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Formulation for Oral Delivery of 
Lactoferrin Based on Bovine Serum 
Albumin and Tannic Acid Multilayer 
Microcapsules
Ece Kilic1,2, Marina V. Novoselova1,3, Su Hui Lim1, Nikolay A. Pyataev4, Sergey I. Pinyaev4, 
Oleg A. Kulikov4, Olga A. Sindeeva3,5, Oksana A. Mayorova3, Regan Murney6, 
Maria N. Antipina1, Brendan Haigh6, Gleb B. Sukhorukov5 & Maxim V. Kiryukhin1

Lactoferrin (Lf) has considerable potential as a functional ingredient in food, cosmetic and 
pharmaceutical applications. However, the bioavailability of Lf is limited as it is susceptible to digestive 
enzymes in gastrointestinal tract. The shells comprising alternate layers of bovine serum albumin (BSA) 
and tannic acid (TA) were tested as Lf encapsulation system for oral administration. Lf absorption by 
freshly prepared porous 3 μm CaCO3 particles followed by Layer-by-Layer assembly of the BSA-TA shells 
and dissolution of the CaCO3 cores was suggested as the most efficient and harmless Lf loading method. 
The microcapsules showed high stability in gastric conditions and effectively protected encapsulated 
proteins from digestion. Protective efficiency was found to be 76 ± 6% and 85 ± 2%, for (BSA-TA)4 
and (BSA-TA)8 shells, respectively. The transit of Lf along the gastrointestinal tract (GIT) of mice was 
followed in vivo and ex vivo using NIR luminescence. We have demonstrated that microcapsules 
released Lf in small intestine allowing 6.5 times higher concentration than in control group dosed with 
the same amount of free Lf. Significant amounts of Lf released from microcapsules were then absorbed 
into bloodstream and accumulated in liver. Suggested encapsulation system has a great potential for 
functional foods providing lactoferrin.

Lactoferrin (Lf) is a whey protein that has considerable potential as a functional ingredient in food, cosmetic and 
pharmaceutical applications. Lf possesses various biological functions such as antibacterial, antiviral, antitumor, 
antifungal, anti-inflammatory, immunomodulatory, analgesic, antioxidant, enhancement of lipid metabolism1–6. 
In addition, it is low-cost and displays no toxic side effects. The major challenge that hinders its wide application 
is its poor in vivo stability due to rapid degradation by proteolytic enzymes. When intravenously injected, the 
plasma half-life of Lf is several minutes and frequent administration is necessary to achieve a therapeutic effect2. 
Oral administration is natural and non-invasive way for supplementing Lf, since important receptors of Lf in 
the body are the intestinal mucosa and gut-associated lymphatic tissue (GALT)-related cells3,7–10. Human babies 
and newborns of other mammals enjoy the full benefits of Lf with milk consumption that is essential for their 
development. As they grow up, the maturation of the digestive system with age results in complete Lf diges-
tion1. Lf breaks down into several large fragments by the gastric digestive enzyme, pepsin, but in case of direct 
intra-duodenal administration it may reach intestine and exist there for a few hours3. However, only the intact 
native Lf may reach the GALT and enter the lymphatic system, which is necessary for efficacy.

In this regard, there is a high demand for an appropriate Lf delivery system that should protect Lf from diges-
tion in stomach and facilitate its permeability across intestinal epithelium. During the past decade, several oral Lf 
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delivery systems have been suggested2–8,11–15. Nojima et al. first synthesized Lf conjugated with branched 20 kDa 
poly(ethylene glycol) (PEG) which demonstrated a significantly higher resistance to pepsin proteolysis in the 
mature rats13. The proteolytic half-life of the PEGylated Lf was found to be two times longer and its absorption 
from the rat intestinal tract increased ten times compared to unmodified Lf. Liposomes have also been used for 
Lf encapsulation7,10–12,15. Yamano et al. demonstrated that Lf encapsulated in liposomes had better resistance 
to digestive enzymes, thus enhancing the inhibitory effect of orally administered Lf on alveolar bone resorp-
tion using lipopolysaccharide-induced periodontitis rat models10. Onishi et al. developed a chitosan/alginate/
Ca- microparticles, which were sufficiently small to enter the mucous layer of intestine5. Lf encapsulated in those 
microparticles showed better anti-inflammatory properties compared to free lactoferrin in a rat model with 
induced edema. However, the major drawbacks of all these systems are the use of organic solvents and harsh 
encapsulation conditions that may result in a significant loss of Lf bioactivities.

