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Abstract

Purpose—Characterizing the relation between the applied gradient sequences and the measured 

diffusion MRI signal is important for estimating the time-dependent diffusivity, which provides 

important information about the microscopic tissue structure.

Theory and Methods—In this article, we extend the classical theory of Stepišnik for measuring 

time-dependent diffusivity under the Gaussian phase approximation. In particular, we derive three 

novel expressions which represent the diffusion MRI signal in terms of the mean-squared 

displacement, the instantaneous diffusivity, and the velocity autocorrelation function. We present 

the explicit signal expressions for the case of single diffusion encoding and oscillating gradient 

spin-echo sequences. Additionally, we also propose three different models to represent time-

varying diffusivity and test them using Monte-Carlo simulations and in vivo human brain data.

Results—The time-varying diffusivities are able to distinguish the synthetic structures in the 

Monte-Carlo simulations. There is also strong statistical evidence about time-varying diffusivity 

from the in vivo human data set.

Conclusion—The proposed theory provides new insights into our understanding of the time-

varying diffusivity using different gradient sequences. The proposed models for representing time-

varying diffusivity can be utilized to study time-varying diffusivity using in vivo human brain 

diffusion MRI data.

Keywords

diffusion MRI; mean-squared displacement; autocorrelation function; time-varying diffusivity; 
single-diffusion encoding; oscillating gradient spin-echo

*Correspondence to: Lipeng Ning, Ph.D., Brigham and Women’s Hospital, Harvard Medical School, Boston. lning@bwh.harvard.edu. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2017 August 01.

Published in final edited form as:
Magn Reson Med. 2017 August ; 78(2): 763–774. doi:10.1002/mrm.26403.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a noninvasive technique for probing the 

microscopic structure of complex media by measuring the diffusive motion of molecules 

within the structure. In medical science, it provides useful measures to characterize the 

structure of biological tissue using in vivo measurements. Consequently, it has been widely 

used to study brain abnormalities in various mental disorders (1–3).

Q-space imaging is a commonly used approach for understanding the diffusive motion of 

water molecules (4). It involves utilizing multiple single diffusion encoding (SDE) 

sequences that have a fixed diffusion time and pulse width. Then, the ensemble average 

propagator, which is the distribution of the displacement of the water molecules (or the 

displacement of the center of mass of their trajectories (5) for finite-pulse width), can be 

computed using the inverse Fourier transform of the dMRI measurements acquired using 

different gradient strengths (6–8). From the ensemble average propagator, several diffusion 

measures, such as the pore-volume and kurtosis (8,9), can be estimated to characterize the 

tissue structure. Some recent work has been done on estimating more specific tissue 

information, such as axon diameter, using the q-space imaging technique (10–13). Due to 

the limited gradient strength of the clinical scanner, the contribution of the intra-axonal 

water signal with diameter 3 μm or smaller, is extremely small compared to the overall 

dMRI signal, which makes it difficult to accurately estimate the axon diameter (14). Note 

that, an overwhelming majority of axons in the human brain are less than 3 μm in diameter 

(15). Further, these axons undulate in a sinusoid fashion leading to further complications in 

the estimation of quantities such as axon diameter (16).

An alternative approach for characterizing tissue microstructure is to measure the time-

dependent diffusivity of water molecules. This structural disorder can be quantified by 

measuring the time-varying diffusivity, which in turn is related to the axonal packing 

structure of the tissue. The inhomogeneities and hinderances from tissue structures 

persistently alters the diffusive motion of molecules. As a result, the mean-squared 

displacement of molecules is not a linear function of diffusion time (as in free diffusion), 

leading to a nonlinear time-dependence of the apparent diffusivity. A few works have 

explored the relation between the microscopic axonal arrangement of brain tissue and the 

time-dependent diffusivity (17,18). Moreover, the time-dependent diffusivity can also be 

measured using any type of gradient sequences, such as oscillating gradients (19,20). Most 

of these latter works rely on the theoretical formulation first proposed by Stepišnik (21), 

which elucidates the relation between the time-dependent diffusivity and dMRI 

measurements. This relation was expressed in the frequency domain using the inner product 

between the spectrum of the velocity process and the spectrum of the cumulative gradient 

sequence. In this article, we extend this theory and derive three new formulations from the 

time-domain dynamics of the diffusion process and express the signal in terms of the time-

varying mean-squared displacement (or position autocorrelation function), or the 

instantaneous diffusivity and show its connection to the velocity autocorrelation function. 

