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Abstract 

 

Renal cell carcinoma (RCC) is a lethal urological cancer, with incidence and mortality rates 
increasing by 2-3% per decade. The lack of   standard screening tests contributes to the fact 

that one-third of patients are diagnosed with locally invasive or metastatic disease. 

Moreover, 20-40% of RCC patients submitted to surgical nephrectomy will develop 

metastasis. MicroRNAs (miRNAs) are small non-coding RNAs responsible for gene regulation 

at a post-transcriptional level.  It is accepted that they are deregulated in cancer and can 
influence tumor development. Thus, miRNAs are promising RCC biomarkers, since they can 

be detected using non-invasive methods. They are highly stable and easier to quantify in 

circulating biofluids. The elevated miRNA stability in circulating samples may be the 

consequence of their capacity to circulate inside of extracellular microvesicles (EMVs), for 

example, the exosomes.  The EMVs are bilayered membrane vesicles secreted by all cell 

types. They can be released in the interstitial space or into circulating biofluids, which 
allows the travelling, binding and entrance of these vesicles in receptor cells. This type of 

cell communication can shuttle bioactive molecules between cells, allowing the horizontal 

transference of genetic material. In this review, we focus on circulating miRNAs (miR-210, 

miR-1233, miR-221, miR-15a, miR-451, miR-508, miR-378) in the biofluids of RCC patients 

and attempt to establish the diagnostic and prognostic accuracy, their synergic effects, and 

the pathways involved in RCC biology. Copyright: The Authors. 
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Introduction  

Renal cell carcinoma (RCC) is thought to 

arise from the renal parenchyma and it is 

the most common solid tumor in the adult 
kidney, accounting for 2-3% of all cancers 

(1). Worldwide mortality from RCC exceeds 

100,000 patients each year with the 

incidence and mortality rate increasing by 
2–3% per decade (1-3). RCC is the most 
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lethal common urological cancer, with a 

cancer-specific mortality of 30–40%, 
compared to 20% mortality rates for 

bladder and prostate cancers (1). The high 

RCC incidence rate could be partially 

explained by the improvement of the 

diagnostic tests (computed tomography, 
MRI and so on) which allows the detection 

of a significant number of incidental and 

asymptomatic cases (2). However, there is 

no standard screening tests for RCC, and 

one third of patients present with 

metastatic RCC (mRCC) at the time of 
diagnosis. Moreover, over the course of the 

disease, 20-30% of patients treated with 

surgery will relapse (4).  

The RCC frequency in men is 1.5-2.0 times 

greater than in woman, with an age peak 

around 60-70 years (5). The exact RCC 

etiology remains unclear, although lifestyle 
risk factors such as cigarette smoking and 

obesity, and iatrogenic factors like 

hypertension, use of antihypertensive 

medications and acquired renal cystic 

disease have been identified as potential 

risk factors (6, 7).  

According to the World Health Organization 

there are three major RCC histological 
subtypes in adults: the clear cell RCC 

(ccRCC) that occurs in 75-80% of cases, 

the papillary RCC (10-15%) and the 

chromophobe RCC (4-5%) (1). These 

histologic subtypes reflect the tumor 
heterogeneity and the occurrence of 

distinct molecular alterations during the 

course of the disease.   

Surgical intervention is the primary 

approach for the treatment of RCC detected 

at early stage. However, surgery alone has 

a limited benefit in patients with metastatic 

disease, except for palliative reasons (3, 8). 
Until the past decade, the treatment 

options for patients with mRCC have been 

extremely limited, as RCC is notoriously 

resistant to cytotoxic chemotherapy and 

radiotherapy (9, 10). Prior to the use of 
antiangiogenic agents, systemic treatment 

options for mRCC were limited to cytokine 

therapies interleukin-2  (IL-2) and 

interferon-alpha (IFN-α), but they were 

proved to be ineffective since only a small 

percentage of the patients showed benefit 
in terms of long term disease-free survival 

(11, 12). Currently, targeted therapies have 

become the standard of care for patients 

with mRCC with significant impact in 
patient outcome, replacing the cytokine 

therapy (13).  

