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mt	� Mutant types
OS	� Overall survival
SqCC	� Squamous cell carcinoma
TKIs	� Tyrosine kinase inhibitors
wt	� Wild type

Bacground

Among metastatic sites of non-small cell lung cancer 
(NSCLC) central nervous system (CNS) lesions occur in 
20–40% of lung adenocarcinoma (AC) patients and they are 
associated with neurological symptoms and extremely poor 
survival prognosis. In squamous cell carcinoma (SqCC), 
CNS metastases are observed less frequently (10–15%) 
[1–4]. In patients with CNS metastases, the administra-
tion of standard chemotherapies or targeted agents is lim-
ited because of uncertain penetration of anticancer drugs 
through the blood–brain barrier and poor prognosis [5–8].

Today, we have found that mutational deregulations of 
pro-survival (PI3K-mTOR-AKT) and proliferative (Ras-
Raf-Mek-Erk) cascades play a crucial role in uncontrolled 
signal transduction in cancer cells [9–11]. The major-
ity of mutations involved in NSCLC carcinogenesis were 
reported in five oncogenes: KRAS, EGFR, ALK, HER2 
and BRAF [10, 12]. However, the presence of mutations in 

Abstract  Somatic mutations in NRAS, PTEN and AKT1 
genes are rarely (~1%) reported in primary NSCLC, but 
their role in carcinogenesis have been proven. Therefore, 
we assessed the frequency of them in 145 FFPE tissue sam-
ples from CNS metastases of NSCLC using the real-time 
PCR technique. We identified four (two NRAS and single 
AKT1 and PTEN) mutations in CNS metastases of NSCLC. 
All mutations were observed in current male smokers (4% 
out of the male group; 4/100 and 4.25% out of smokers; 
4/94). Three mutations have been detected in patients 
with SqCC (10.3% out of SqCC patients; 3/29), and only 
one mutation in the NRAS gene—in a patient with adeno-
carcinoma (1.25% out of AC patients; 1/80). The exam-
ined genes were mutually exclusive in terms of molecular 
background in KRAS; EGFR; DDR2; PIK3CA; HER2 and 
MEK1 genes that were evaluated in our previous studies. 
The OS of the patients who harbored NRAS, AKT1 and 
PTEN mutations was 10.1, 12.1, 7.3 and 4 months, respec-
tively (vs 13.5 months of the studied group). Our results 
suggest that the presence of NRAS, PTEN and AKT1 gene 
mutations may have an influence on the occurrence of CNS 
metastases in patients with SqCC.
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NRAS, MEK, AKT1, PTEN, RET, ROS1 genes had identi-
fied impact on acquiring resistance to both EGFR or ALK 
TKIs and radiotherapy [9, 13]. Some papers reported that 
the MEK (selumetinib and trametinib), IGF-1R (linsitinib) 
or allosteric PI3K (LY294002) inhibitors may become an 
attractive therapeutic choice for NSCLC patients with some 
rare mutations [4, 9–11, 14–16].

To date, the majority of published data evaluated gene 
mutations in primary tumors of NSCLC. However, there is 
still limited data assessing genetic disorders in metastatic 
lesions. In our previous study, we focused on commonly 
mutated genes playing role in carcinogenesis. Therefore, 
the following study, we evaluated the prevalence of NRAS, 
PTEN and AKT1 gene mutations in Caucasian patients with 
CNS metastases of NSCLC.

Methods

Patients

The studied group included 145 Polish NSCLC patients 
with CNS metastases of advanced NSCLC. In 30 patients, 
the corresponding primary tumors were simultaneously 
available. The patients underwent routine neurosurgi-
cal procedures with a palliative manner. In the moment 
of CNS metastases diagnosis, all patients were chemo-, 
radio- or targeted therapy naïve. They did not receive 
any other treatment which could affect mutation induce-
ment. The median overall survival (OS) was 13.5 months 
(range 0.1–78.2 months—information available from 119 
patients). Detailed characteristics of the studied group 
have been presented in Table  1. DNA was isolated from 
formalin-fixed paraffin-embedded (FFPE) tissue samples 
using the QIAamp DNA FFPE Tissue Kit (Qiagen, USA) 
according to manufacturer protocol. The positive control 
of the analysis was the reaction with control DNA supplied 
with the assay by the manufacturer. DNA isolated from 
peripheral blood leukocytes of healthy individuals (n = 10) 
provide the negative control of analysis. The study was 
approved by the Ethics Committee of the Medical Univer-
sity of Lublin, Poland (No. KE-0254/86/2013). All patients 
expressed their consent to participate in the study and they 
expressed their consent to publish their individual data (if it 
is needed).