These formulations provide additional insight into our understanding of the relation between 

the pulse sequences and dMRI measurements, which has not been explored to-date. The 

Ning et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



derivations presented in this work can be quite useful for designing optimal gradient 

sequences to capture important aspects of the diffusion process.

THEORY

Gaussian Phase of the Diffusing Spins

Let g(t) denote a diffusion encoding gradient sequence along a given direction scaled by the 

gyromagnetic ratio. Let xk(τ) denote the displacement of a diffusing spin k, at time τ along a 

particular direction. Then, the phase change of the spin in the presence of a gradient g(t) is 

given by: . The diffusion MRI signal contributed by this spin is then 

given by exp (−iϕk(τ)). The ensemble diffusion MRI signal is then given by: s(g, τ) = ⟨exp 

(−iϕk(τ))⟩ where ⟨·⟩ denotes the ensemble average over all diffusing spins. If ϕk(τ)’s are 

independent samples from a zero-mean Gaussian distribution with covariance denoted by 

⟨ϕ2(τ)⟩, then the signal can be approximated by:

with,

[1]

where R(t, s) := ⟨x(t)x(s)⟩ denotes the position autocorrelation function of the diffusion 

process, see for example (21).

An alternative expression for ⟨ϕ2(τ)⟩ was also introduced by Stepišnik (21) in terms of the 

velocity autocorrelation function. Let  denote the velocity 

autocorrelation function of the diffusion process, where v(t) is the velocity of the diffusing 

spin at time t. The stationarity of the diffusion process implies: , that is, it 

only depends on the time difference ∣t – s⟩. Using the following definition for a variable q:

[2]

the mean-squared phase can be written as:

[3]

Let  denote the spectrum of the velocity process, that is,  is the Fourier transform 

of . Let  denote the Fourier transform of q(t). Then, we can rewrite Eq. [3] as:

Ning et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[4]

The single integral in Eq. [4] makes it more convenient than the expressions in Eqs. [1] and 

[3] to estimate the time-varying diffusivity. Hence, it has been used to estimate short-time 

diffusivity using OGSE pulses (19,20,22) as well as long-time diffusivity using SDE 

sequences (14,23).

If the velocity spectrum  is estimated from Eq. [4], then the velocity autocorrelation 

 can be computed using inverse Fourier transform. The meansquared displacement 

R(τ) := ⟨x2(τ)⟩ can be computed using:

[5]

and the apparent diffusion coefficient can be computed using (18):

[6]

and finally, the instantaneous diffusivity is given by:

[7]

which is the half of the partial derivative of R(t).

Most works have used Eq. [4] as their main theoretical guideline for measuring the time-

varying diffusivity using different types of gradient sequences (14,19,22,23). Further, proper 

knowledge of the time-varying diffusivity can provide specific information about the 

packing structure of the underlying tissue, as described in detail in (23). However, as seen in 

Eqs. [5–7], the velocity spectrum  is indirectly related to the time-varying diffusivity 

via a sequence of transforms. In the subsequent sections, we derive novel formulations that 

represent the dMRI signal directly in terms of the mean-squared displacement and the 

instantaneous diffusivity. Thus, additional transforms become un-necessary to estimate the 

time-varying diffusivity. Additionally, these mathematical relations provide an alternative 

viewpoint for understanding the role that the applied gradients play in capturing the 

diffusion process. Existing work in (17) shows that the time-varying diffusivity at short time 

scale is quite relevant to understanding tissue structure. In the present work, we directly 

work in the timedomain, which allows to easily understand the diffusion process at short and 

long-time scales.
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Mean-Squared Displacement

From the stationary condition of the velocity process, the mean-squared displacement only 

depends on the experimental diffusion time but not on the starting time (or position) of the 

spins. Thus, we can write:

By expanding the above equation in terms of R(s, t) and R(t), we have

[8]

If g(t) satisfies the spin echo condition, that is, , then the following identities 

hold:

Thus, we can re-write Eq. [1] as follows:

[9]

After several algebraic manipulations, we arrive at one of the fundamental contributions of 

this work, directly involving the mean-squared displacement or the position autocorrelation 

function, that is, Eq. [9] is equivalent to (see Appendix for a detailed derivation):

[10]

where

[11]

is the autocorrelation function of the gradient sequence g(t) for 0 ≤ t ≤ τ and it is assumed 

that g(t) is equal to zero for t ≥ τ. We point out several interesting properties of Eq. [11]. 