Layer-by-Layer (LbL) assembled microcapsules have been widely used for various applications as they provide 
high versatility with respect to payload and offer various targeted delivery and triggered release options, such 
as light, magnetic field, ultrasound, temperature, pH, salinity, redox potential16–21. This technology is specifi-
cally advantageous for encapsulation of fragile cargo in biomedical applications22 as it requires aqueous solutions 
only and is performed at room temperature. Moreover capsules may possess additional protective function23. 
Enzymatic cleavage is the release mechanism particularly important for these applications. Enzymatically degra-
dable microcapsules have been extensively investigated during the last decade24–33 and employed for delivery 
of genes24,26, growth factors29,30 and vaccines31–33. The main drawback of all these microcapsules was the use of 
expensive and cytotoxic polycations. Capsules based on polysaccharides34 or inorganic clays35,36 were suggested 
to overcome this challenge. Recently, we reported LbL-assembled multilayer microcapsules made of low-cost and 
food grade ingredients (tannic acid (TA) and bovine serum albumin (BSA)) exploiting the ability of tannins to 
precipitate proteins by hydrogen bonding and hydrophobic interactions37,38. The microcapsules demonstrate low 
cytotoxicity, they are resistant towards treatment with trypsin but susceptible to α​-chymotrypsin, the two proteo-
lytic enzymes with different cleavage site specificity38. Incorporation of TA into the shell has an additional benefit 
providing the microcapsules with anti-oxidant properties by scavenging Fe2+ ions39,40.

This work is the first demonstration of the LbL-assembled BSA-TA microcapsules as a system for encapsula-
tion and oral delivery of Lf. Here we make a special effort to maximize efficiency of Lf loading into the microcap-
sules while minimizing possible damage to its structure as proved by high performance liquid chromatography 
(HPLC). We show behavior of the microcapsules under simulated gastrointestinal conditions. In order to evaluate 
efficiency of proteins protection by microcapsules in gastric environment we encapsulate DQ™​ Red BSA instead 
of Lf as digestion of this protein may be easily followed by fluorescence spectroscopy. Finally, we use NIR lumi-
nescence to follow the transit of Lf-containing microcapsules along the gastrointestinal tract (GIT) of mice in 
vivo, and Lf biodistribution in different parts of the mouse GIT and in liver ex vivo.

Results and Discussion
Lactoferrin encapsulation efficiency.  In this work, encapsulation of Lf was performed through its absorp-
tion by porous CaCO3 microparticles (corresponding SEM images are shown in the Supplementary Fig. S1), 
as first suggested by Volodkin et al.41. This material requires cheap precursors, is easy to synthesize, non-toxic 
and approved for use as additive in foods by FDA, Food Safety Commission in Japan, and in many other coun-
tries. Here we have tried two different approaches to load CaCO3 with Lf, as depicted in Fig. 1. In the first 
approach, formation of microparticles occurred in 30 mg/mL Lf solution, while in the second CaCO3 parti-
cles were first formed, washed and then redispersed in 30 mg/mL Lf aqueous solution. To measure the amount 
of absorbed Lf shown in Table 1, the particles were washed two times in DI water and then dissolved in HCl. 
Released Lf was quantified by ELISA and HPLC (for calibration curve and respective chromatograms see 
Supplementary Figs S2 and S3).

The lowest amount of released Lf was achieved from samples prepared via the co-precipitation approach, 
when stoichiometric amounts (6×​10−4 moles) of CaCl2 and Na2CO3 were mixed in the presence of Lf macro-
molecules (note that concentration of released Lf was too low for HPLC measurements and we used ELISA here). 
The reason could be significant Lf degradation upon synthesis due to high pH value in the resulted dispersion 

