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Abstract

Background: The aim of present work was to assess the concentration levels as well as vertical distribution
of indicator bacteria including total coliform, fecal coliform, Pseudomonas aeruginosa, and Heterotrophic Plate
Count (HPC) in the marine environment (seawater and coastal sediments) and evaluate the correlation between
indicator bacteria and some physicochemical parameters of surface sediments as well as seawaters.

Methods: A total number of 48 seawater and sediment samples were taken from 8 stations (each site 6 times with
an interval time of 2 weeks) between June and September 2014. Seawater and sediment samples were collected from
30 cm under the surface samples and different sediment depths (0, 4, 7, 10, 15, and 20 cm) respectively, along the
Persian Gulf in Bushehr coastal areas.

Results: Based on the results, the average numbers of bacterial indicators including total coliform, fecal coliform, and
Pseudomonas aeruginosa as well as HPC in seawater samples were 1238.13, 150.87, 8.22 MPN/100 ml and 1742.91 CFU/
ml, respectively, and in sediment samples at different depths (from 0-20 cm) varied between 25 × 103 to 51.67 × 103, 5.
63 × 103 to 12.46 × 103, 17.33 to 65 MPN/100 ml, 36 × 103 to 147.5 × 103 CFU/ml, respectively. There were no
statistically significant relationships between the indicator organism concentration levels with temperature as
well as pH value of seawater. A reverse correlation was found between the level of indicator bacteria and
salinity of seawater samples. Also results revealed that the sediment texture influenced abundance of indicators
bacteria in sediments. As the concentration levels of indicators bacteria were higher in muddy sediments compare
with sandy ones.

Conclusion: Result conducted Bushehr coastal sediments constitute a reservoir of indicator bacteria, therefore, whole
of the indicators determined were distinguished to be present in higher levels in sediments than in the overlying
seawater. It was concluded that the concentration levels of microbial indicators decreased with depth in sediments.
Except total coliform, the numbers of other bacteria including fecal coliform, Pseudomonas aeruginosa and HPC
bacteria significantly declined in the depth between 10 and 15 cm.
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Background
Recreational water and beaches are often considered
as a place where sensitive individuals may contact
with microbial contaminations [1]. These areas are
susceptible to fecal contamination from wastewater,
septic leachate, farming drainage, livestock and do-
mestic animals, or nonpoint sources of human and
animal waste [2]. Fecal contamination in maritime
areas can be dangerous to recreational users because
feces may contain pathogenic microorganisms that
can be ingested and bring intestinal problem [3]. Epi-
demiological surveys have revealed the positive rela-
tionship between fecal contamination at marine
beaches and swimming-related diseases [4]. Microbial
indicators have been utilized worldwide to show if a
water body is contaminated by fecal contamination.
Some of these indicators, i.e. fecal coliforms, E. coli and
Enterococcus spp., are used to monitor the fecal con-
tamination of seawater bodies worldwide [5]. Microbial
impairment of drinking, irrigation, or recreational sea-
waters is generally monitored using concentration
levels of fecal indicator bacteria [6]. But other bacteria
including Pseudomonas aeruginosa, a gram-negative
opportunistic human pathogen, and HPC bacteria may
also be useful in defining seawater body quality [7]. Ex-
ceeding contents of indicator bacteria in seawater and
sediments have been related to increased risk of patho-
genic microorganism-induced sickness to humans [8].
Various researches have documented an elevated risk of
contracting gastrointestinal diseases, skin infections as
well as acute respiratory infections after exposure with
recreational waters and seawater body with increased
concentrations of indicator bacteria [9–12].
Within aquatic systems, it is highlighted that the indi-

cator microorganisms can be highly related to the sedi-
ment fraction [13, 14]. This relationship is due to four
ecological performances of sediments; 1) provision a
place for microbial attachment [15] serves as a favor-
able organic substance and nutrients for microbes [16],
3) protection from environmental stresses such as sun-
light UV [17], protozoan grazing [18], etc., and 4) extra-
cellular polymeric substances (EPS) of bacteria, which
enhance sediment flocculation by coagulating and
attaching particles together to create a floc matrix and
in turn results in an increased downward flux of sedi-
ment [19] and accordingly connected bacteria (with po-
tential pathogens) to the sediment [20]. In general,
indicator bacteria can stay alive much longer in sedi-
ment than in the water column in both freshwater and
maritime environments and many studies have con-
firmed this [21–24]. Pachepsky and Shelton [25] and
Brinkmeyer et al. [26] observed significant correlations
between fecal indicator bacteria in the seawater column
and underlying sediments. They found that the levels of