First, the function c(t) is invariant to any change in the sign of g(t), that is, it has the same 

value for g(t) and −g(t). Second, the function c(t) is also invariant to the direction of time, 

that is, replacing g(t) by  will not change c(t). Moreover, the integral 

. The derivation for Eqs. [10 and 11] is provided in the Appendix.

To summarize, the dMRI signal acquired using any gradient sequence g(t), 0 ≤ t ≤ τ that 

satisfies the spinecho condition can be expressed as:
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[12]

where R(t) is the mean-squared displacement function and c(t) is the autocorrelation 

function of the gradient sequence defined in Eq. [11]. We note that, this expression provides 

a new way to understand the dMRI signal, which has not been explored before in the 

literature. Thus, c(t) is a weighting function (or sampling function) of R(t). In particular, this 

expression can be used to design appropriate gradient sequences, such that either short or 

long-time portion of R(t) is weighed in a desired manner.

Connection to Instantaneous Diffusivity

As the mean-squared displacement and the instantaneous diffusivity are related as described 

earlier, we use Eq. [10] to derive a direct relation between these quantities and the dMRI 

signal. Let C(t) denote the cumulative gradient autocorrelation function:

[13]

for 0 ≤ t ≤ τ. Using integration by parts, we rewrite Eq. [10] as follows:

[14]

[15]

[16]

Thus, the ensemble mean-squared phase is given by:

[17]

This gives an alternative way to express the dMRI signal acquired using any gradient 

sequence g(t), 0 ≤ t ≤ τ, and written in terms of the instantaneous diffusivity:

[18]
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where Dinst(t) is the instantaneous diffusivity and C(t) is the cumulative autocorrelation 

function defined in Eq. [13]. Again, the design choices of the gradient sequence directly 

influences the weighting of the time-varying instantaneous diffusivity.

Velocity Autocorrelation Function

In this section, we introduce the time-domain version of Eq. [4] to express the dMRI signal 

in terms of the velocity autocorrelation function. First, we note that using Parseval’s 

Theorem, Eq. [4] can be equivalently written as:

[19]

where b(t) is given by:

[20]

which is the autocorrelation function of the spectrum  of the q-space-trajectory, and 

q(t) = 0 for t ≥ τ due to the spin-echo condition. As b(t) = 0 for ∣t∣ > τ, the second integral in 

Eq. [19] is equal to . Thus, the velocity spectrum contributed by  with ∣t∣ 
≥ τ does not contribute to the first integral of Eq. [19] though the integral has two infinite 

bounds. Every model for  used in computing the diffusion signal leads to an 

assumption about  being unmeasurable at ∣t∣ ≥ τ.

We note that an alternative approach for estimating the velocity autocorrelation function is to 

use R(t) given by Eq. [5]. Taking the first order derivative on both sides of Eq. [5], we have

Taking the second derivative, we obtain the velocity autocorrelation  given by:

[21]

At t = 0, R(t) usually leads to a singular . For example, if R(t) = 2D0t for a constant 

diffusivity D0, the corresponding  is given by  where δ(·) denotes the Dirac 

delta function.

To summarize, the dMRI signal can also be expressed as:

[22]
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where  is the velocity autocorrelation function and b(t) is the autocorrelation function of 

the q-space-trajectory defined in Eq. [20].