The targeted therapies include receptor 

tyrosine kinase inhibitors (TKIs), vascular 

endothelial growth factor (VEGF) 

antibodies, and mammalian target of 

rapamycin inhibitors (mTORs) (3, 14, 15). 
Although the outcome of patients has 

improved, many tumors develop resistance 

to targeted therapies due to compensatory 

changes within the target pathway that 

bypass the site of inhibition (13, 16). 

Usually, resistance to the targeted agents 
has been shown to develop after a median 

of 5–11 months of treatment and a small 

subset of patients do not experience any 

clinical benefit from the targeted therapy 

(13).  

No standard approaches to biomarker 

sampling or analysis have been adopted for 
RCC since many of the putative tumor 

markers themselves are still under active 

investigation for further validation (17). The 

ideal biomarker must be accessible using 

non-invasive protocols, inexpensive to 

quantity, specific to the disease of interest, 
a reliable early indicator of disease before 

clinical symptoms appear and a way to 

stratify the disease and assess response to 

therapy (18). Despite being one of the most 

rapidly growing areas in cancer research, 
the establishment of biomarkers in body 

fluids has not been an easy task (19). One 

of the major challenges that need to be 

overcome is the susceptibility to 

degradation of the circulating biomarkers 

by proteases and nucleases. On the other 
hand, there is also the problem of the 

endogenous production of biomarker 

molecules by normal cells that may 

artificially augment the biomarker signals 

(20, 21).   

Plasma and serum have been the focus of 

extensive research for the past years (22). 
However, serum and plasma-based tests 

suitable for clinical use in early tumor 

detection are currently limited (23, 24). 

Nowadays, the majority of the routinely 

used serum markers are proteins and the 

standard methodologies used to measure 
them remain labor-intensive (23). The same 

is true for urine samples. Urine 



   Teixeira et al.                                                                                                              MicroRNA in renal cell carcinoma 

                                                                                    

JKCVHL 2014; 1(8):84-98 http://jkcvhl.com  86 
 

 

Figure 1. Mechanism of miRNA action. MiRNA can bind to specific regions of target mRNA 

transcripts and destabilizes the target transcript and/or blocks its translation.  

 

metabolomics analysis is theoretically 

promising but difficulties with the 
heterogeneous nature of urine 

metabolomics, potential contamination of 

non-human metabolites from genitourinary 

flora, and special handling requirements 

have limited the progress of its use as a 

source of biomarkers for RCC (25).  

Of the  possible non-invasive biomarkers 
that have been studied in RCC, the ones 

that seem more promising are  the miRNAs, 

since they can be detected using non-

invasive methods and are easier to quantify 

when compared to proteins. However, 

further research is needed in order to 

validate them (26-28).  

MicroRNAs 

MiRNAs are a class of small non-coding 
RNAs (19-25 nucleotides in length), that 

are involved in the regulation of biological 

processes, including cell proliferation and 
differentiation. miRNAs regulate gene 

expression by sequence-selective targeting 

of mRNAs, leading to their degradation or 

blockade at the post-transcriptional level, 

depending on the degree of 
complementarity between miRNAs and the 

target mRNA sequence (Figure 1) (29-32). 

They arise from intergenic or intragenic 

genomic regions that are transcribed as 

long primary transcripts. Then, the primary 

transcripts undergo processing steps that 
involve Drosha and Dicer enzymes, to form 

a mature miRNA. The mature miRNA binds 

to specific regions of target mRNA 

transcripts and destabilizes the target 

transcript or blocks its translation (33, 34). 
MiRNA expression is dynamic, since it is 

postulated that each miRNA regulates up 

to 100 different mRNAs and that more than 

10000 mRNAs appear to be directly 
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Figure 2. Schematic model of exosome secretion in cancer cells. Exosome membranes are enriched in 
cholesterol, sphingomyelin, and ceramide, as well as lipid raft associated proteins. These components 
allow exosomes to be highly stable in numerous body fluids. Exosomes released from cancer cells 
transport a variety of molecules (miRNAs, RNAs, DNA, proteins) and can be taken up by neighboring 
cells and are capable of inducing pathways involved in cancer initiation and progression. 