NRAS mutation analysis

NRAS gene status was evaluated using the NRAS Mutation 
Analysis Kit (EntroGen, USA) certified for in vitro diagno-
sis (CE-IVD). This kit determines 12 substitutions (G12D, 
G12S, G12C, G13R, G13V, Q61K, Q61L, Q61R, Q61H, 
A126T, K117R, A59X) located in exons 2, 3 and 4 of the 

NRAS gene. The amplification of the examined region was 
performed in 96-well plates in a real-time PCR device 
(Cobas, Roche, USA) in the following steps: pre-denatura-
tion in 95 °C for 10 min. and 40 cycles in conditions: 95 °C 
for 15 s. and 60 °C for 40 s.

PTEN and AKT1 mutation analysis

PTEN and AKT1 gene mutations were evaluated using 
the TaqMan Mutation Detection Assay (Applied Biosys-
tem, USA) certified for research use. The amplification of 
examined genes was performed in 96-well plates in a real-
time PCR device (Cobas, Roche, USA) in the steps rec-
ommended by Applied Biosystems: 95 °C for 10 min and 
92 °C for 15 s, 58 °C for 1 min. for five cycles then 92 °C 
for 15 s, 60 °C for 60 s for 40 cycles.

Results analysis

Fluorescence was observed only during amplification of 
mutant types (mt) in analyzed samples and in the endog-
enous control. According to observations made of the posi-
tive and negative control amplification plots, samples were 
assessed as mt if we observed amplification between 25 and 
30 cycles. The samples without or with late amplification 
(Ct > 35 cycle) were assessed as wild type (wt). Based on 
amplification curves in mt samples and the corresponding 

Table 1   Detailed studied group characteristics

Gender
 Male, n (%) 100 (69)
 Female, n (%) 45 (31)

Age
 Median age ± SD (years) 60 ± 8.8
  ≥60 years, n (%) 72 (49.7)
  <60 years, n (%) 73 (50.3)

Histopathology
 Adenocarcinoma, n (%) 80 (55.2)
 Squamous cell carcinoma, n (%) 29 (20)
 Large-cell carcinoma, n (%) 22 (15.1)
 NSCLC-NOS, n (%) 14 (9.7)

Smoking status
 Current smokers, n (%) 73 (50.4)
 Former smokers, n (%) 21 (14.5)
 Non-smokers, n (%) 36 (24.8)
 Lack of data, n (%) 15 (10.3)

Performance status (ECOG/WHO)
 0, n (%) 22 (15.2)
 1, n (%) 76 (52.4)
 2, n (%) 31 (21.4)
 3, n (%) 16 (11)
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endogenous wt control, we estimated the frequency of mt 
DNA according to the following equation:

ΔCt (analyzed sample) = the average Ct value from the 
mutant reaction—the average Ct value from the wild-type 
reaction.

Results

We identified four (two NRAS and single AKT1 and PTEN) 
mutations in CNS metastases of NSCLC. The content of 
mt allele in all mutated samples was >5%. All mutations 
were observed in current male smokers (4% out of the male 
group; 4/100 and 4.25% out of smokers; 4/94). Three muta-
tions have been detected in patients with SqCC (10.3% 
out of SqCC patients; 3/29), and only one mutation in the 
NRAS gene—in a patient with adenocarcinoma (1.25% out 
of AC patients; 1/80). Slides presenting histopathology dif-
ferentiation for patients with detected mutation were pre-
sented at Fig. 1. The examined genes were mutually exclu-
sive in terms of molecular background in KRAS; EGFR; 

% mutated DNA = 2
−ΔCt

× 100%

DDR2; PIK3CA; HER2 and MEK1 genes that were evalu-
ated in our previous studies [17–22]. A simultaneous evalu-
ation of 30 patients in whom both CNS metastases and the 
corresponding primary tumors were available, showed the 
presence of wt in NRAS, AKT1 and PTEN genes in both 
lesions. Unfortunately, the corresponding primary tumors 
were unavailable from patients who harbored NRAS, AKT1 
and PTEN mutations in CNS metastases. Due to low qual-
ity of DNA and sub-clonality of CNS metastases we did 
not perform deep sequencing approaches to confirm our 
results.