Single Diffusion Encoding Sequence

In this subsection, we present the expressions for c(t), C(t), and b(t), respectively, for a SDE 

sequence with finite pulse width (see Fig. 1 for a quick figurative intuition). These 

expressions will provide insight into our understanding of the effects of pulse width and 

diffusion time in measuring time-varying diffusivity. A standard SDE sequence is given by:

where g is the maximum gradient strength and τ = Δ + δ. If Δ ≥ 2δ, then c(t) and C(t) are 

given by:

[23]

Conversely, if Δ ≤ 2δ, then c(t) and C(t) are given by:

[24]

The q-space-trajectory defined in Eq. [2] is given by:

[25]
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We note that the maximum value of q(t) is equal to gδ, which is usually referred to as the q-

value in SDE experiments. The autocorrelation function of q(t) defined in Eq. [20] is given 

by:

[26]

and b(t) = b(−t) for t<0. We note that , which is usually referred to as the 

b-value.

Figure 1 shows some representative plots for g(t), q(t), c(t), C(t), and b(t) for a SDE 

sequence. We note that the function b(t) is linear for 0 ≤ t ≤ Δ − δ.

Oscillating Gradient Spin-Echo Sequence

The formulations developed in previous sections are quite general and can be used for any 

gradient sequence. In this section, we derive some of the expressions for OGSE gradient 

pulses. The OGSE sequences are also often used for identifying tissue microstructure 

(19,22). Depending on the initial phase, sine-modulated (OGSES), and cosine-modulated 

(OGSEC) sequences can be written as follows:

[27]

where δ = 2kπ/ω for some integer k. The expressions for c(t), C(t), q(t), and b(t) for OGSES 

and OGSEC sequences were derived after several algebraic manipulations and are given in 

the Appendix. These functions are also illustrated in the upper and lower panels of Figure 2 

for the case when Δ ≥ 2δ and Δ ≤ 2δ, respectively.

The C(t) plots in Figures 1 and 2 illustrate a key difference between SDE and OGSE 

sequences. In the case when Δ ≥ 2δ, the maxima of C(t) for SDE is obtained in the interval t 
∈ [δ, Δ − δ], while it is zero for OGSE sequences. As expected, C(t) for OGSE gradients 

samples the higher frequency part of the instantaneous diffusivity compared to SDE 

sequences. Thus, it provides more information about the short-time scale diffusivity.

Note that, when Δ ≤ 2δ, c(t) samples the mean-squared displacement during the entire time 

period of Δ + δ unlike for the case when Δ ≥ 2δ. This could be an important design 

consideration when playing OGSE gradient pulses.
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Modeling the Mean-Squared Displacements

In order to estimate the mean-squared displacement of the time-varying diffusivity from a 

few measurements (typical of clinical acquisitions), it is important to design appropriate 

models for these quantities. The diffusivity in inhomogeneous environment is a 

monotonically decreasing function of time due to hinderances (14,17,18). As a result, the 

mean-squared displacement R(t) is a monotonically increasing concave function of diffusion 

time. As an example, the red and blue lines in Figure 4c illustrate the mean-squared 

displacement of diffusing particles using Monte-Carlo simulations in the extra-axonal space 

of the tissue structures shown in Figures 4a,b, respectively. More detailed information about 

the simulation is provided in the Methods. We note that, the mean-squared displacement 

converges to an apparently linear function of time as illustrated by the dashed lines, though 

according to (14), the diffusivity, that is the slope of R(t), may be slowly changing at very 

long time scales of t ⪢ 100 ms. These features can be utilized to develop models for the 

mean-squared displacements.

Different models have been used and proposed in the literature for representing time varying 

diffusivity. Specifically, an exponential model can be derived from the Ornstein-Uhlenbeck 

model (24,25), whereas a logarithmic model was used by (14), and a power-law model has 

been used to study anomalous diffusion in disordered media (26). Our goal in the next 

section is to determine if any of these models perform better or all represent the time-

varying data equally well. Consequently, we incorporate these three models for representing 

time-varying mean-squared displacement as follows:

[28]

[29]

[30]

where Ai, αi ≥ 0 for i = 1, 2, 3, α3 ≤ 1, and D∞ ≥ 0 is the long-time limit of the diffusivity. 

We note that the Ornstein-Uhlenbeck model (24) results in an exponential mean-squared 

displacement function similar to the second term of R1(t). The exponential function also 

provides a good approximation to diffusion in restricted pores (25). For long-time scale, the 

expression R2(t) ≈ 2[D∞t + A2 ln (t)] was used in (14) to study the diffusion in the extra-

axonal space. The second term in R3(t) has been studied in anomalous diffusion in 

disordered media (26).