indicator bacteria in sediments considerably higher
than seawaters. Koirala et al. also found that numbers
of indicator organisms in sediments are greater than in
water samples due to protection behavior of sediments
[17]. There are some activities related to sediment re-
suspension in coastal areas such as commercial or rec-
reational boating and storms that can lead to
considerable effects on microbial loads of water [27]. In
addition, recreational activity and wave action in the
swash zone of the coast can also contribute to re-
suspension the bacteria from the sediment and conse-
quently may predispose human to health risk [1].
Bushehr province with a long coastline (more than 707
kilometers) along the Persian Gulf and its strategic and
geopolitical position, as one of the most important port,
is located in southwestern Iran and northern part of
the Persian Gulf (Fig. 1). Bushehr as energy capital in
Iran is facing with industrial pollution in its marine en-
vironment [28] and its region is of special interest for
environmental studies [29–33]. The climate is warm
and wet in summer and mild in winter. Swimming in
the Persian Gulf and playing in the coastline areas are
the most important entertainments of people in the Bu-
shehr port. Also, there are sporadic studies on organ-
ism’s concentrations in the coastal areas of the Persian
Gulf but to our best knowledge there is no report yet
on comprehensive and baseline data on indicator or-
ganisms profile in seawaters and sediments along the
Persian Gulf. In this work for the first time in the re-
gion of the Persian Gulf, we aimed to (1) assess the
concentration levels of indicator bacteria in different
depths of surface sediments and seawaters as baseline
information in the region (2) mapping and kriging
interpolations of the microbial contamination in the
surface sediments and seawaters (3) ascertain the cor-
relation between indicator bacteria and some physico-
chemical parameters of surface sediments as well as
seawaters.

Methods
Chemicals and reagents
The employed media including Lactose broth, Brilliant
green, EC broth and R2A agar media were prepared
from Merck, Germany. The Asparagine broth and
Acetamide broth media were prepared from Sigma-
Aldrich, USA.

Study area and sediment sample collection
Seawater and sediment sampling were done between
June and September 2014. A total number of 48 samples
were taken from 8 sampling sites, including TV Park
(S1), Skele-Jofreh (S2), Daneshjo Park (S3), Gomrok
(S4), Skele-Solh Abad (S5), Skele-Jabri (S6), Bandargah
(S7), and Shoghab (S8) (each site 6 times with an
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interval time of 2 weeks), which were located in the
intertidal zone along the Persian Gulf in Bushehr
beach zone (Fig. 1). First, seawater samples were col-
lected from 30 cm under the surface (to avoid direct
effect of sun ultraviolet radiation on the water surface
layer) using a sterile 500 mL glass vessel (for bacterial
analyses) and an open-mouthed bottle (for physico-
chemical parameters analysis). Next, surface sediments
were collected from different depth (including 0, 4, 7,
10, 15 and 20 cm) using an Ekman steel grab sampler
(25 × 25 × 25 cm3). For each sampling sites, 2–4 sam-
pling points were selected based on the place or
shape, and samplings was carried out. The pH of each
samples were measured in the place directly after
sampling using a U-50 multi-parameter water quality
checker (HORIBA, Germany). Samples were placed in
a cold box (temperature roughly 4 C and darkness)
[34] and directly transported to the lab in coolers on
ice within 2 hours.

Media and procedures for bacterial analysis
All microbial indicator analyses including total coliform,
fecal coliform, Pseudomonas aeruginosa as well as HPC
bacteria were done according to standard methods [34].
Lactose broth, EC broth and asparagine broth were
employed to determine the most probable number
(MPN) per 100 ml of total coliforms, fecal coliforms, as
well as Pseudomonas aeruginosa respectively, using a
five-tube multiple-dilution technique. R2A agar was used
to ascertain the colony forming unit (CFU) per ml of
HPC bacteria, using the spread plate technique. In the
case of sediment samples, sediments were mixed thor-
oughly and diluted 1:10 with sterile distilled water (1 g
of sediment added into 9 ml of sterile distilled water).
This mixture was centrifuged with a speed of 8000 rpm
for l-2 min and then was left to stand for 5-10 min to
allow big particles to settle. Sediment suspensions were
subsequently processed by the similar procedures as for
water samples.

