AD.4 and AD.5a/AD.5b. Markers of epithelial-mesenchymal transition (EMT) 

were highest in SQ.1 and lowest in AD.5a/AD.5b. Gene targets of both SOX2 and p6314 

were higher in lung SQCC versus AD, while KRAS signature15 was higher in lung AD 

versus SQCC. A gene signature of more differentiated versus less differentiated lung AD4 

indicated that cellular differentiation was highest in AD.4 and AD5a/AD.5b, intermediate in 

AD.2 and AD.3, and lowest in AD.1 as well as in SQCC (Figure 1d).

Molecular differences between the NSCLC genomic subtypes would provide clues as to the 

diverse biology underlying these subtypes. To provide further context to the widespread 

gene expression differences observed, we examined the top 700 differential mRNAs (Figure 

1b) in normal tissues, using a public expression dataset from the Fantom consortium of 889 
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profiles representing various human cell and tissue specimens16 (Figures 2a and S3a). When 

examining the top 700 differential mRNAs associated with NSCLC genomic subtypes (from 

Figure 1b), SQ.1 expression patterns associated with those of normal “squamous” tissues 

(including epidermis, oral, nasal, pharyngeal, eosophagus, broncial, urothelial, and cervical 

tissues)(Figures 2b and S3b), all having relatively higher SOX2 and TP63 expression, while 

both SQ2a/b and AD.1 expression patterns associated with tissues related to the central 

nervous system (Figure 2b and S3b), which had high expression of SOX2 but not TP63. AD.

4 expression patterns associated with those of immune cell types and tissues involved in the 

immune system. Similar findings were made using the Fantom dataset of 389 cell and tissue 

profiles from mouse specimens (Figures 2b, S3c, and S3d).

We extended the above approach to the analysis of the full TCGA pan-cancer cohort of over 

10,000 expression profiles from 30 different cancer types (Figures S4a and 2c). When 

comparing the NSCLC expression profiles with those of the other pan-cancer types, we 

could observe many commonalities shared by specific NSCLC subtypes with other cancer 

types from different organs. As expected, lung SQCC cancers associated with other cancer 

types (including head and neck, bladder, cervical, and esophageal cancers) forming part of a 

multi-tissue squamous molecular subtype8, typified by high expression of both SOX2 and 

TP63. The AD.1 lung subtype shared similar patterns with many other cancer types, 

including colorectal, stomach, pancreatic, breast, prostate, liver, brain, testicular, ovarian, 

and uterine. The AD.4 lung subtype shared similar patterns with thymoma, leukemia, and b-

cell lymphoma, as well as with distinct subsets of other cancer types including clear cell 

renal, breast, and thyroid. The AD.5 lung subtype shared similar patterns with colorectal, 

stomach, pancreatic, renal, and liver cancer types. Overall, results from the respective 

Fantom and TCGA pan-cancer expression datasets revealed some common trends, which 

included AD.1 expression patterns associating with tissues related to the CNS (potentially 

relating to the LCNECs in this subtype) and AD.4 expression patterns associating with those 

of immune cell types and tissues involved in the immune system (Figures S4b and S4c).

Based on analysis of protein expression, pathways differentially altered across the genomic 

subtypes included PI3K/AKT, mTOR, and MAP kinase (Figure S5). The SQCC-associated 

subtypes had more PTEN gene copy loss and decreased protein levels, while the AD-

associated subtypes tended to have more STK11 somatic mutation events, copy loss, and 

decreased STK11/LKB1 protein levels. Both phospholevels of mTOR and a phosphoprotein 

signature of the MAP kinase pathway were highest in the AD.4 and AD.5a/AD.5b subtypes, 

as compared to all other subtypes (Figure 3a). Differences between AD.4/AD.5a/AD.5b 

subtypes versus AD.1/AD.2 subtypes were also apparent when examining individual key 

proteins in the context of PI3K/AKT, mTOR, and MAP kinase pathways (Figure 3b). While 