 

regulated by miRNAs (35). Many miRNAs 

have been identified to act as oncogenes, 
tumor suppressors or even modulators of 

cancer stem cells and metastasis formation 

(36). OncomiRs are known to down-

regulate tumor suppressor genes, and have 

been reported to be overexpressed in 
multiple miRNA-profiling studies. On the 

other hand, tumor suppressor miRNAs are 

responsible for down-regulating oncogenes, 

and are mostly under-expressed in cancer 

(33). 

One of the most important features of 

miRNAs is that they have different 

expression patterns in normal cells when 
compared with cancer cells, which makes 

them excellent candidates for biomarkers 

(37, 38). In addition, miRNA expression 

signatures in blood, serum and plasma are 

similar between species, as well in 
individuals of different ages from the same 

species (38). Specific expression patterns of 

serum miRNAs have already been identified 

for pregnancy, diabetes, and different 

cancers, thus providing evidence that 

plasma miRNAs contain fingerprints 
distinctive of certain human conditions 

(19). Circulating miRNAs are also stable 

after being submitted to severe conditions 
such as boiling, very low or high pH, 

extended storage, and several freeze-thaw 

cycles, that would normally degrade most 

RNAs (19). They also seem to be protected 

from RNase activity, which solves the 
problem of possible degradation and 

launches them as one of the top candidates 

for circulating biomarkers.  

Circulating tumor-microvesicles as 

potential microRNA carriers 

Over the past decade, tumors have 

increasingly been recognized as organs 

whose complexity approaches and may 

even exceed that of normal healthy tissues. 

When analyzed from this point of view, the 
biology of a tumor can only be understood 

by studying the individual specialized cell 

types within it as well as the “tumor 

microenvironment” that it is assembled 

during the course of tumorigenesis. This 
approach contrasts with the earlier view of 

a tumor as nothing more than a cluster of 

transformed cells standing alone, whose 

entire biology could be understood by 
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elucidating their cell-autonomous 

properties (39).  
 

Cancer cells in primary tumors are 

surrounded by a complex 

microenvironment. This microenvironment 

is composed by numerous types of cells 
including endothelial cells of the blood and 

lymphatic circulation, stromal fibroblasts 

and a variety of bone-marrow-derived cells 

including macrophages, myeloid-derived 

suppressor cells, TIE-2 expressing 

monocytes and mesenchymal stem cells 
(40).  

 

One way of microenvironment modulation 

is through paracrine and/or systemic 

signaling between cells. This type of 
intercellular communication can occur by a 

direct cell-to-cell contact through adhesion 

junctions or by releasing of soluble 

signaling molecules (growth factor, 

cytokines) by the exchange of cellular 

fragments such as extracellular membrane 
microvesicles (EMV) (41). Shed EMVs serve 

to shuttle bioactive molecules between cells 

and their cargo can modulate the 

extracellular microenvironment (42). The 

EMVs are small circulating fragments (40-

5000 nm diameter) with characteristics of 
the cell origin, that can be categorized into 

exosomes, microvesicles or ectosomes, 

apoptotic bodies or Golgi vesicles based on 

their size, origin, morphology and mode of 

release (38, 43). The best characterized 
EMVs are the exosomes, 50- to 100-nm 

vesicles generated intracellular in multi-

vesicular bodies (MVBs) and released 

directly or upon fusion with the plasma 

membrane (Figure 2) (42, 44). The EMVs 

are bilayered membrane vesicles secreted 
by all cell types that can be released in the 

interstitial space or into circulating body 

fluids, which allows the travelling of these 

vesicles and the posterior binding and 

entrance in receptors cells (41).  
 