Geographical locationStation

28˚59´36.91˝ N        50˚49´41.19˝ETV Park (S1)

28˚58´21.5˝N            50˚49´22.8˝ESkele- Jofreh (S2)

28˚54´11.89˝N          50˚49´11.47˝EDaneshjo Park (S3)

28˚59´45.46˝N          50˚49´46.16˝EGomrok (S4)

28˚58´38.70˝N          50˚50´59.18˝ESkele-Solh Abad (S5)

28˚58´48.61˝N          50˚50´42.69˝ESkele- Jabri (S6)

28˚49´22.83˝N          50˚54´25.33˝EBandargah (S7)

28˚54´57.2˝N            50˚48´45.4˝EShoghab (S8)

Fig. 1 Locations of sampling stations in the study area
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Grain size analysis of sediment samples
Sediment samples were collected by a grab sampler and
coning and quartering technique was used to prepare
sediments for grain size analysis [35]. Coning and quar-
tering method involves five steps including: (1) pour the
samples onto a flat surface to form a cone (2) flatting
the cone (3) divide cone in half (4) divides halves into
quarters and discard alternate quarters (5) two quarters
are retain and mix together, reform cone and repeats
steps until remaining sample be in a correct amount for
analysis). After 5 cited steps, sediment sample was kept
in a polythene bag labeled with number and location

and transferred to the laboratory by cold box and stored
in the freezer at -20 °C until grain size examination ac-
cording to Buchanan’s method [36]. For analysis, sedi-
ment dried for 24 hours at 70 °C in Heraeus oven (UT
6420 model). 25 grams of dried sediment of each sample
were put in a flask containing 250 ml of distilled water.
Then 10 ml of 2.6 grams per liter of sodium hexameta-
phosphate [Na (PO3)6] solution was added to the flask
contents. After stirring the solution three times, each
time for nearly 15 minutes, it was kept in the laboratory
for 24 hours. In order to dry, the solution was placed in
chines plates and then moved to the oven at 70 °C for

Fig. 2 The spatial distribution of bacterial organisms in seawater samples of Bushehr coastal areas
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24 hours. After drying , samples were sieved by shaker
Heraeus device (Analysette 3PRO model), and a series of
sieves including 4, 2, 1, 0.5, 0.25, 0.125 and 0.0625 mm
which climbed on each other, respectively and a

container were placed under them (for weight the
particles smaller than 0.0625 mm). Each sample was
kept on device for 15 minutes. After that the sedi-
ment remaining on each sieve, and sediments of the
lower container, weighed carefully with an accuracy of
0.1 mg. By multiplying the weight of each sieve in 4,
the percent of its grain size was obtained. Finally as a
percentage of dry matter in the sediment, have been
reported in 4 different ranges (coarse sand (>500 μm),
medium sand (500-250 μm), fine sand (250-125 μm),
mud (<125 μm)). So the dominant group determined
the types of grain size.

Data analysis
Statistical processing of data was done by using the
SPSS version 20 (IBM Corp., USA). The normality of

Table 2 The mean, SD, minimum and maximum values of
temperature, pH and salinity in seawater samples at various
stations (maximum values are expressed as bold italics;
minimum values as bold underlined)

Station N Mean Std.
Deviation

Minimum Maximum

Temperature (°C) 1 6 31.83 0.637 31.04 32.62

2 6 32.00 0.515 31.34 32.66

3 6 32.00 0.860 31.02 33.01

4 6 32.48 0.805 31.62 33.38

5 6 32.17 0.696 31.38 32.96

6 6 31.83 0.422 31.04 32.62

7 6 32.50 0.698 31.46 33.16

8 6 31.50 0.724 30.93 32.07

Average 48 32.04 0.67 31.23 32.81

pH 1 6 8.38 0.423 7.79 8.88

2 6 8.35 0.187 8.10 8.60

3 6 8.16 0.037 8.10 8.20

4 6 8.26 0.071 8.20 8.40

5 6 8.41 0.330 7.74 8.60

6 6 8.21 0.117 7.99 8.30

7 6 8.48 0.179 8.23 8.71

8 6 8.23 0.267 7.89 8.71

Average 48 8.227 0.201 8.01 8.55

Salinity (ppt) 1 6 37 0.648 36.2 38

2 6 30.1 1.859 28.7 33.6

3 6 35.1 1.334 33.2 36.5

4 6 32.4 1.545 31.1 35.4

5 6 27.7 2.126 24.2 29.9

6 6 28.9 1.898 25.3 30.4

7 6 35.6 2.459 32.1 37.6

8 6 29.6 1.283 28.2 31.5

Average 48 32.05 1.644 29.875 34.112

Table 1 The mean, SD, minimum and maximum values of
bacterial indicator levels in seawater samples at different
stations (maximum values are expressed as bold italics;
minimum values as bold underlined)