AD.4/AD.5a/AD.5b cases had relatively higher PTEN levels corresponding with low 

phospho-AKT, low STK11/LKB1 could presumably account for the higher levels of 

phospho-mTOR, phospho-S6K, and phospho-S6 observed in AD.4/AD.5a/AD.5b versus 

SQCC. Interestingly, phosphorylation of 4EBP1 was anti-correlated with that of mTOR 

across the cancers, suggestive of mTOR-independent 4E-BP1 phosphorylation17 or 

activation of target specific phosphatases.
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Differential immune profiles across NSCLC subtypes

Given the above associations between the immune system and the genes most highly 

expressed in AD.4 NSCLC subtype (which genes were highest in AD.4 but also relatively 

higher in other subtypes including AD.2 and AD.3), we surveyed the TCGA NSCLC cases 

for expression of genes involved in immune checkpoint pathways (Figure 4a). Analysis of 

gene expression signatures10 suggested that levels of immune cell infiltrates were highest in 

AD.2, AD.3, AD.4, SQ.1, and SQ.2a subtypes. Signatures of T cells in particular were 

highest in the above NSCLC subtypes while relatively lower in most other pan-cancer types 

surveyed (Figure 4b). AD.2, AD.3, and AD.4 NSCLC subtypes all had relatively higher 

expression of several genes representing potential targets for immunotherapy (Figures 4a, 

4b, and 4c), including PDCD1 (PD1), CD247 (CD3), CD274 (PDL1), PDCD1LG2 (PDL2), 

CTLA4 (CD152), TNFRSF9 (CD137), TNFRSF4 (CD134), and TLR9. Lung SQCC-

associated subtypes and AD.1 and AD.3 subtypes, on the other hand, had elevated 

expression of several genes encoding cancer-testis antigens, including CTAG1B (NY-

ESO-1), MAGEA4, and SAGE1 (Figures 4a, 4d, and S6a). Interestingly, when considering 

the numbers of predicted neoepitopes found for each NSCLC case18, AD.4 (which had 

shown the strongest expression pattern of immune infiltrates, Figure 2a) had the lowest 

neoepitope count of the subtypes (Figures 4a and S6b), where neoepitope counts across 

tumors were highly correlated with total mutation rate (Figure S6c, Spearman’s r=0.69).

The genomic subtype associations involving immune checkpoint pathway, as observed in 

TCGA datasets, were also examined in an external NSCLC patient cohort from MD 

Anderson Cancer Center, known as the Profiling of Resistance patterns and Oncogenic 

Signaling Pathways in Evaluation of Cancers of the Thorax (PROSPECT) cohort. Using the 

gene expression dataset from PROSPECT of 275 NSCLC cases12 (primarily SQCC and AD 

cases), each PROSPECT tumor profile was classified by genomic subtype as defined by 

TCGA data (Figure 5a), where the top set of 700 mRNAs distinguishing between our seven 

COCA subtypes (Figure 1b) was used as the classifier (with both SQ.2a/SQ.2b and AD.

5a/AD.5b each being grouped together by virtue of their showing similar global expression 

patterns). Interestingly, AD.1 cases in PROSPECT were found enriched for LCNEC cases 

(p=0.001, one-sided Fisher’s exact test), consistent with observations in TCGA cohort. In 

the PROSPECT cohort, significant survival differences between the TCGA-based COCA 

subtypes could be observed (Figure 5b, p=0.005, log-rank). In a compendium of expression 

datasets representing 1403 lung AD cases11, profiles were also classified according to 

TCGA-based lung AD subtype (Figure S7) with significant differences in patient survival 

being observed (Figure 5c, p<1E-10); in particular, lung AD subtypes associated with poorer 

AD differentiation by gene signature (AD.1/AD.2/AD.3, Figure 1d) all showed worse 

prognosis. Several immune-related markers were examined in the PROSPECT cohort using 

immunohistochemistry methods (n=153 cases), which could distinguish cancer-specific 

from lymphocyte-specific expression patterns within their respective tumor compartments. 