From Eq. [21], the velocity autocorrelation functions corresponding to the mean-squared 

displacements in Eqs. [28–30] are given by:
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[31]

[32]

[33]

which all have negative values for t > 0.

Mean-Squared Phase Changes for Time-Varying Models

For the three time-varying models of mean-squared displacement R(t) given by Eqs. [28–

30], we present the expressions for ⟨ϕ2(τ)⟩ with c(t) given by Eq. [23]. We denote the 

corresponding ensemble mean-squared phase by , , and , 

respectively. Then, we get:

[34]

[35]

[36]

where  is the mean-squared phase due to the D∞t term in the 

Ri(t)’s. These expressions will be used in all of our experiments described in the next 

section.
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METHODS

Monte-Carlo Simulations

We studied the mean-squared displacement of diffusing particles in two synthetic cellular 

and axonal packings in a two-dimensional substrate. The simulated field of view of these 

structures was 100 × 100 μm2. Figures 4a,b only illustrate a partial field of view of the two 

structures with size 30 × 30 μm2. The green circles (regions) are the myelin sheaths that 

surround the axons shown in red. The g-ratio (the ratio between the inner and outer radii of 

each green circle) for all axons was set to 0.6. The intra-axonal volume fraction, myelin 

volume fraction and extra-axonal volume fraction for the two structures are {0.23, 0.41, 

0.36} and {0.23, 0.40, 0.37}. The average axon radii were 1.1 and 0.7 μm, respectively.

In our Monte-Carlo simulations, a total of 105 particles were randomly selected from a 

uniform distribution within the extra axonal space. During a time step of dt = 0.005 ms, each 

particle moved a distance of  along a randomly selected direction with D = 2 

μm2/ms. The boundaries were considered impermeable, so that the particles would reflect 

off the myelin sheaths. The displacement of a diffusing particle can be computed by 

projecting its trajectory along an arbitrary direction, which was chosen as the horizontal axis 

in this example. Then, the mean-squared displacement R(t) was computed from all the 

diffusion trajectories in the extra-axonal space.

Data Acquisition

We applied the proposed approach to measure the time-varying diffusivity in an in vivo 

dMRI data set of a healthy subject. The data set was acquired on the MGH Connectome 

Scanner with the following experimental parameters: δ = {12, 8, 8, 8, 8, 4, 4, 4, 4, 4}ms; Δ 
= {26, 18, 23, 18, 23, 15, 18, 15, 18, 13}ms, and g = {149, 223, 194, 169, 147, 299, 261, 

220, 192, 300}mT/m, respectively. The maximum and the minimum b-value of the data set 

were 4990s/μm2 and 695s/μm2, respectively. In each SDE experiment, diffusion weighting 

was applied along 60 gradient directions that were uniformly spread on the unit sphere. The 

spatial resolution was 2 × 2 × 2 mm3 and the echo time for all the experiments was set to be 

constant.

Signal Models

Diffusion Tensor Imaging (DTI) (27) has been a main tool for estimating the apparent 

molecular diffusivity using diffusion MRI, which does not distinguish signals contributed by 

molecules from the intra- and extra-axonal spaces. Recent studies have shown that the time-

dependent diffusivity is mainly due to molecular diffusion in the extra-axonal space (14), 

while the intraaxonal compartment is almost time-independent. This is because, the dMRI 

signal decay due to diffusion in the ultrasmall axonal radii [less than 3 μm (15) is very small 

and is practically a constant at q-values that can be imaged on current clinical scanners. 

Thus, separating the intra- and extra-axonal signals into two separate compartments might 

provide a more accurate estimation of the time-dependent diffusivity (from extra-axonal 

space). To systematically test this hypothesis, we estimated the time-varying diffusivity 

using several models with in vivo dMRI measurements, which are explained below.
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The first model we used was the standard DTI model (27) given by:

[37]

where the b-value is given by b = g2δ2(Δ − δ/3) and the diffusion tensor D is assumed to be 

time-invariant. We also assume that the diffusion tensor D is cylindrically symmetric, that is, 

the two smaller eigenvalues of D are equal.