Figure 1.  Scheme of Lactoferrin (Lf) encapsulation: co-precipitation of CaCO3 and Lf vs post-loading of Lf 
in porous CaCO3 microparticles both followed by Layer-by-Layer deposition of bovine serum albumin and 
tannic acid and final dissolution of CaCO3. 
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(pH >​ 10) caused by the injection of highly alkaline sodium carbonate solution. In fact, Lf treatment with 1 M 
sodium carbonate resulted in complete degradation of the protein (see corresponding HPLC chromatograms in 
Supplementary Fig. S4). In order to reduce the degradation of Lf, pH of the reaction mixture was decreased from 
>​10.0 to 8.0 by increasing the ratio of CaCl2 concentration to that of Na2CO3 from 1.0:1.0 to 1.5:1.0. In these 
conditions, more than three times higher amount of Lf was released from CaCO3 particles as measured by ELISA. 
The chromatogram of this sample (see Fig. 2, line 2) demonstrates peak at retention time of 9.5 min characteristic 
for Lf but its full width at half height (FWHH) was 0.33 min, nearly two times wider if compared to native Lf (see 
Fig. 2, line 1, FWHH 0.17 min). Thus HPLC may be used here for qualitative analysis only. In addition, several 
more intense peaks appear at the lower retention times probably due to partial breakdown of Lf into smaller 
fragments during co-precipitation.

To overcome this problem, we suggest post-loading approach where CaCO3 particles were formed first and 
washed two times with DI water to remove all salts and decrease pH. These particles were later introduced to a 
solution of Lf. The chromatogram of released Lf (Fig. 2, line 3) demonstrates narrow peak at 9.5 min (FWHH 
0.17 min, same as in native Lf) and another narrow peak of comparable intensity at a lower retention time of 
8.3 min. Thus Lf still breaks down upon absorption by the particles at post loading, however, degradation is 
significantly lower than in co-precipitation approach. Taking into consideration the importance of native Lf for 
bioavailability, post-loading approach was chosen for further experiments.

The weight percentage of absorbed Lf was nearly constant at ~1.2–1.4 wt. % when 5 and 10 times more CaCO3 
microparticles were introduced into the Lf solution (see Table 1). This means that the chosen concentration 
(30 mg/mL) was adequate to ensure saturation of all microparticles with Lf to their maximum capacity.

In the next step, LbL assembly of the BSA-TA shells was performed on the surface of CaCO3/Lf particles fol-
lowed by dissolution of the core material with HCl thus making Lf-loaded BSA-TA microcapsules. Corresponding 
SEM images are shown in Fig. 3-a,b. The microcapsules have smaller size and much rougher surface compared to 
the coated microparticles but their shape is still close to spherical.

In order to measure the amount of Lf in the final microcapsules, they were treated with 8 M urea solu-
tion. Under these conditions the microcapsules were disintegrated (see corresponding CSLM images in 
Supplementary Fig. S5) and all the proteins (BSA, Lf) underwent denaturation. The resulted solution has been 
tested by western blot (see Supplementary Fig. S6). The microcapsules fabricated from 300 mg CaCO3 microparti-
cles by the post-loading approach contained 0.72 mg of encapsulated Lf and 6 mg of total proteins (including BSA 
and Lf, both intact and fragmented). If compared to 4.1 mg of Lf absorbed in CaCO3 microparticles (see Table 1), 
one can see that ~18% of initially encapsulated Lf retained inside upon LbL assembly and dissolution of the core 
and the rest was lost.

Approach Weight of CaCO3 microparticles, mg Amount of released Lactoferrin, mg Lactoferrin absorbed, wt%

Co-precipitation (pH >​ 10) 60 0.3 ±​ 0.1a 0.5 ±​ 0.2

Co-precipitation (pH 8) 48 1.0 ±​ 0.1a 2.1 ±​ 0.2

Post-loading

60 0.7 ±​ 0.1b 1.2 ±​ 0.2

300 4.1 ±​ 1.5b 1.4 ±​ 0.5

600 7.6 ±​ 2.0b 1.3 ±​ 0.3

Table 1.   Amount of lactoferrin absorbed by CaCO3 particles. Methods to measure Lf concentration:  
a-ELISA; b-HPLC.

Figure 2.  HPLC chromatograms of (1) a standard Lf (1 mg) solution in DI water, and Lf released from 
CaCO3 microparticles upon their dissolution at pH 3. Lf was (2) co-precipitated with 48 mg CaCO3 at pH 8; 
post-loaded to (3) 60 and (4) 300 mg of CaCO3. Volume of all samples was 6 mL.
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HPLC and western blot show the total amount of encapsulated Lf in a batch but provide no information about 
its amount in an individual microcapsule and the distribution of Lf among the microcapsules in the batch. Lf has 
a high affinity to Fe3+ and is believed to play a major iron-regulating role in new born infants and mammals1. 
Since Fe gives high ionization yield and ToF-SIMS provides submicron spatial resolution, it is possible to detect 
amount of Lf in individual microcapsules42. The C+ and Fe+ maps and corresponding distribution of Lf content 
among microcapsules are shown in Supplementary Fig. S7. The distribution can be well fitted with a Gauss curve, 
where the mean Fe/C ratio (R) was found to be 0.54 ±​ 0.16, and the polydispersity index or span defined as (R90 
– R10)/R50 =​ 0.92.