Cancer-derived PDL1, lymphocyte-derived PD1, and markers of T cells including CD3 and 

CD8 were all elevated in the AD.2/AD.3/AD.4 subtypes relative to the AD.1/AD.5a/AD.5b 

subtypes (Figure 5d and Figure S8 and Figure S9), consistent with observations in TCGA 

cohort (Figure 4a). In contrast to TCGA cohort, PROSPECT cohort did not show evidence 

for high immune cell infiltrates within SQ-associated subtypes (Figures 5d and S9)
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DISCUSSION

Using an extended data set, including samples not present in the initial TCGA marker 

studies, we identified nine major genomic subtypes of NSCLC present in TCGA cohort, 

including the following: three subtypes (SQ.1, SQ.2a, SQ.2b) associated with lung SQCC, 

two of which showed relatively higher SOX2 copy gain and expression; one subtype (AD.1) 

of predominantly AD cases sharing molecular features with neuroendocrine tumors and 

neuronal-related tissues; two AD-associated subtypes (AD.2, AD.5b) manifesting a CIMP 

phenotype by DNA methylation; one AD-associated subtype characterized by the highest 

expression of genes associated with immune cell infiltrates. Three of the six AD-associated 

subtypes (AD.4, AD.5a, AD.5b) were further characterized by patterns of higher 

differentiation, better patient survival, and increased p38 and mTOR signaling. Three AD-

associated subtypes (AD.2, AD.3, AD.4) expressed several immune checkpoint genes 

commonly associated with tumor cells or interacting T cells, including PD1, PDL1, PDL2, 

CD3, and CTLA4. Expression of numerous cancer-testis antigen genes, also relevant to 

immune response pathway, was observed in five of the nine subtypes (SQ.1, SQ.2a, SQ.2b, 

AD.1, AD.3).

From the above, particularly notable findings by our study would include the following: (1) 

the AD.1 subtype, of mixed histologies, that shares molecular features with neuroendocrine 

tumors; (2) protein activation of p38/MAPK and mTOR pathways within a subset of lung 

AD as compared to other AD and SQCC; (3) molecular signatures of immune cells being 

manifested within specific subtypes of NSCLC (which patterns have associations differing 

from those of overall mutation load or neoepitope count); (4) differences between molecular 

subtypes in terms of the expression of cancer-testis antigens versus PDL1 pathway members. 

Regarding the AD.1 subtype, which includes large-cell neuroendocrine tumors that are 

known to have a poor prognosis and respond to platinum-based drugs similar to those used 

for small cell lung cancer19, molecular classification could potentially be used to identify 

AD.1 subtype tumors for directing optimal treatment, particularly as they appear to represent 

an “immune ignorant” group unlikely to respond to immune checkpoint inhibitors.

Importantly, key patterns distinguishing the NSCLC genomic subtypes, as first observed in 

TCGA data, were confirmed using data from the independent PROSPECT NSCLC cohort. 

In particular, subtype associations for several immune-related markers—including PD1, 

PDL1, CD3, and CD8—were validated in the PROSPECT cohort using 

immunohistochemistry. The immune checkpoint pathway has been shown to play a crucial 

role in mediating immune tolerance in NSCLC, with blocking antibody agents against this 

pathway (e.g. agents against PD1/PDL1) producing durable responses20, and where 

expression of checkpoint markers correlates with treatment efficacy21. Alternative markers 

for checkpoint blockade response—including T-cell immunohistochemistry, other 

immunologic markers, T-cell receptor clonality, and somatic mutational burden—are also 

being considered22, though notably our AD.4 subtype showed evidence of immune 

checkpoint pathway activation but with lower mutation burden. Numerous cancer testis 

antigens, expressed in some NSCLC subtypes not expressing immune checkpoint genes, 

also represent potential therapeutic targets as well as early diagnostic tools23. The p38/MAP 

Kinase and PI3K/AKT/mTOR oncogenic pathways represent another therapeutic target in 
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NSCLC; as the two pathways are tightly interconnected, showing higher activation in the 

same NSCLC disease subsets, targeting both pathways with combinations of signaling 

inhibitors might result in a more efficient anti-tumor effect over the use of single pathway 

inhibitors24. Taken together, our results would suggest that distinct subsets of NSCLC as 

defined using genomics may show better responses to specific targeted therapies (Table 1).