Indicator
bacteria

Station N Mean Std.
Deviation

Minimum Maximum

Total coliform
(MPN/100 ml)

1 6 800 112.07 600 920

2 6 1220 184.93 920 1400

3 6 1000 161.12 680 1100

4 6 1050 168.99 750 1200

5 6 1800 328.00 1200 2200

6 6 1750 339.76 1100 2000

7 6 885 111.23 660 950

8 6 1400 247.54 920 1600

Average 48 1238.12 206.7 853.75 1421.25

Fecal coliform
(MPN/100 ml)

1 6 103.67 15.57 79 120

2 6 165 8.07 160 180

3 6 111.17 17.11 94 140

4 6 143.33 20.15 110 170

5 6 213.33 72.67 110 330

6 6 193.33 43.29 140 260

7 6 107.17 16.29 79 130

8 6 170 38.14 110 230

Average 48 150.875 28.91125 110.25 195

Pseudomonas
(MPN/100 ml)

1 6 4.50 1.22 3 6

2 6 8.50 2.07 5 11

3 6 6.33 2.16 3 9

4 6 7.33 2.58 4 11

5 6 13.00 2.28 11 17

6 6 11.00 1.414 9 13

7 6 4.83 1.169 3 6

8 6 10.33 1.966 7 12

Average 48 8.227 1.857 5.625 10.625

HPC (CFU/ml) 1 6 1150.00 89.443 1000 1250

2 6 1841.67 724.166 1100 2800

3 6 1350.00 420.095 940 1850

4 6 1743.33 406.776 1350 2500

5 6 2358.33 941.497 1500 3500

6 6 2173.33 344.770 1890 2700

7 6 1248.33 217.754 970 1610

8 6 2078.33 302.815 1640 2400

Average 48 1742.91 430.914 1298.75 2326.25
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data was checked by the Shapiro-Wilk test before
analyzing. Descriptive statistics were applied for pres-
entation of total coliform, fecal coliform, Pseudo-
monas aeruginosa as well as HPC concentration
levels in seawater and sediment samples. Parametric
Pearson test was applied to establish correlations be-
tween association of sediment and seawater character-
istics and concentration levels of indicator bacteria.
ArcMap 10.2 Geographical Information System (GIS)
(ESRI, Redlands, CA) was also used as an appropriate
tool for mapping and kriging interpolations of the
bacterial concentration levels.

Result and discussion
Seawater
Number of bacterial indicators
The concentration levels of bacterial indicators in sea-
water samples of Bushehr coastal areas are presented
in Fig. 2 and related data is summarized in Table 1.
The average numbers of bacterial indicators including
total coliform, fecal coliform, and Pseudomonas aeru-
ginosa as well as HPC in seawater samples were

1238.13, 150.87, 8.22 MPN/100 ml and 1742.91 CFU/ml,
respectively.
The highest average numbers of bacterial indicators

in seawater samples between all stations were found
in S5 and S6, which were the samples collected from
the Solh-Abad and Jabari fishing ports with more fre-
quent anthropogenic activities. Hamilton et al. have
previously reported that pollutants from anthropo-
genic -influenced sources may carry diverse bacteria
into the beaches and seawaters [37]. These cited fish-
ing ports were also close to the pisciculture and
aquaculture zones for fish and shellfish. Fish and
shellfish are effective filter feeders and concentrate
high levels of aquatic microorganisms such as fecal
coliform and other bacteria in their bodies and may
be built up to contents serious to human health.
Most incidents of fecal contamination of aquaculture
areas are ascribed to anthropogenic origins of such as
illegal discharges from boats, inadequately maintained
septic systems and run-off from farms [36]. Due to
such risks to human health, it is proposed that all
fishing ports with high concentration levels of