In vitro digestion study of encapsulated Lf.  The performance of encapsulated Lf in GIT was evaluated 
using in vitro simulated digestive model43. Table 2 shows the weight and corresponding weight loss of empty and 
Lf-loaded (BSA-TA)4 microcapsules, as prepared and upon simulated digestion.

As Table 2 shows, treatment with HCl at pH 3 dissolves all CaCO3 (~300 mg) from the microcapsules’ cores. 
The microcapsules loaded with Lf are nearly two times heavier than empty microcapsules that may be an indi-
cation of the amount of both intact Lf and its fragments in the microcapsules. However, the possible effect of Lf 
absorbed by CaCO3 particles on the later process of BSA-TA shell assembly on their surface making it thicker 

Figure 3.  SEM images of (a) Lf/CaCO3 microparticles coated with (BSA-TA)4 multilayer shell; (b) 
microcapsules after CaCO3 core dissolution; (c) after 60 min of their treatment in simulated gastric fluid and (d) 
after 3 min of treatment in simulated intestine fluid.

Weight, mg Weight loss, %

CaCO3/(BSA-TA)4 317.2 ±​ 6 NA

(BSA-TA)4 15 ±​ 2 NA

Lf/(BSA-TA)4 32.1 ±​ 3 0

SGF, 60 min 30.6 ±​ 1 5 ±​ 3

SIF, 3 min 9 ±​ 2 72 ±​ 6

SIF, 10 min 1.10 ±​ 0.08 96.6 ±​ 0.25

SIF, 60 min 0.9 ±​ 0.6 97.2 ±​ 2

Table 2.   Weight and corresponding weight loss of Lf/(BSA-TA)4 microcapsules upon their treatment with 
simulated gastric (SGF) and intestine (SIF) fluids.
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and/or denser could not be excluded. The SEM shows that the Lf-loaded microcapsules have spherical shape 
while the microcapsules without Lf are partially collapsed (compare Fig. 3-b and Supplementary Fig. S8).

The Lf-loaded microcapsules remain stable in SGF losing only 5% of their weight after 60 min of treatment. 
SEM also does not show significant changes in the microcapsules size or shell integrity (see Fig. 3-c). However, 
fast degradation of the microcapsules occurs in SIF demonstrating loss of ~70% of initial weight after 3 min and 
nearly complete degradation after 10 min of treatment. SEM image of microcapsules treated in SIF for 3 min 
demonstrate less number of microcapsules as shown in Fig. 3-d. The fast degradation of BSA-TA microcapsules 
in SIF releasing the payload was also confirmed by CLSM for the microcapsules loaded with BSA/FITC (see 
Supplementary Fig. S5).

The reason for such drastic changes in shells’ stability could be different cleavage site specificity of pepsin and 
proteases of pancreatin (trypsin and chymotrypsin). Pepsin preferentially cleaves peptide amide bonds of large 
hydrophobic amino acids (tyrosine, tryptophan, or phenylalanine) and BSA contains only 6.56% of phenylala-
nine, 5.06% of tyrosine, and 0.58% of tryptophan44. Chymotrypsin is targeting the same amino acids as pepsin 
while trypsin cleaves peptide chains mainly at the carboxyl side of the amino acids lysine or arginine and their 
total amount in BSA is rather high (18.72%44).

In order to check whether BSA-TA shells provide protection for encapsulated proteins against gastric 
digestion, DQ™​ Red BSA was encapsulated instead of Lf. This protein is heavily labeled with BODIPY dyes 
and, when in intact native confirmation, it doesn’t show fluorescence due to strong quenching effect. This 
quenching is relieved upon protein cleavage by proteases. In order to match concentration of DQ™​ Red 
BSA, the sample with free unprotected protein was prepared as the following. First, DQ™​ Red BSA was 
loaded into CaCO3 microparticles by the same post-loading approach as for microcapsules preparation, 
then the particles were dissolved by acidifying the solution to pH 3 with HCl and the resulted solution was 
exposed to SGF. The fluorescent intensity was increased during 60 min of treatment due to gradual diges-
tion of the protein, as shown in Fig. 4-a (line 1). Contrary, the samples with DQ™​ Red BSA encapsulated 
in (BSA-TA)4 and (BSA-TA)8 shells demonstrated some increase in fluorescent intensity within first 10 min 
of SGF digestion only, and fluorescence nearly didn’t increase upon further treatment (Fig. 4-a, lines 2, 3). 
This initial increase in fluorescence intensity could be a result of some defect loose shells within a batch that 
allow pepsin to penetrate inside. While the number of layers increases the defects are lesser and the amount 
of such loose shells decreases providing better protection.