Using an EntoGen kit we identified Q61L and A126T 
substitutions in the NRAS gene in two patients (1.4% out 
of all patients; 2/145). A Q61L substitution was observed 
in a 47-year-old patient (35 pack-years) with AC histology 
(1.25% out of AC patients; 1/80); while an A126T substitu-
tion was found in a 71-year-old patient (20 pack-years) with 
squamous cell carcinoma histology (3.5% out of SqCC 
patients; 1/29). The overall survival (OS) of NRAS mutated 
patients was 10.1 and 12.1 months, respectively.

Using TaqMan hydrolysis probes we detected an E17K 
substitution in the AKT1 gene (0.7% of studied group) 
and an R233X substitution in the PTEN gene (0.7% of the 

Fig. 1   Slides presenting histopathology differentiation of patients 
with detected mutations. a Shows adenocarcinoma type of NSCLC 
in patients with Q61L substitution in NRAS gene. b Shows squamous 
cell carcinoma type of NSCLC in patients with A126T substitution 

in NRAS gene. c Shows squamous cell carcinoma type of NSCLC in 
patients with E17K substitution in AKT1 gene. d Shows squamous 
cell carcinoma type of NSCLC in patients with R233X substitution 
in PTEN gene



39Brain Tumor Pathol (2017) 34:36–41	

1 3

studied group). The AKT1 gene mutation was observed in 
a 73-year-old patient (20 pack-years) with SqCC histology 
(3.5% out of SqCC patients; 1/29). The PTEN gene muta-
tion was found in a 62-year-old patient (50 pack-years) with 
SqCC histology (3.5% out of SqCC patients; 1/29). The OS 
of AKT1 and PTEN mutated patients was 7.3 and 4 months, 
respectively.

The summary of clinical and demographical data of pos-
itive patients has been presented in Table 2.

Discussion

Brain metastases are one of the most common metastatic 
lesions of NSCLC which are associated with a high mor-
tality of patients [1–4]. Moreover, a blood–brain bar-
rier ensures restrict transit of agents into the brain paren-
chyma, which are considered as pharmacological sanctuary 
lesions that show limited sensitivity to anti-cancer therapy 
[1, 2]. However, there are some studies which indicated 
the effectiveness of anti-ALK targeted therapies (alectinib 
and ceritinib) also in CNS metastatic sites of NSCLC [6, 
23]. Till today, we have only limited data concerning the 
evaluation of the most frequent mutations in EGFR, KRAS, 
BRAF genes in CNS metastases of lung cancer (especially 
AC type). Despite NRAS, PTEN and AKT1 mutations have 
proven involvement in carcinogenesis [24–28], their fre-
quency was described in a few reports only in primary 
NSCLC tumors [3, 4, 13, 14, 16]. Therefore, we performed 
the current and unique characteristic of the incidence of 
NRAS, AKT1 and PTEN gene mutations in CNS metastases 
of NSCLC.

NRAS gene mutations in NSCLC patients

NRAS as a member of the RAS family plays a role in the 
MAPK signaling pathway and its deregulation can lead to 
tumorgenesis [14, 29, 30]. Activating mutations in exons 2 
(codons 12 and 13), 3 (codons 59 and 61) and 4 (codons 
117, 126 and 146) of the NRAS gene have been frequently 
described in melanoma (13–25%), myeloid leukemia 
(10%), colorectal cancer (2–5%), hepatocellular carci-
noma (1.4%) and thyroid carcinoma (6%) [31]. Among all 
well-known NRAS activating mutations, the substitutions 
in codon 61 are more frequent (90%) than substitutions 

in other codons [10, 14, 30]. The most common transver-
sions are described as G > C and T > A. It was previously 
reported that air fossil fuel pollution (including di-methylo-
benza-anthracene) are involved in the induction of A > T 
and T > A changes. Moreover, the combination of smoking 
and environmental carcinogens can be associated with the 
etiology of NRAS mutated lung cancer [14, 32].

In our analysis, we identified two NRAS mutations in 
CNS metastases of NSCLC including one Q61L substitu-
tion, which is reported in the literature as the most frequent 
type [10, 14, 30, 31]. The A126T substitution was the sec-
ond NRAS mutation which is described as extremely rare 
[10, 14, 30]. To date, only Preusser et  al. identified one 
(1.3%; 1/76) NRAS mutation in brain metastases of lung 
AC [4]. Most of comprehensive analyses that were carried 
out in the primary NSCLC, reported an extremely rare fre-
quency (<1%) of NRAS mutation and described them as 
related to AC type and current smoking status [12, 14, 28]. 
Moreover, Ohashi et al. observed overlapping of one NRAS 
mutation with KRAS G12A substitution and another one 
with MET gene amplification [12, 14, 24].