We further modify the DTI model as follows:

[38]

where F is a positive semidefinite tensor with the same set of eigenvectors as D and the 

eigenvalue of F corresponding to the largest eigenvalue of D is set to zero, while the other 

two eigenvalues of F are assumed to be equal. Due to the very small axonal radii (15), the 

intraaxonal molecular diffusion processes contribute little to the signal decay (14). Thus, we 

assume that the intraaxonal signal is given by a constant uTFu term for any u in the 

orthogonal direction of the orientation of the underlying fiber bundle, very similar to the 

intra-axonal compartment of the NODDI model (28), though without orientation dispersion. 

The time-dependent signal decay is completely modeled by the second term in Eq. [38], but 

in this model, the apparent diffusivity is still assumed to be time invariant.

To incorporate the time-varying diffusivity into Eq. [38], we propose the following set of 

models of the form:

[39]

where Φi,j is a cylindrical tensor whose eigenvalue along the fiber bundle is given by 

 with mean-squared displacement Ri(t) and the eigenvalues in the cross-sectional 

plane are given by  from Eq. [34]. The different combinations of i, j leads to a total 

number of nine models in the form Si,j for i, j ∈ {1, 2, 3}. The model parameters for these 

models were estimated using the lsqnonlin.m command in Matlab (The MathWorks Inc., 

Natick, MA).

We note that our method for estimating the time-varying diffusivities is fundamentally 

different from the method used in (23), where multiple dMRI data sets were acquired using 

the same pulse width δ but varying diffusion time Δ. However, the apparent diffusion tensor 

for each data set was computed using a time-invariant DTI model. Our method, on the other 

hand, estimates the mean-squared displacement Ri(t) of the diffusing molecules directly by 

integrating all measurements. Moreover, the DTI model of (23) does not separate the intra- 

and extra-axonal compartments [although they are used to infer the biophysical meaning of 
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the time-varying diffusivity in (23), which may also lead to bias in the estimated time-

varying diffusivity.

Comparison Metrics

To understand the goodness of fit of the above models as well as to determine if there is any 

significant evidence for the time-varying nature of the diffusion coefficient, we compared 

the performance of all the above models using the following measures:

1. Normalized mean-squared error (NMSE). In each voxel, the total number of 

measurements is K = 600. Let s(k) for k = 1, …, K denote the kth measurement 

and  denote the corresponding estimated signal. Let  denote a subset of the 

indices of measurements. Then the NMSE of the estimated signal in the set  is 

computed as . In the experiments, 

we computed three sets of NMSE. The first set  contained all the dMRI 

measurements at a voxel. Let v denote the principle direction of the fiber bundle, 

and let uk denote the gradient direction of the kth measurement. Then, the second 

set , contained measurements that were close to 

the orientation of the fiber bundles. The third set 

 contained measurements close to the cross-

sectional plane of the fibers. The NMSE’s for the three sets are denoted by 

NMSEall; NMSE∥, and NMSE⊥, respectively.

2. AIC and BIC. In practice, it is desirable to have a parsimonious model which 

provides low NMSE using as few parameters as possible. The number of 

parameters for SDTI and Sconst.+DTI are 4 and 6, respectively, while each of the 

model of the form SR∥,R⊥ = Si,j has 9 parameters. Thus, even if SR∥,R⊥ has lower 

NMSE, we still need to take into account the effect of the number of parameters 

when testing the time-varying diffusivities. To this end, we compare the models 

using the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). The model with the lowest AIC or BIC has the best fit.