We introduce a protective efficiency parameter, P.E. =​ (1 −​ Ix/I0) ×​ 100%, where Ix is a fluorescence intensity of 
DQ™​ Red BSA encapsulated in (BSA-TA)4 or (BSA-TA)8 shells, and I0 is the fluorescence intensity of unprotected 
protein at the same point of digestion time. After 60 min of treatment, P.E. was found to be 76 ±​ 6% and 85 ±​ 2% 
for (BSA-TA)4 and (BSA-TA)8, correspondingly.

In the in-vitro digestive model used in this work, intestinal digestion starts after 60 min of gastric digestion. 
Figure 4-b shows corresponding changes in fluorescent intensity. In the sample with free unprotected DQ™​ Red 
BSA, fluorescence increases dramatically from 60 to 70 min of digestion (within first 10 min of SIF treatment) and 
then reaches the plateau indicating complete digestion of introduced DQ™​ Red BSA by this point of time. As it 
was discussed above, BSA is much more susceptible to proteases of pancreatin than to pepsin, so significantly 
higher fluorescent levels in SIF are expected.

In the sample with encapsulated DQ™​ Red BSA, the fluorescence intensity increases gradually from 60 to 
120 min of digestion. As it was shown in Table 2, BSA-TA shells degrade nearly completely within 10 min in SIF. 
However digestion of encapsulated DQ™​ Red BSA is delayed significantly. The reason could be some aging of pan-
creatin enzymes as they are involved in additional degradation cycles of both the shell and encapsulated protein. 
Nevertheless, the fluorescence intensity of DQ™​ Red BSA encapsulated in (BSA-TA)4 and (BSA-TA)8 shells by the 

Figure 4.  Fluorescence intensities with respect to (a) digestion time in SGF followed by (b) digestion time in 
SIF of (1) free DQ™​ Red BSA solution obtained upon post-loading the CaCO3 microparticles with protein 
followed by their dissolution at pH 3; DQ™​ Red BSA encapsulated by post-loading in (2) (BSA-TA)4 shells and 
(3) (BSA-TA)8 shells.
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end of 120 min of digestion was lower by just 10 and 25%, respectively, when compared to unprotected protein. This 
demonstrates nearly complete release of encapsulated proteins from the microcapsules as they reach an intestine.

In vivo and ex vivo analysis of Lf progression along mice GIT and accumulation in liver.  In order 
to track progression of encapsulated Lf along GIT in vivo we have used Cy7-Lf which emits fluorescence in the 
NIR region (λ​em =​ 800 nm). For small animals, ratio of this signal to nose near the skin is high enough allowing 
direct and non-invasive tracking of microcapsules45. Figure 5 shows progression of the dye for mice dosed with 
Cy7-Lf and encapsulated Cy7-Lf (Cy7-Lfcaps). In order to match amount of Cy7-Lfcaps, the sample with free protein 
was prepared by post-loading of Cy7-Lf into 300 mg of freshly prepared CaCO3 microparticles followed by their 
dissolution with HCl till pH 3.

At 0.05 h after administration, fluorescence has been detected in stomach of mice dosed with Cy7-Lf, while 
it was comparable to background in those dosed with Cy7-Lfcaps. At 1 h, fluorescence was registered in stomach 
and the proximal part of the small intestine, and at 8 h, the chymus reached large intestine for both groups. At 
this time point, the mice dosed with Cy7-Lfencaps had very high fluorescence in the distal parts of small intestine. 
One possible reason could be that this part of the mouse GIT is localized closer to skin so that the optical signal is 
less damped. However the mice dosed with Cy7-Lf had much lower fluorescence there. At 24 h, fluorescence was 
registered in the distal parts of small intestine and in large intestine for both groups, although for mice dosed with 
Cy7-Lfencaps it was significantly higher.