Exosome-mediated cell communication 

includes, but is not restricted to, direct 

activation of cell-surface receptors on 

recipient cells, transfer and translation of 

mRNAs, transfer of miRNAs and silencing 
of mRNA targets, transfer of functional 

proteins and the induction of cell signaling 

pathways upon their internalization (42, 

45). Valadi and co-workers were the first 

group to observe the existence of miRNAs 

in exosomes, which can be delivered to 

another cell, and remain functional in the 
receptor cells (46).  

 

A recent study performed by King and co-

workers provides evidence that 

microenvironment modulation (oxygen 
oscillations) promotes exosome release 

from breast cancer cells, which could be 

mediated by HIF-1α signaling pathway (47). 

This scenario is particularly important in 

RCC where VHL inactivation leads to the 

accumulation of HIF-1α and the activation 
of HIF-regulated molecules (2). Moreover, 

Kahlert and co-workers found that 

exosomes from serum of pancreatic cancer 

patients can be used for genomic DNA 

mutations detection, with impact on cancer 
prediction and treatment (48). Thus, 

exosomes can select bioactive molecules 

and propagate the horizontal transfer of 

their cargo and, consequently, have an 

enormous impact on tumor growth, 

angiogenesis, escape from immune 
surveillance, extracellular matrix 

degradation and metastasis (44, 49, 50). 

Since they are released into the circulation, 

exosome-dependent signaling may occur 

not only locally, but also in a paracrine and 

systemic manner, which can have a direct 
impact in tumor progression and 

metastasis (45).  

 

The elevated stability of miRNA in 

circulating samples is thought to be the 
result of their capacity to circulate inside of 

exosomes (42). Exosome membranes are 

enriched in cholesterol, sphingomyelin, and 

ceramide as well as lipid raft associated 

proteins (51, 52). These components allow 

exosomes to be highly stable and thus be 
collected from numerous body fluids 

including blood, urine, breast milk, ascites 

and saliva (53-58). The lipid content of 

membranes is important because 

cholesterol depletion results in the 
inhibition of EMV release (42, 59). Thus, we 

hypothesize that higher levels of cholesterol 

observed in obese individuals can lead to 

an increase of EMV formation and release 

which in turn could promote miRNAs 

networks disruption leading to 
cardiovascular diseases and cancer 

development.  

Differential expression of miRNA between 

normal and cancer patients has been 
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reported (60-62). Although normal cells 

within the peripheral circulation can 
contribute to exosome population, the 

primary source of circulating exosomes in 

cancer patients is the tumor (63). Several 

reports indicate that cancer cells release 

more extracellular vesicle than normal cells 
and that the biomolecular cargo (nucleic 

acids, proteins and lipids) is reflective of 

the cell of origin (43). Moreover, miRNA 

containing tumor-derived exosomes can 

affect biological processes inside of 

recipient cells and, consequently, affect the 
tumor microenvironment (42). MiRNA 

molecules have also been described in 

exosomes shed from several tumor cell 

lines, including lung, glioblastoma and 

gastric cancers (60, 61, 64). It has also 
been suggested that tumor derived 

exosomes could be vehicles involved in the 

metastization process. Grange and co-

workers found that CD105-positive 

exosomes (containing miRNAs) that were 

released by renal cell carcinoma stem cells 
triggered angiogenesis and the formation of 

a pre-metastatic niche in the lungs, when 

injected in mice (65). Circulating 

extracellular vesicles derived from RCC 

contain miRNAs, such as miR-200c, miR-

92, miR-141, miR-19b, miR-29a, miR29c, 
miR-650, and miR-151. These miRNAs 

have been associated with tumor invasion 

and metastasis (37, 65).  

 

Circulating microRNAs in Renal Cell 

Carcinoma 

The majority of the efforts made with the 
purpose of finding a signature of 

deregulated miRNAs in RCC have used 

genome-wide microarray profiling   on 

tissue samples (66, 67). Since microarray 

allows the analysis of hundreds of miRNAs 
at the same time, it is an easy way to get 

an overall view of differentially expressed 

miRNAs in RCC.  