In this study, we find high concordance between the molecular-based view and the 

histology-based view of NSCLC, though the former encompasses biology as well as 

histology. The genomic-based NSCLC subtypes reflect the influence of cell of origin, 

somatic alterations, and microenvironment in the molecular profile of a cancer. While 

genomic alterations represent one approach to annotating molecular subtypes in terms of 

altered cancer pathways6–8, analysis of external molecular datasets from systems orthogonal 

to NSCLC, as carried out in our study using Fantom normal tissue and TCGA pan-cancer 

data (Figure 2), may provide additional insights as the data are examined in the context of 

NSCLC. Notably, gene mutation information alone may be insufficient to predict pathway-

level alterations and microenvironmental influences as identified through integrated 

molecular analysis. While direct use of DNA sequencing to detect actionable mutations (e.g 

ALK, EGFR) will remain an avenue for personalized medicine, future work could evaluate 

individual markers (Table S2) of our NSCLC subtypes, which could provide additional 

information in the clinical setting from the standpoint of prognosis, prediction of therapy 

responses, and targets for therapy. The entire TCGA NSCLC dataset as presented here, now 

with more extensive molecular annotation of the cases from the various data platforms 

involved (Table S1), will continue to serve as a resource for future studies to better 

understand the molecular basis of NSCLC subtypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomic subtypes of NSCLC in TCGA cohort by analysis of multiple data platforms
(a) Integration of subtype classifications from five “omic” data platforms identified nine 

major lung cancer groups represented in TCGA (n=1023 cases). Three of these subtypes—

SQ.1, SQ.2a, SQ.2b—are enriched for lung Squamous Cell Carcinoma (SQCC) cases; five 

other subtypes—AD.1, AD.2, AD.3, AD.4, AD.5a, AD.5b—are enriched for lung 

Adenocarcinoma (AD) cases. The heat map displays the subtypes defined independently by 

DNA methylation (pink), Chromosomal copy alteration (black), mRNA expression (red), 

microRNA expression (blue), and protein (RPPA) expression (green); each row in this heat 
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map denotes membership within a specific subtype defined by the indicated platform. (b) 
Differential gene expression patterns, with the first heat map representing a set of genes that 

help to distinguish between the nine subtypes (for each subtype, showing the top 100 genes 

most differentially in the given subtype versus the rest of the tumors, with SQ.2a and SQ.2b 

showing homogeneous global expression patterns but differing methylation patterns, as is 

also the case with AD.5a and AD.5b), and with the second heat map representing well-

established markers distinguishing lung SQCC from lung AD. (c) DNA methylation 

patterns, with the first heat map representing the top 2000 genomic loci with the highest 

variability in DNA methylation patterns across tumors, and with the second heat map 

representing probes in CpG island promoter regions used previously to identify CIMP lung 

AD cases7. (d) Specific copy number and nonsilent somatic mutation features, 

transcriptional signature of high AD differentiation4, patient stage, estimated tumor sample 

purity25, patient smoking status (NS, lifelong never-smokers; LFS, longer-term former 

smokers greater than 15 years; SFS, shorter-term former smokers; CS, current smokers), 

mutation rate, mRNA expression-based subtype6, 7 (LUSC: C, classical; P, primitive; B, 

basal; S, secretory; LUAD: PP, Proximal proliferative; PI, Proximal inflammatory; TRU, 

Terminal respiratory unit), LCNEC (large cell neuroendocrine carcinoma) cases, and TCGA 

project designation. See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Gene signatures distinguishing NSCLC genomic subtypes are manifested in specific 
tissue types or pan-cancer subsets
(a) The top set of 700 mRNAs distinguishing between NSCLC genomic subtypes (from 

Figure 1b) were examined in the Fantom consortium expression dataset of various cell types 

or tissues from human specimens (n=889 profiles)16. For these 700 mRNAs, the 

corresponding differential patterns within NSCLC are shown off to the left. Regions sharing 

similarity with one or more NSCLC subtype-specific signatures are highlighted. 