R2 linear = 0.578 R2 linear = 0.736

R2 linear = 0.512 R2 linear = 0.224

Fig. 3 Pearson correlation between the levels of all examined indicator organisms and salinity of seawater samples
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indicators bacteria (like these two stations in Bushehr
coastal area) rigidly monitored and categorized by in-
dividual state health authorities. Generally, ports ‘ap-
proved’ for fishing must not exceed particular
amounts of contamination, especially threshold values
of fecal coliforms.
In addition to above mentioned two stations, one of

the highest average numbers of bacterial indicators
was found in S8 with an average levels of 1400, 170,
10.33 MPN/100 ml and 2078.33 CFU/ml for total
coliform, fecal coliform, Pseudomonas aeruginosa, as
well as HPC respectively. This station is located in
coastal area of the Shoghab Park, which is facing
wide variety anthropogenic sources such as swimmers
feces, throwing up garbage via tourisms, domestic
wastewater treatment and disposal practices that may
lead to the entrance of high levels of coliform bac-
teria and enteric human pathogens into the seawater.
This area is also frequently utilized for recreational
applications such a swimming, recreational fishing
and recreational boating. Fecal pollution at swimming

marine area can be dangerous to human health be-
cause feces may comprise bacteria, viruses and proto-
zoa and there is possibility of feeding by swimmers
which leads to various diseases [1].

Physical and chemical factors
The physical and chemical characteristics of seawater
samples from the eight stations were determined and
the maximum, minimum, mean and standard devi-
ation values are presented in Table 2. The results of
physical parameter measurements in seawater samples
showed that these parameters are not tangible
changed at different stations. The mean values of
temperature and pH in seawater samples were in the
range of 31.5-32.5°C and 8.16-8.41 respectively. The
salinity in seawater samples was in the range between
27.7 and 37 ppt. Pearson analysis showed that there
was a significant inverse correlation between the con-
centrations levels of total coliforms, fecal coliforms,
and Pseudomonas aeruginosa and salinity of seawater
samples, and a weak inverse correlation between

R2 linear = 4.405E-4 R2 linear = 0.156

Fig. 4 Pearson correlation between the concentrations of all examined indicator bacteria and temperature of seawater samples
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salinity and HPC bacteria (Fig. 3). Therefore, the data
revealed that with decreasing salinity, there was a cor-
responding increase in the values of indicator bacteria
in seawater samples. A negative effect of salinity is at-
tributed to specific characteristics of sea water, such
as osmotic pressure and the toxicity of inorganic salts
[38]. Most studies showed a negative correlation be-
tween values of indicator bacteria and salinity. For ex-
ample, Rozen and Belkini found a reverse correlation
between the level of E. coli and water salinity in sea-
water [39]. An inverse correlation between survival of
E. coli and salinity of water has also been demon-
strated by Anderson et al. [40]. In contrast to our
studies, Jozić et al showed that there was no statisti-
cally significant effect of salinity on the E. coli bac-
teria [41]. Also Pearson analysis showed there were
no statistically significant correlations between
temperature and pH parameters and indicator organ-
isms (Fig. 4 and Fig. 5). Similarly, Guyal et al. found
that the indicator organisms (total coliforms, fecal co-
liforms, and salmonellae) were no statistically signifi-
cant relationships with temperature, pH, turbidity,
and suspended solids contents of seawater [42].

In another study, Shibata et al. reported that except
total coliform, there were no statistically significant
relationships between the concentrations levels of
enterococci, Escherichia coli, fecal coliform, and
C. perfringens and physical–chemical parameters (rainfall,
temperature, pH, and salinity) [43]. But Blaustein
et al. [44] and Sampson et al. [45] found that
temperature was a major factor in the survival of
E. coli in surface waters. In another study Placha et al.
reported that the survival of Salmonella typhimurium and
indicator bacteria (coliform and faecal coliform bacteria
and faecal streptococci) was considerably affected by
temperature [46].

Sediment
Number of bacterial indicators
The concentration levels of bacterial indicators in
sediment samples of Bushehr coastal are given in
Fig. 6 and associated data is summarized in Table 3.
The mean log values of bacterial indicators between
eight stations at various depths were compared and
are shown in Fig. 7.

R2 linear =1.193E-6

Fig. 5 Pearson correlation between the concentrations of all examined indicator bacteria and pH of seawater samples
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As seen in Table 3, the levels of total coliforms, fecal
coliform, pseudomonas aeruginosa as well as HPC in
sediment samples at different depths (from 0-20 cm) in
stations (1 to 8) varied between 25 × 103 and 51.67 × 103,
5.63 × 103 and 12.46 × 103, 17.33 and 65, 36 × 103 and
147.5 × 103 respectively. The indicators bacteria counts
at S5 and S6 sites, (hereinafter termed as the polluted
sites) were considerably greater than those at the other
six sites. It is also possible that the types of nutrients
present in two stations are different from other stations
and are more easily utilized by indicators bacteria. The
ecological occurrence of indicators organisms in coastal

area sediment has been documented [1, 43, 47]. In our
study like many former studies [14, 23, 40], the numbers
of indicator organisms in all examined sampling sites
were higher for sediment samples compare to seawater
samples. This may be due to the fact that sediments
probably serve as a suitable environment for bacterial
survival [48]. In present work, indicator bacteria were 10
to 100 times higher in sediments than in seawater sam-
ples. Crabill et al. reported that the average counts of
fecal coliforms in sediment samples were 2200 times
higher than the water counts [49]. In another research
by Davies and Bavor, they confirmed that sediments may