Several up-regulated miRNAs have been 

described in RCC tissue samples, such as 

the miR-210 and miR-155, whose 

expressions can be induced by the hypoxic 

tumor microenvironment of RCC (68, 69). 
Furthermore, the down-regulation of miR-

141, miR-149 and miR-200c are also 

described in these tumors. The down-

regulation or loss of these miRNAs is 

associated with epithelial–mesenchymal 

transition (EMT) (38). MiR-200c can target 

the ZEB1, a transcription factor that drives 
the EMT process (70).  Youssef and 

coworkers developed a ‘decision tree’ based 

on miRNA expression signature of   RCC 

samples (71). The ‘decision tree’ can enable 

researchers to distinguish different 
subtypes of RCC. The system has a 

sensitivity of 97% in distinguishing normal 

from RCC, 100% for clear cell RCC 

subtype, 97% for papillary RCC subtype 

and 100% accuracy in distinguishing 

oncocytoma from chromophobe RCC 
subtype (71). While these results are 

promising, they were generated using a 

limited number of samples. Furthermore, 

obtaining tissue samples require the use of 

invasive biopsy (66).  

Hence, profiling miRNA signature in 

biofluids is attractive strategy. In this 
regard, only a few studies have assessed 

circulating miRNA in RCC as potential 

biomarkers (Table 1).  

Teixeira and co-workers suggested that 

plasma level of miR-221 plasma is a 

potential biomarker of RCC progression. By 

integrating histopathological 

characteristics, patients’ age and miR-221 
plasma expression levels, the authors 

proposed that higher circulating expression 

levels of miR-221 associated with poor 

overall survival (72). Furthermore, patients 

with metastatic RCC on diagnosis 
presented 10.9-fold increase of miR-221 

expression when compared to patients with 

localized disease (72). The miR-221 was 

identified as a downstream target of EGFR-

RAS-RAF-MEK pathway, and the down-

regulation of this miRNA is associated with 
the inhibition of the invasion potential and 

the secretion of matrix metalloproteinase 2 

and 9 (73-75).  

The serum levels of miR-210 were proposed 

as biomarkers for molecular diagnosis of 

ccRCC by Zhao and coworkers (76). A 

decrease in serum miR-210 levels was 
observed after nephrectomy, emphasizing 

the hypothesis of miRNA release from 

tumor into circulation (76). Iwamoto and 

co-workers also observed a higher 

expression of miR-210 in tumor versus 

normal tissue samples from 34 RCC 
patients. However, no statistically 

significant association was found when 
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Table 1. Summary of circulating miRNAs detected in RCC patients 

MIRNA POPULATION (SIZE) 
TYPE OF 

SAMPLE 

MIRNA 

REGULATION 

CLINICAL 

IMPLICATIONS 
REF 

MIR-15A 7 RCC/ 5 chRCC*/6 

pRCC/ 5 Onco/ 5 HC 
urine Up 

diagnosis of 

ccRCC 
(81) 

MIR-210 

34 RCC/ 23 HC serum Up diagnosis of RCC (77) 

68 RCC/ 42 HC serum Up diagnosis of RCC (76) 

MIR-221 43 RCC / 34 HC plasma Up diagnosis and 

prognosis of RCC 
(72) 

MIR-378 90 RCC/ 35 HC serum Up diagnosis of RCC (27) 

MIR-451 90 RCC/ 35 HC serum Down diagnosis of RCC (27) 

MIR-508-

3P 

10 RCC/ 10 HC serum Down diagnosis of RCC (80) 

MIR-1233 84 RCC/ 93 HC serum Up diagnosis of RCC (26) 

*RCC, renal cell carcinoma; chRCC, chromophobe RCC; pRCC, papillary RCC; Onco, oncocytoma; HC, 
healthy controls.    