AKT1 gene mutation in NSCLC patients

AKT1 promotes the PI3K signaling pathway and is 
involved in cells proliferation and motility [9, 29]. A main 
E17K substitution in the AKT1 gene was first identified by 
Carpten et al. in 2007 in breast cancers (8%), and to date, it 
was also reported in other solid tumors: colorectal (6%) and 
bladder cancers (5%) [10, 25].

The following analysis is the first report worldwide that 
describes one E17K substitution in the AKT1 gene in CNS 
metastases of NSCLC. The corresponding primary tumor 
from this patient showed a native form of the AKT1 gene. It 
indicates that the molecular status of the AKT1 gene could 
be changeable during disease progression and disturbances 
in the PI3K-mTOR-AKT pathway can be involved in the 
process of metastasis [3, 4, 9]. The frequency of AKT1 
mutation in primary NSCLC tumors is also reported as low 
(<1%). These mutations occur more frequently in smok-
ers and in SqCC [10, 12, 16, 24, 26, 27, 33–35]. However, 
Malanga et  al. described the higher frequency of AKT1 
mutation (1.9%; 2/105) in NSCLC patients, especially in 
smokers and in SqCC type (5.5%; 2/36). They also sug-
gested that hyperactivation of AKT1 cascade (due to E17K 

Table 2   The summary of 
clinical and demographic 
data of NSCLC patients with 
NRAS, AKT1 and PTEN gene 
mutations

Gene Substitution Histology Age Gender Smoking (pack-years) OS (months)

NRAS Q61L AC 47 M Former (35) 10.1
A126T SqCC 71 M Former (20) 12.1

AKT1 E17K SqCC 73 M Former (20) 7.3
PTEN R233X SqCC 62 M Current (50) 4
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mutation) may be involved in the development of SqCC 
tumors [34].

PTEN gene mutation in NSCLC patients

Phosphatase and tensin homolog (PTEN) is described as 
a tumor suppressor gene whose product regulates a PI3K-
AKT-mTOR signaling cascade. The PTEN is involved in 
the stimulation of apoptosis, inhibition of cells’ migra-
tion and regulation in both p53 protein levels and activity 
[11, 13, 28]. The most common PTEN abnormality was 
described as a loss of heterozygosity and promoter meth-
ylation of the PTEN gene (~50% of NSCLC patients), how-
ever, some data also reported the presence of inactivating 
PTEN mutations [28, 36, 37].

In our analysis, we identified one inactivating PTEN 
gene mutation in CNS metastases of NSCLC and it is lower 
than PTEN mutation incidence reported in primary NSCLC 
(~4%). The previous literature data concerned the fre-
quency of all inactivating PTEN mutations that were identi-
fied in NSCLC patients [28, 36]. However, in the following 
study we focused on only one mutation (R233X substitu-
tion) for which there are some indications of its clinical 
significance [11, 15, 28, 36, 37]. Jin et  al. and Lee et  al. 
showed that in the primary NSCLC, PTEN mutations are 
related to smoking and SqCC types [28, 36], however, sig-
nificant relations to other clinicopathologic factors, such as 
age, gender and degree of cell differentiation have not been 
reported [28, 36, 37]. Some studies also indicated overlap-
ping of PTEN mutations with EGFR; ERBB2; KRAS and 
TP53 mutations [15, 28, 37]. In our study, all examined 
genes were mutually exclusive from KRAS; EGFR; DDR2; 
PIK3CA; NRAS; HER2 and MEK1 genes.

Conclusions

In summary, particular NRAS, AKT1 and PTEN gene muta-
tions occur with similar rare (~1%) frequency in CNS 
metastases of NSCLC as in primary lung cancer tumors. 
Identification of the mutations is more likely in SqCC 
patients (especially in male smokers). Our results suggest 
that it is most likely to indicate the occurrence of NRAS, 
AKT1 and PTEN mutations in metastatic sites of squamous 
cell lung carcinoma. An evaluation of the effectiveness 
of molecularly targeted agents in patients who harbor the 
mutations might be considered as a beneficial therapeutic 
choice in NSCLC patients with CNS metastases.
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