Membership of the Fantom profiles in general categories of “immune” (immune cell types or 

blood or related tissues), “CNS” (related to central nervous system including brain), or 

“squamous” (including bronchial, trachea, oral regions, throat and esophagus regions, nasal 

regions, urothelial, cervix, sebocyte, keratin/skin/epidermis) is indicated. (b) Average 

expression similarity correlation (Pearson’s t-statistic, based on genes in part a; pink, 

positive or similar; blue, negative or dissimilar) between NSCLC molecular subtypes (rows) 

and fantom cell types or tissues in selected categories (columns). Results shown for both 

fantom human and fantom mouse datasets. (c) Average expression similarity correlation 

(Pearson’s t-statistic, based on genes in part a) between NSCLC molecular subtypes (rows) 

and non-lung cancer types in TCGA. Cancer type denoted by TCGA project designation 

(BLCA, bladder; CESC, cervical; DLBC, diffuse large B-cell lymphoma; ESCA, 

esophageal; GBM, glioblastoma; HNSC, head and neck; LAML, leukemia; LGG, lower 

grade glioma; PCPG, pheochromocytoma and paraganglioma; THYM, thymoma). COCA.2 
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and SQ.copy, associated with “squamous” pan-cancer subtype by Hoadley et al.8. See also 

Figures S3 and S4.
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Figure 3. Differential activity of PI3K/AKT/MTOR and MAPK pathways across NSCLC 
genomic subtypes
(a) Differential phospho-mTOR (top) and MAP Kinase protein signaling (bottom) among 

subtypes (by RPPA, average of phospho-SHC or pSHC, pRAF, pMEK, pERK, pSRK, 

pYB1, pP38, pJNK, and pJUN). P-values for indicated comparisons by t-test on log-

transformed data. Box plots represent 5%, 25%, 50%, 75%, and 95%. (b) Diagram of 

PI3K/AKT/MTOR and MAPK pathways, with differential protein expression patterns 

represented, comparing tumors in groups AD.4, AD.5a, or AD.5b with tumors in groups SQ.
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1, SQ.2a, or SQ.2b (red, significantly higher in AD.4/5ab). P-values by t-test on log-

transformed data. See also Figure S5.
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Figure 4. Immune checkpoint-related differences across NSCLC genomic subtypes
(a) Heat maps of differential expression, for genes encoding immunotherapeutic targets (top 

panels) and for gene expression-based signatures of immune cell infiltrates (bottom panels), 

across TCGA lung cancers, normal adjacent lung samples, kidney clear cell cases (KIRC), 

melanoma cases (SKCM), and cases from selected other cancer types (THCA, thyroid; 

BRCA, breast; HNSC, head and neck; PRAD, prostate; CRC, colorectal; BLCA, bladder; 

OV, ovarian; LIHC, liver; LGG, lower grade glioma; GBM, glioblastoma). TREG cells, 

regulatory T cells; TGD cells, T gamma delta cells; Tcm cells, T central memory cells; Tem 
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cells, T effector memory cells; Tfh cells, T follicular helper cells; NK cells, natural killer 

cells; DC, dendritic cells; iDC, immature DCs; aDC, activated DCs; P-DC, plasmacytoid 

DCs; APM1/APM2, antigen presentation on MHC class I/class II, respectively. Neoepitope 

count18 per NSCLC sample is also indicated. (b) Differential mRNA expression of T cell-

associated signature (left) and immune checkpoint target PDCD1 (PD1, right, normalized 

values) among the NSCLC genomic subtypes, normal adjacent lung tissue, and non-lung 

cancer types. Box plot represents 5%, 25%, 50%, 75%, and 95%. P-values for indicated 

comparisons by t-test. (c) Diagram of immune checkpoint pathway (featuring interactions 

between T cells and antigen-presenting cells, including tumor cells), with differential 

expression patterns represented, comparing tumors in groups AD.2, AD.3, or AD.4 with 

tumors in groups AD.1, AD.5a, or AD.5b (red, significantly higher in AD.2/3/4). P-values 

by t-test. (d) Diagram of immune checkpoint pathway, comparing tumors in groups AD.2, 