Fig. 6 The spatial distribution of bacterial organisms in sediment samples of Bushehr coastal areas

Karbasdehi et al. Journal of Environmental Health Science & Engineering  (2017) 15:6 Page 9 of 15



have 10 to 10,000 times higher amounts of fecal indica-
tor organisms compare with the overlying seawater [22].
This may be due to the adsorption and sedimentation
tend to remove organisms from suspension and concen-
trate them in bottom sediments [39]. But many studies
reviewed by Pachepsky and Shelton [25], Brinkmeyer
et al. [26] reported no correlations between indicators
bacteria in the water column and underlying sediments.

The general decay of indicators number in sediment
Our results showed that the concentration levels of bac-
terial indicators decreased with depth (Table 4). This
may be due to the death and inactivation of bacteria
with depth. Because sediments is a natural filter that en-
snares environmental particulates, organic substance and

microorganisms [50, 51]. Our study are in accordance
with former studies reported by Brinkmeyer et al. [26],
Alm et al. [1], Haller et al. [21], and Pachepsky and
Shelton [25].
As shown in Fig. 8, general decay pattern for examined

bacterial indicators in sediments of Bushehr coastal
areas are presented. These pattern can be useful to an-
ticipate indicator bacteria numbers in marine environ-
ment sediments considering sediment texture and grain
size. The highest percent decline of total coliform was
found in depth between 0 and 4 cm, but the highest per-
cent decline of fecal coliform, Pseudomonas aeruginosa
and HPC bacteria were found in depth between 10 and
15 cm (Fig. 9). Haller et al. found that the concentration
levels of bacterial indicators decreased with depth. They

Table 3 The mean, SD, minimum and maximum values of bacterial indicators levels in various stations at different depths of
sediment (maximum values are expressed as bold italics; minimum values as bold underlined)

Depth (cm) Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8

Total coliform
(MPN/100 ml)

0 51.67 × 103 75.83 × 103 52.17 × 103 71.67 × 103 138.33 × 103 131.67 × 103 52.17 × 103 75.83 × 103

4 46 × 103 65.66 × 103 45.33 × 103 60.5 × 103 125.67 × 103 118.33 × 103 44.5 × 103 62.83 × 103

7 38.83 × 103 56.17 × 103 41.33 × 103 52.16 × 103 107.17 × 103 102 × 103 40.83 × 103 56.83 × 103

10 34.17 × 103 46.33 × 103 36.83 × 103 43.17 × 103 93.5 × 103 86.5 × 103 36.33 × 103 48.5 × 103

15 29 × 103 34 × 103 29.33 × 103 30.33 × 103 89.66 × 103 76 × 103 29 × 103 33 × 103

20 25 × 103 25.33 × 103 25.67 × 103 22 × 103 81 × 103 67.66 × 103 25 × 103 26 × 103

Average 37.44 × 103 50.55 × 103 38.44 × 103 46.63 × 103 105.88 × 103 97.02 × 103 37.97 × 103 50.5 × 103

Fecal coliform
(MPN/100 ml)

0 12.46 × 103 18.66 × 103 13.73 × 103 20.16 × 103 31 × 103 27.17 × 103 11.23 × 103 25.66 × 103

4 11.33 × 103 17.16 × 103 11.9 × 103 17.66 × 103 29.33 × 103 24.66 × 103 9.8 × 103 22.33 × 103

7 10.21 × 103 14.66 × 103 10.8 × 103 15.73 × 103 26.83 × 103 23 × 103 8.2 × 103 19.67 × 103

10 9.26 × 103 11.33 × 103 9.56 × 103 12.86 × 103 24 × 103 21.67 × 103 7.2 × 103 17.7 × 103

15 6.76 10.5 × 103 6.83 × 103 6.83 × 103 21.67 × 103 20 × 103 5.26 × 103 10.8 × 103

20 5.63 × 103 8.66 × 103 5.26 × 103 5.26 × 103 18.33 × 103 17.33 × 103 3.76 × 103 9 × 103