Figure 6-a shows fluorescence intensities in mouse stomach, small intestine, caecum/appendix and colon for 
both groups of mice. In the time span from 0.05 to 1 h, fluorescence was registered in stomach and small intestine 
only. At 0.05 h, it was much lower for the group of mice dosed with Cy7-Lfcaps, but from 0.5 h onwards this group 
had much higher fluorescence intensity, especially in the small intestine. For example, at 5 h time point it was 6.5 
times higher than in the control group. From 5 h onwards, fluorescence was registered at caecum/appendix and 
colon.

Very low fluorescence of Cy7-Lfcaps in the initial digestion phase (0.05 h) could be attributed to a self-quenching 
effect due to high local concentration of dye in the intact microcapsules. Once the microcapsules reach small 
intestine they are digested releasing Lf that is diluted in the chymus. As a result fluorescence signal increases 
dramatically (see Figs 5 and 6-a).

Released Lf and its digested fragments are absorbed into the bloodstream. The level of this absorption may be 
estimated using the intensity of fluorescence in mouse liver, shown in the Fig. 6-b. For mice dosed with Cy7-Lfcaps, 
this intensity increases from 1·108 to 4·108 p/s/cm2/sr in the time span from 1 to 5 h post-administration and then 
remains relatively stable over 24 h. However for mice in the control group dosed with Cy7-Lf, the liver fluores-
cence was always comparable to the autofluorescence level of (2–7)·107 p/s/cm2/sr. Thus encapsulation in BSA/TA 
shells ensures detectable levels of Lf in the blood stream.

Conclusion
In this work for the first time we introduce the LbL-assembled BSA-TA microcapsules as a system for oral delivery 
of Lf. Its efficiency is demonstrated using in vitro digestion model, in vivo small animal model and ex vivo analy-
sis. Absorption by freshly prepared porous CaCO3 microparticles followed by LbL assembly of the BSA-TA shell 
and dissolution of the cores was suggested as the less harmful Lf loading method. One batch of the microcap-
sules contains 0.72 mg of native Lf. The Lf distribution among the microcapsules was normal with a span of 0.92 
underpinning good capsule loading over population of microcapsules in the sample. The microcapsules showed 
high stability in simulated gastric conditions and effective protection of encapsulated proteins (DQ™​ Red BSA) 
from gastric digestion. Protective efficiency was found to be 76 ±​ 6% and 85 ±​ 2%, for (BSA-TA)4 and (BSA-TA)8 

Figure 5.  Mouse whole body images and corresponding Cy7 signal at 0.05, 0.5, 1, 5, 8 and 24 h after dosing 
with Cy7-Lf, and Cy7-Lfcaps. 
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shells, correspondingly. The shells are degraded in the simulated intestinal conditions releasing the proteins at 
their beneficial site of action. The encapsulated Lf is released in small intestine where it is absorbed into the blood-
stream demonstrating detectable levels of Lf in liver. At the same time it could happen that simple Lf release in the 
intestine might not be enough to achieve its full biological action and more specific targeting to the receptors of 
GALT might be required. This may be achieved by additional incorporation of gastro-adhesive proteins into the 
shells and these experiments are currently in progress in our laboratory.

We believe that suggested encapsulation system has a great potential for oral delivery of a number of various 
active food ingredients beyond lactoferrin, including other bioactive proteins, prebiotics, probiotics, fatty acids, 
natural inhibitors of glycoside hydrolases, and many other ingredients that require protection from gastric diges-
tion and site-specific release in intestine to achieve their full function. In a near future we may expect a progress 
in this area and the development of foods that will not only provide people with nutrients but stimulate their 
immune system, improve health and lifestyle.