 

matched for age, gender, tumor size or 

metastases (77). The expression of miR-210 

is directly regulated by hypoxia and has the 

potential to be a biomarker of HIF-α 

pathway activation. Furthermore, miR-210 

has multiple direct targets and exerts its 
influence on a wide range of cellular 

processes such as proliferation, 

differentiation, mitochondrial metabolism, 

protein modification, nucleic acid binding, 

migration and angiogenesis (78).  

Redova and coworkers showed that miR-

451 is down-regulated in serum samples of 
RCC patients when compared to healthy 

individuals. They also demonstrated that 

miR-378, which is known to promote cell 

survival and angiogenesis, is up-regulated 

in serum samples of RCC patients (n=90) 

(27). However, in the same year Hauser and 
co-workers, using serum samples of 117 

RCC patients, did not observe this up- 

regulation compared with the levels 

observed in healthy individuals. Moreover, 

these authors did not find any statistically 
significant association between the 

expression of miR-378 and pT-stage, lymph 

node/distant metastasis, vascular invasion 

and Fuhrman grade (79). The 

contradictions observed between the two 

studies could be the consequence of 

differences in the biologic populations 

(patients and control group) and also the 

influence of the methodology used for 

miRNA extraction/purification. 

Zhai and co-workers observed a down-

regulation of miR-508-3p in biopsy samples 

of RCC patients and validated the results 

in 10 plasma samples of the same RCC 
patients (80). They also proposed that miR-

508-3p would play an important role as 

tumor suppressor gene during tumor 

formation and that it may serve as novel 

diagnostic marker for RCC (80).  

The high serum levels of miR-1233 were 

described by Wulfken and co-workers in 
RCC patients (n=84 patients) compared 

with healthy controls, with a sensitivity of 

77.4% and a specificity of 37.6% (26). 

Using a bioinformatics approach (miRWalk) 

the authors suggested that this miRNA can 

target p53 and BLCAP, well-known tumor 

suppressor genes (26).  

Another biological sample with a potential 

to be used for molecular biomarkers 

detection is the urine. Von Brandenstein 

and co-workers proposed that miR-15a 

may be an important biomarker aiding in 

ccRCC detection since it is detectable in   
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Figure 3. VHL and miRNA. Proposed mechanistic model for the role of miR-210, miR-1233, miR-221, 
miR-15a, miR-451, miR-508-3p, miR-378 during the ccRCC development. 
 

the urine of ccRCC patients but is nearly 

undetectable in the urine of patients with 

other urinary tumors, and urinary tract 
inflammation (81). Recently, Komabavashi 

and co-workers proposed that the down 
regulation of miR-15a is implicated in the 

pathogenesis of nasal NK/T-cell lymphoma, 

where it induces cell proliferation via MYB 

and cyclin D1 (82). 

Correlation between circulating 

microRNAs, VHL deregulation and renal 

cell carcinoma  

The different RCC histological subtypes 

reflect differences in the molecular 

mechanisms involved in tumorigenesis as 

well as different prognosis. The papillary 

RCC is characterized by the gain of 

chromosome material (Trisomy 7, 17), 
chromophobe RCC is characterized by the 

loss of genetic material that included 

monosomy of chromosomes 1, 2, 6, 13, 17 

or 21 (83), and  the majority of cell RCC is 

characterized by loss of function of  the von 

Hippel-Lindau (VHL) gene  (84-87).   

 

 

In normoxic conditions, the protein 

encoded by the VHL gene (pVHL) serves as 

a recognition site for the regulatory 
subunits of HIF, targeting them for 

proteasomal degradation. One of the early 

molecular events of ccRCC is the loss of 

pVHL function (a consequence of the loss of 

the short arm of chromosome 3), which 

stops the degradation of HIF and leads to 
its accumulation in the cytoplasm and 

further migration to the nucleus where it 

binds to hypoxia-regulated genes. Once 

activated, these genes are involved in 

pathways responsible for angiogenesis, 
proliferation, glucose metabolism, pH 

regulation and metastatic disease (2, 87-

89). Based on the previous section on 

circulating microRNAs in renal cell 

carcinoma (see above) we propose a 

possible mechanistic association between 
miRNAs and the VHL signaling pathway 

(Figure 3).  