RESULTS

Simulation Results

The red and blue lines in Fig. 4c show the mean-squared displacements for the diffusing 

particles in the extra-axonal space of the two synthetic structures in Figures 4a,b, 

respectively. The magenta and green dashed lines indicate that the mean-squared 

displacements are approximately linear with respect to the diffusion time at the long-time 

scale. Since the diffusivity is time-varying, the y-intercept of the straight lines are about 2 

and 1.5 μm2. We note that these intercepts are much larger than the mean-squared 

displacement from the intra-axonal space of axons with radii of 1.1 and 0.7 μm, which is 

about 0.61 and 0.25 μm2, respectively. Thus, estimation of these offsets (intercepts) can 

provide important information about the microstructure of the underlying tissue.
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One of the aims of the Monte-Carlo study is to determine which of these models more 

accurately represent the observed time-varying mean-squared displacement. Consequently, 

we used these models in Eqs. [28–30] to fit the simulated R(t) shown in Figure 4c. The blue, 

green and red curves in Figures 5a,c correspond to the estimated results from R1(t), R2(t), 
and R3(t) from Structures 1 and 2, respectively, while the true R(t) from simulation is shown 

in black stellar markers. For t ≤ 1 ms; R3(t) fits the data better than the other two models, but 

the differences between the three models are almost indistinguishable for t ≥ 2 ms. The 

corresponding estimated velocity autocorrelation functions for the two structures are shown 

in Figures 5b,d, respectively. We note that  has the fastest change close to zero and all 

the three functions , have singularities at t = 0.

The c(t), C(t), and b(t) functions shown in Figure 1 and the R(t),  plots in Figure 5 

provide further insights into our understanding of the effects of changing the experimental 

parameters δ and Δ when measuring dMRI signals using SDE experiments. We note that if 

the pulse width δ is fixed, then changing Δ shifts the right triangular part of c(t) along the 

time axis. As the slope of R(t) is constant or varies slowly at long-time scale, changing Δ 
may not provide useful information about the fast time-varying diffusivity at short-time 

scale. A more effective approach for measuring the time-varying R(t) is to vary δ, which will 

change the left triangular part of c(t), thus providing more useful information about R(t) at 

the short-time scale. Moreover, Figure 1 implies that changing Δ will shift b(t) along the 

vertical axis without changing the slope of its linear part. Conversely, changing the pulse 

width δ also alters the slope of the linear part of b(t), providing a possibly more effective 

approach for measuring the time-varying velocity autocorrelation function.

In Vivo Data Results

We collected the comparison metrics for the 11 models at voxels where the FA was larger 

than 0.8, that is, where we expect a single predominant fiber bundle (no crossing). The 

comparison results are illustrated in Table 1. We note that Sconst.+DTI has significantly lower 

NMSE, AIC, and BIC than SDTI, indicating that a multicompartment model is a better fit 

that a simple DTI model. Moreover, all the nine models with time-varying diffusivities, S1,1, 

S1,2, …, S3,3, also have consistently lower NMSE, AIC, and BIC than Sconst.+DTI, indicating 

that the apparent diffusivity in the extra-axonal space is time-varying. Among the nine 

models, S1,2 has the lowest overall NMSE and the lowest NMSE in the perpendicular 

direction of the fiber bundles, while S2,1 has the lowest NMSE along the parallel direction of 

the fiber bundle. Moreover, S1,1 has the lowest AIC and BIC, indicating that the model in 

Eq. [28] may be a better option for characterizing the mean-squared displacements in this in 

vivo data set, though other models can provide very similar results.

DISCUSSION AND CONCLUSION

In this article, we extended the classical result by Stepišnik (21) on measuring the time-

dependent diffusivity using diffusion MRI. We derived three novel formulations for 

representing the dMRI signal under the Gaussian phase approximation given by:
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where R(t), Dinst(t), and  are the mean-squared displacement, the instantaneous 

diffusivity, and the velocity autocorrelation function of the diffusing spins, respectively. 

These quantities are intrinsic properties of the tissue structure, and can provide insight into 

the packing structure of the tissue (23). The above formulations are expressed in terms of 

c(t), which is the autocorrelation function of the gradient sequence g(t), or C(t) which is the 

cumulative function of c(t), while b(t) is a generalization of the b-value. These equations 

provide new insight to understand the importance of the different experimental parameters in 

measuring time varying diffusivity and the difference between gradient sequences. 

Significantly, the proposed theory could potentially be applied to optimize the gradient 

sequences to improve the performance of diffusion MRI for measuring specific tissue 

properties.