Materials and Methods
Materials.  The bioactive Lf from bovine whey was kindly supplied by the Tatua Cooperative Dairy 
Company Ltd (New Zealand). Poly-L-Lysine hydrochloride (PLL, Mw 15,000–30,000), BSA lyophilized pow-
der (≥​96%), TA (ACS grade), BSA conjugated with fluorescein isothiocyanate (BSA/FITC), bile salts (for 
microbiology), pancreatin from porcine pancreas (≥​100 USP U/mg), pepsin from porcine gastric mucosa 
(3802 U/mg), mini protease inhibitor cocktail cOmplete™​, hydrochloric acid, calcium chloride dehydrate, 
sodium bicarbonate, sodium chloride, sodium hydroxide, acetonitrile (for HPLC, ≥​99.9%) were purchased 
from Sigma-Aldrich. Anhydrous sodium carbonate was purchased from Alfa Aesar. 0.1% aqueous solution 
of trifluoroacetic acid (TFA, LC/MS grade, ≥​99.99%) was purchased from VWR Chemicals. DQ™​ Red BSA 
was purchased from Molecular Probes Inc, USA. The bovine lactoferrin ELISA kit was purchased from Bethyl 
Laboratories, Inc., USA. Cyanine 7 N-hydroxysuccinimide ester (Cy7-NHS) was purchased from Lumiprobe 
Corporation, USA. Cy7-labelled Lf (Cy7-Lf) has been prepared according to a standard protocol provided 
by Lumiprobe Co and purified by dialysis. All chemicals were used as received without further purification. 
Deionized (DI) water (specific resistivity higher than 18.2 MΩcm) from Milli-Q plus 185 (Millipore) water 
purification system was used to make all solutions.

Preparation of microcapsules loaded with proteins.  BSA-TA microcapsules loaded with proteins (Lf, 
Cy7-Lf, BSA-FITC or DQ™​ Red BSA) were prepared with assistance of a CaCO3 sacrificial template, as depicted 
in Fig. 1. Spherical porous CaCO3 particles with an average diameter of ~3 μ​m were synthesized according to 
Volodkin et al.41. In post-loading, 0.6 mL of 1 M CaCl2 and Na2CO3 solutions were injected into 1.8 mL of DI 

Figure 6.  (a) Fluorescence intensity in mouse stomach, small intestine, caecum/appendix, and colon at 0.05, 
0.5, 1, 5, 8, and 24 h after dosing with Cy7-Lfcaps and Cy7-Lf. (b) Fluorescence intensity in mouse liver at 1, 5, 8, 
and 24 h after dosing with Cy7-Lfcaps and Cy7-Lf.
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water under vigorous agitation. 2 min later agitation was stopped and CaCO3 particles were separated by centrif-
ugation and washed two times with DI water. Subsequently, the particles were re-dispersed in 30 mg/mL Lf aque-
ous solution and shaken for 15 min. In co-precipitation, 1.8 mL of an aqueous protein solution (30 mg/mL Lf or 
1 mg/mL DQ™​ Red BSA) was mixed with 1 M CaCl2 solution (0.6–0.8 mL) followed by injection of 1 M Na2CO3 
solution (0.4–0.6 mL) under vigorous agitation.

LbL assembly of BSA-TA shells was performed as the following. First, CaCO3 microparticles with absorbed 
proteins were separated by centrifugation, washed two times with DI water and immersed in 5 ml of 2 mg/mL 
PLL solution in order to generate the first anchoring layer. After 15 min of continuous shaking, the micropar-
ticles were collected by centrifugation and residual PLL was removed by washing them twice with DI water. 
Further alternating layers of BSA and TA were introduced, each from 5 mL of 2 mg/mL solution with two wash-
ing steps after each layer. This procedure was repeated to achieve desired number of BSA-TA bilayers. Finally, 
the particles were redispersed in DI water and CaCO3 was dissolved by adding 1 M HCl solution dropwise until 
pH reaches ~3.0. The resulted microcapsules were collected by centrifugation and washed two times with DI 
water.

Microcapsules behavior under simulated gastrointestinal conditions.  Here we used the following 
in vitro digestion protocol43. All experiments were done at 37 °C under continuous agitation. 4 mL of 150 mM 
NaCl solution at pH 3 (acidified by HCl) was added to 5 mL of a suspension containing ~ 1 mg of encapsulated 
protein. Then 1 mL of 7.1 mg/mL pepsin solution containing 150 mM of NaCl at pH 7.0 was injected there (pepsin 
final concentration was 180 Units per 1 mg of a protein). This was considered as a starting point for digestion. At 
60 min of digestion, pH of the solution was increased to 7.0, 1 mL of 120 mM bile salts (containing 0.1 M NaHCO3 
solution at pH 7.0) and 1.0 ml of 18 mg/mL pancreatin solution (pancreatin final concentration was 12 USP U/
mg) were added. To stop digestion at a selected point of time, pH of the solution was increased to 7.0 (with a pre-
determined amount of NaOH), a protease inhibitor tablet was added and the solution was frozen at −​20 °C before 
further analysis. For weight loss experiments, all the samples were defrozen, the microcapsules were separated 
by centrifugation, washed two times with DI water and freeze-dried for 2 days using Console Freeze Dry System 
from Labconco.