Average 9.28 × 103 13.5 × 103 9.68 × 103 13.09 × 103 25.19 × 103 22.3 × 103 7.52 × 103 17.42 × 103

Pseudomonas
(MPN/100 ml)

0 65 108.83 62.6 73.5 160 156.6 39.5 87.6

4 58.83 97 52.3 62.3 135 125 37 72.6

7 57.33 82.6 47.6 51.5 122.3 108 33.16 66.3

10 46.1 70.8 40.5 43.3 104.5 91.6 27.6 57.16

15 22 42.6 23.66 24 101 84 22 27

20 17.33 29.3 18.6 17.33 86.33 73 16 20. 6

Average 44.43 71.85 40.88 45.32 118.19 106.36 29.21 62.13

HPC
(CFU/ml)

0 147.5 × 103 159.42 × 103 131.67 × 103 148.35 × 103 224.83 × 103 230.66 × 103 110.5 × 103 176.83 × 103

4 132.5 × 103 148 × 103 117.33 × 103 138 × 103 210.17 × 103 204.67 × 103 102.8 × 103 167.33 × 103

7 119.42 × 103 135.5 × 103 104.17 × 103 126.17 × 103 199.83 × 103 194.5 × 103 95.62 × 103 161.17 × 103

10 109.63 × 103 119.92 × 103 88.83 × 103 117.83 × 103 186 × 103 180.67 × 103 89.04 × 103 147.17 × 103

15 50.33 × 103 96.33 × 103 53 × 103 78.66 × 103 175 × 103 161.67 × 103 50.33 × 103 98.33 × 103

20 36 × 103 80.67 × 103 40 × 103 67.66 × 103 159.67 × 103 149 × 103 36 × 103 90.33 × 103

Average 99.23 × 103 123.3 × 103 89.17 × 103 112.78 × 103 192.58 × 103 186.86 × 103 80.71 × 103 140.19 × 103
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reported this can be due to decrease in organic matter
content, they found out that organic matter content in
the sediments samples reduced with depth, from 25% at
0–2 cm to 15% at 10 cm depth [21]. Brinkmeyer et al.
detected a considerable reduction in the contents of in-
dicator bacteria from the top 1 cm (104 to 105) to the
deeper 15, 30, and 60 cm horizons (102 to 103) [26].

Grain size analysis
Sediment grain size analysis in Bushehr coastal areas
along the Persian Gulf are shown in Table 5. As seen,
sediments in five stations (Skele-Jofreh (S2), Gomrok
(S4), Skele-Solh Abad (S5), Skele-Jabri (S6), and
Shoghab (S8)) have a texture of silt – clay (mud) and a
diameter less than 125 μm, but sediments in three sta-
tions (TV Park (S1), Daneshjo Park (S3), and Bandar-
gah (S7)), have a texture of fine sand and a diameter
between 125-250 μm. Our results revealed that the
concentrations of indicators organisms were greater in
muddy sediments compare with sandy ones. It is a fact

that fine-grained sediment due to the higher surface
area to volume ratio has more potential to tend higher
concentration levels of bacterial indicators [52–54]. In
a study by Lang and Smith, it was concluded that the
clay amount of soils is particularly important regarding
to abundance of indicator bacteria, as clay particles
protected bacteria against predators and higher avail-
ability of substrates and moisture than sand particles
[55]. A higher level of E. coli in sites with higher per-
cent of clay and silt and lower sand has been reported
in former studies [56, 57]. Burton et al. found that E.
coli survival was higher in sediments containing at least
25% clay (particles less than 2 mm in diameter), pre-
sumably due to enhanced attachment to the finer sedi-
ment particles [58]. In contrast to our study, Cinotto et
al. reported that E. coli survival was higher in sediments
with mainly big particles (ranging in size from 125 to
500 mm), possibly due to bigger sediment particles fa-
cilitate increased permeability and accessibility of nutri-
ents [59].
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Fig. 7 Compare the mean log values of total coliform, fecal coliform, pseudomonas aeruginosa and HPC bacteria between eight stations at
various depths
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Conclusion
The present study was the first attempt to survey in-
dicators bacteria profiles in seawater and sediment of
coastal area along the Persian Gulf. Our study re-
vealed that there was a reverse correlation between

the levels of indicator bacteria and salinity of seawater
samples. The levels of indicator organisms were 10 to
100 times higher in sediments than in seawater sam-
ples. The concentration levels of indicators bacteria
were higher in muddy sediments compare with sandy