Moreover, we also introduced three functions for modeling the time-varying mean-squared 

displacement of water molecules and compared them using a simulated data set and an in 

vivo human brain data set, respectively. The simulation results show that accurate estimation 

of the time-varying diffusivity allows to distinguish two axonal packing structures with 

similar axonal and myelin volume fractions. The structure with large axonal radii tends to 

have higher apparent diffusivity. The experimental results using in vivo data also show 

strong evidence for the existence of time-varying diffusivity. The exponential model for the 

mean-squared displacement provides slightly better performance in fitting the in-vivo data 

than the other two models. A comprehensive study using large data sets is required to 

understand the time-varying diffusivity in more complex tissue structures, which will be part 

of our future work.

APPENDIX A

Derivation for Eq. [10]

The double integral in Eq. [9] can be written as:

[40]

[41]

Ning et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[42]

From Eqs. [40 and 41], a change of variables was applied to change s, t to τ − s and τ − t, 
respectively. From Eq. [41] and [42], the integral was computed along the level set of t − s 
using substitution of variables. We should note that the following equality holds for a 

stationary process:

Thus, Eq. [42] is equal to  where c(t) is given by Eq. [11]. The reverse time-

invariant property of c(t) follows directly from Eq. [42].

Derivation for Eq. [17]

To derive Eq. [17], we first show that C(τ) = 0 for C(t) defined in Eq. [13]. To this end, we 

substitute the definition of c(t) in Eq. [13] and obtain:

where the second equality was obtained using .

APPENDIX B

The c(t), C(t), q(t) and b(t) functions for OGSE sequences.

After several algebraic manipulations, we obtain the following expressions for c(t), C(t), 
q(t), and b(t) functions for OGSES and OGSEC sequences. For notational simplicity, we 

first define the following functions:

If Δ ≥ 2δ, then the c(t), C(t), q(t), and b(t) functions for OGSES are given by:
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The corresponding functions for OGSEC are given by:

Conversely, if Δ ≤ 2δ, then the c(t), C(t), q(t), and b(t) functions for OGSES are as follows:

The corresponding functions for OGSEC are given by:
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FIG. 1. 
Representative plots of g(t), c(t), q(t), and b(t) for SDE gradient sequence. [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 2. 
Illustrations of the g(t), c(t), q(t), and b(t) of OGSES and OGSEC sequence with Δ ≥ 2δ. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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FIG. 3. 
Illustrations of the g(t), c(t), q(t), and b(t) of OGSES and OGSEC sequence with Δ ≤ 2δ. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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FIG. 4. 
Illustration of the mean-squared displacement in two synthetic tissue structures: (a) and (b) 

are the synthetic cross-sectional planes of parallel axonal bundles with red areas being the 

axons, green the myelin, and blue the extra-axonal space. c: The mean-squared displacement 

of simulated diffusing particles in the extra-axonal space of the two tissue structures. [Color 

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 5. 
Illustration of the estimated mean-squared displacement and velocity autocorrelation 

function for the two structures shown in Fig. 4: The blue, green, and red curves in (a) and (c) 

show the estimated mean-square displacements using Eqs. [28–30], respectively, while the 

back stars show the true values from simulation. The blue, green and red lines in (b) and (d) 

show the estimated velocity autocorrelation functions using Eqs. [31–33], respectively. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Table 1

Comparison of the Estimation Results of 11 dMRI Signal Models at Voxels where FA > 0:8

NMSEall NMSE∥ NMSE⊥ AIC BIC

S DTI 0.1013 0.1906 0.0945 −1152.5 −1134.5

S const.+DTI 0.0771 0.1765 0.0754 −1271.8 −1249.4

S 1,1 0.0746 0.1627 0.0714 −1295.8 −1256.2

S 1,2 0.0745 0.1601 0.0710 −1295.1 −1255.5

S 1,3 0.0747 0.1598 0.0712 −1294.2 −1254.7

S 2,1 0.0749 0.1595 0.0723 −1294.3 −1254.7

S 2,2 0.0748 0.1610 0.0718 −1294.5 −1254.9

S 2,3 0.0748 0.1598 0.0733 −1294.1 −1254.6

S 3,1 0.0758 0.1659 0.0735 −1293.0 −1253.4

S 3,2 0.0762 0.1663 0.0742 −1290.7 −1251.1

S 3,3 0.0756 0.1648 0.0718 −1293.7 −1254.1
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