In vivo digestion and ex vivo Lf biodistribution studies.  A total of sixteen BALB/c female mice were 
used in this study. All experiments were performed in accordance with relevant guidelines and regulations. 
Animal ethics clearance was approved by the ethical committee of National Research Ogarev Mordovia State 
University, Russia. The abdomen of each animal was carefully shaved to improve fluorescence acquisition. 0.3 mL 
of a suspension containing 4 mg of encapsulated Cy7-Lf was dosed directly into the stomach of eight mice via oral 
gavage. A control group of eight mice was dosed with solutions of free Cy7-Lf. Prior to imaging, animals were 
anaesthetized by intramuscular injection of zoletil (50 mg/kg) and placed in an imaging cradle. The mice were 
imaged at 0.05, 0.5, 1, 5, 8 and 24 h after dosing with an IVIS imaging system (Xenogen Corp.) using excitation/
emission at 675/810-875 nm. Photons were quantified using LivingImage software (Xenogen Corp). At 0.05 and 
0.5 h post-administration, Lf was mostly located within the stomach and other organs demonstrate autofluores-
cence only. Therefore, in order to save the animals, levels of fluorescence in stomach and proximal parts of small 
intestine were estimated from in vivo measurements using the corresponding damping coefficients determined 
for mice sacrificed at later time points. Two mice from each group have being euthanized by cervical dislocation 
for further ex vivo analysis at each time point in the range from 1 to 24 h. For all animals, the gastrointestinal 
tracts and liver were removed and imaged.

Characterization.  Concentration of released Lf in aqueous solutions was independently measured by 
bovine lactoferrin ELISA kit (Bethyl Laboratories, Inc., USA) following their standard protocol and by 
HPLC using a Waters 2695 Alliance System equipped with 2996 photo diode array detector. The column 
was Phenomenex Aeris XB-C8, particle diameter 3.6 μ​m WIDEPORE, 4.6 mm ×​ 100 mm. Prior to analysis, 
all the samples were filtered through a 0.45 μ​m syringe filter, the injection volume of sample was 50 μ​L and 
detection wavelength was at 210 nm. A continuous gradient elution at 35 °C and 1.0 ml/min flow rate was 
performed with 0.1% aqueous TFA solution (mobile phase A) and 90% acetonitrile – 10% aqueous TFA 
solution (mobile phase B) as following: the percentage of the mobile phase B was increased linearly from 
20 to 50% by 15 min, then decreased back to 20% by 20 min of elution. All of the experiments were done in 
triplicate. First, concentration of Lf in samples was determined using the corresponding calibration curve. 
Second, amount of Lf (in mg) was calculated for each sample using known volumes of the initial dispersion 
and of 1 M HCl solution required to bring pH value down to 3.0 (assuming all CaCO3 is dissolved at this 
pH). Quantification of lactoferrin incorporated into microcapsules was performed by western blot (see 
details in the Supplementary information).

Scanning electron microscopy (SEM) analysis was performed using field-emission scanning electron micro-
scope (FE SEM JSM-6700F). Samples were prepared by depositing a drop of microparticles or microcapsules 
suspension on a silicon wafer allowed to dry at room temperature. Before imaging, the samples were coated with 
approximately 20 nm gold film using a Denton sputter-coater.

Confocal micrographs were taken with Olympus FluoView FV1000 (Olympus, Japan) laser scanning con-
focal microscope (CLSM) using a 100/1.45 oil objective. The excitation (λ​exc) and emission (λ​em) wavelengths  
λ​exc =​ 488 nm, λ​em =​ 525 nm were used for scanning of BSA/FITC.

Distribution of Lf among the BSA-TA microcapsules has been studied by Time-of-flight secondary ions mass 
spectroscopy (ToF-SIMS, see details in the Supplementary information).

The measurements of fluorescence intensity have been performed using PerkinElmer Luminescence 
Spectrometer LS 55. The emission spectra have been recorded over a range of 595–720 nm wavelengths; excitation 



www.nature.com/scientificreports/

9Scientific Reports | 7:44159 | DOI: 10.1038/srep44159

wavelength was 590 nm, the emission slit widths was 10 nm, and the scanning speed was 50 nm/min. All meas-
urements have been performed using disposable polystyrene cuvettes with optical path length of 10 mm at room 
temperature (22 °C). All the emission spectra registered had maximal intensity at 620 nm.
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