AD.4, AD.5a, or AD.5b with tumors in groups SQ.1, SQ.2a, or SQ.2b (red, significantly 

higher in SQ.1/SQ.2a/SQ.2b). P-values by t-test. See also Figure S6.
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Figure 5. Observation of patterns associated with TCGA NSCLC genomic subsets in external 
NSCLC molecular datasets
(a) Gene expression profiles in the PROSPECT NSCLC cohort (n=247 cases)12 were 

classified according to TCGA NSCLC genomic subtype. Expression patterns for the top set 

of 700 mRNAs distinguishing between the seven COCA-based TCGA NSCLC genomic 

subtypes (from Figure 1b) are shown for both TCGA and PROSPECT datasets. Regions in 

the PROSPECT sample profiles sharing similarity with TCGA lung subtype-specific 

signature pattern are highlighted. (b,c) Associated differences in patient overall survival 
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among TCGA-associated genomic subtypes, in PROSPECT cohort (part b) and in an 

external “compendium” dataset (part c) of 11 published expression profiling datasets for 

human lung AD (right, n=1403 cases)11. P-values by Log-rank test. (d) Differential patterns 

by genomic subtype for several immune-related markers—including cancer-specific PDL1 

(top left), lymphocyte-specific and intratumoral PD1 (top right), lymphocyte-specific and 

intratumoral CD3 (bottom left), and lymphocyte-specific and intratumoral CD8 (bottom 

right)—were examined in the PROSPECT cohort using immunohistochemistry methods 

(n=153 cases, 110 AD and 43 SQCC), which could distinguish cancer-specific from 

lymphocyte-specific expression patterns within their respective tumor compartments. Box 

plots represent 5%, 25%, 50%, 75%, and 95%. P-values by Mann-Whitney U-test 

comparing AD.2/AD.3/AD.4 tumors with AD.1/AD.5a/AD.5b tumors. See also Figures S7 

and S8 and S9.
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Table 1

Multiplatform-based genomic subtypes of NSCLC in TCGA cohort.

Subtype AD/SQCC Description Associated mRNA subtypes Therapeutic implications

SQ.1 SQCC high SOX2 (but lower compared to SQ.
2a/SQ.2b); CT antigen expression

B, S immunotherapy (CT)

SQ.2a SQCC higher SOX2 compared to SQ.1; CT antigen 
expression; better OS association

C immunotherapy (CT)

SQ.2b SQCC higher SOX2 compared to SQ.1; distinct 
methylation patterns from those of SQ.2a; 
CT antigen expression; better OS 
association

C, P immunotherapy (CT)

AD.1 mixed (32% LUSC) LCNEC-associated; poor AD 
differentiation; CT antigen expression

P, PP platinum-based drugs; 
immunotherapy (CT)

AD.2 AD CIMP; high immune cell infiltrates; immune 
checkpoint pathway activation

PI immune checkpoint

AD.3 AD high immune cell infiltrates; CT antigen 
expression; immune checkpoint pathway 
activation

PI immunotherapy (CT); 
immune checkpoint

AD.4 AD high immune cell infiltrates; immune 
checkpoint pathway activation; lower 
neoepitope count and mutation rate; better 
OS association

TRU p38; mTOR; immune 
checkpoint

AD.5a AD high proportion of never-smoker/long-term 
non-smoker patients; lower mutation rate; 
high p38 and mTOR pathway activation; 
better OS association

TRU p38; mTOR

AD.5b AD CIMP; high proportion of never-smoker/
long-term non-smoker patients; lower 
mutation rate; high p38 and mTOR pathway 
activation; better OS association

PP, TRU p38; mTOR

CIMP, CpG island methylator phenotype; CT, cancer-testis; LCNEC, large cell neuroendocrine carcinoma; OS, overall survival; LUAD, TCGA 
lung AD project; LUSC, TCGA lung SQCC project. Associated mRNA subtypes (Figures 1d and S2a): C, LUSC classical; P, LUSC primitive; B, 
LUSC basal; S, LUSC secretory; PP, LUAD proximal proliferative; PI, LUAD proximal inflammatory; TRU, LUAD terminal respiratory unit.
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