Table 4 Mean concentration levels and mean log numbers of indicators bacteria (the average of eight stations) in sediment
samples at various depths

Depth (cm) N Mean Log number Std. Deviation Minimum Maximum

Total coliform
(MPN/100 ml)

0 48 81.17 × 103 4.909 34.65 × 103 43 × 103 180 × 103

4 48 71.34 × 103 4.853 32.58 × 103 34 × 103 170 × 103

7 48 61.92 × 103 4.792 27.54 × 103 33 × 103 140 × 103

10 48 53.17 × 103 4.725 23.99 × 103 31 × 103 130 × 103

15 48 43.78 × 103 4.641 25.32 × 103 26 × 103 120 × 103

20 48 37.21 × 103 4.571 23.76 × 103 21 × 103 110 × 103

Fecal coliform
(MPN/100 ml)

0 48 20 × 103 4.301 8.17 × 103 9 × 103 35 × 103

4 48 18 × 103 4.255 7.68 × 103 7.9 × 103 33 × 103

7 48 16.1 × 103 4.207 7.189 × 103 6.3 × 103 31 × 103

10 48 14.1 × 103 4.149 6.77 × 103 4.9 × 103 27 × 103

15 48 11.08 × 103 4.044 6.18 × 103 4.6 × 103 22 × 103

20 48 9.16 × 103 3.961 5.59 × 103 3.1 × 103 21 × 103

Pseudomonas
(MPN/100 ml)

0 48 94.23 1.974 49.656 26 240

4 48 80.02 1.903 38.793 23 180

7 48 71.13 1.852 34.742 22 170

10 48 60.23 1.779 29.826 21 140

15 48 43.29 1.636 31.403 17 130

20 48 34.83 1.541 27.864 14 110

HPC
(CFU/ml)

0 48 166.2 × 103 5.220 51.39 × 103 83 × 103 35 × 103

4 48 152.6 × 103 5.183 45.32 × 103 76 × 103 241 × 103

7 48 142 × 103 5.152 45.48 × 103 65 × 103 232 × 103

10 48 129.8 × 103 5.113 44.38 × 103 56 × 103 199 × 103

15 48 95.4 × 103 4.979 47.34 × 103 43 × 103 182 × 103

20 48 82.4 × 103 4.916 47.62 × 103 26 × 103 172 × 103

y = -0.0176x + 2.0165
R² = 0.9922

y = -0.0176x + 4.318
R² = 0.9921

y = -0.0224x + 1.9904
R² = 0.9918

y = -0.0162x + 5.2455
R² = 0.9657

0

1

2

3

4

5

6

0 5 10 15 20 25

srotacidnilaiborci
m

fo
sreb

mun
go

L

Depth (cm)

Fecal coliform

Total coliform

Pseudomonas
aeruginosa

HPC

Fig. 8 General decay pattern for the microbial indicators in marine sediment
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ones. Our results revealed that the concentration
levels of bacterial indicators decreased with depth.
Our presented models in this study can be useful
models to anticipate indicator bacteria numbers in
marine environment sediments considering sediment
texture and grain size. The orders of indicator bac-
teria numbers in seawater and sediment samples were

HPC > total coliform > fecal coliform > pseudomonas
aeruginosa. The concentration levels of indicator bac-
teria in sampling stations showed that coastal areas
along the Persian Gulf are facing a wide variety of
anthropogenic sources. Finally monitoring and mitiga-
tion measures of marine environment particularly in
places with entertainments uses are greatly suggested.
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Fig. 9 Percent decline (%) of bacteria in marine sediment with depth

Table 5 Sediment grain size analysis in Bushehr port coasts at various stations

Station Mesh (mm) Texture

4 2 1 0.5 0.25 0.125 0.063 <0.063

1 0.934 3.728 5.756 8.938 35.327 38.158 6.794 0.437 Fine sand

2 0.283 1.412 1.226 3.796 8.443 29.172 53.848 1.820 Silt – clay

3 1.110 4.084 4.809 10.844 16.576 42.916 14.540 5.120 Fine sand

4 6.892 3.325 2.697 2.196 2.777 18.742 58.756 4.613 Silt – clay

5 1.418 1.141 0.710 0.411 0.729 31.861 64.316 0.740 Silt – clay

6 0.568 0.561 1.02 1.694 4.372 21.813 67.44 2.525 Silt – clay

7 0.221 0.132 0.676 10.328 17.910 37.431 30.254 3.046 Fine sand

8 0 0.242 0.418 0.951 4.716 39.661 51.831 2.18 Silt – clay
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