VHL deregulation induces the expression of 

miR-210 (90). MiR-1233, which is rapidly 

induced by hypoxia, in turn work together  
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with HIF-α to regulate the hypoxic response 

from the cell (91, 92).  Thus, we 
hypothesize that miR-210 is induced by 

hypoxia and miR-1233 helps to maintain 

the hypoxic status.  

The VHL is also responsible for EGFR 

(epidermal growth factor receptor) turnover. 

Studies performed by Zhou and co-workers 

showed that the half-life of EGFR is longer 
in cells lacking the VHL gene compared to 

normal cells (90).  The EGFR stabilization 

in membrane and the TGFα biodisponibility 

(as a consequence of VHL deregulation) can 

promote the constant activation of EGFR-

RAS-RAF-MEK leading to a higher cellular 
proliferation. Since the miR-221 is induced 

by EGFR-RAS-RAF-MEK pathway, it is 

fitting that higher levels of this miRNA is 

found in patients with ccRCC (72). MiR-221 

can actively repress TIMP-3 and cell cycle 
inhibitor proteins p27/Kip1 and p57, 

facilitating cell proliferation, self-renewal 

and epithelial-mesenchymal transition of 

RCC (93, 94). 

Recently, Camps and co-workers observed 

an increase of miR-378 at lower 

concentrations of oxygen, suggesting that 

this miRNA could be a potential biomarker 
for hypoxia (95). It is known that miR-378 

inhibits the expression of CYP2E1, which 

could be implicated in chemotherapy 

responses (96).  

Kozakowski and co-workers found a higher 

expression of Bmi-1 (B lymphoma mouse 

Moloney leukemia virus insertion region) 
during RCC development. Bmi-1 is 

indispensable for the self-renewal of neural 

and hematopoietic stem cells, and a high 

expression is observed in papillary RCC 

and oncocytomas. However, in ccRCC, 

Bmi-1 expression was inversely correlated 
(97).  Bim-1 down-regulation in ccRCC 

could be explained by the capacity of miR-

15a to target the Bmi-1 3’ UTR mRNA 

leading to it degradation or translational 

repression (98).  

Other circulating miRNAs deregulated in 

RCC were the miR-451 and miR-508-3p 
(80, 99). MiRNA-451 and miR-508-3p are   

involved in the regulation of MDR1 gene 

(multidrug resistance 1 gene) that encode 

the human P-glycoprotein (100, 101). The 

elevated levels of P-glycoprotein in 

cytoplasm and membranes are associated 

with drug-resistance of tumors (100). The 
significant role of P-glycoprotein in drug 

pharmacokinetics is suggested by its 

location in the adrenal gland and in 

proximal tubules of the kidney (102).  MiR-

451 reduces the expression of MDR1 mRNA 
and P-glycoprotein. A reduction of miR-451 

and miR-508-3p could be reason why RCC 

is notoriously resistant to conventional 

therapeutics.  

Conclusion 

The stability and “anti-degradation” nature 

of exosomes in body fluids and the variety 

of molecules that they carry, such as 

miRNAs, makes them an ideal target for 

biomarkers discovery since their cargo 
reflects the characteristics of the cell of 

origin. Nevertheless, the knowledge 

regarding the mechanisms in which 

miRNAs are selected and incorporated in 

exosomes is limited and further 
investigations is needed to clarify the 

biological impact of these molecules in 

distant sites of the body. In the future, 

clarification of these mechanisms will 

enable the elucidation of the metastatic 

process and the discovery of new cancer 
therapies.   Several studies were able to 

detect circulating miRNAs in body fluids of 

RCC patients, supporting their suitability 

as biomarkers. The use of biological fluids 

such as plasma, serum and urine may 
open the door to the so called “liquid 

biopsies”, a less invasive method that could 

effectively overcome the challenges 

associated to conventional tissue sampling 

and provide more sensitive biomarkers. 

However, the establishment of standard 
protocols for isolation and quantification of 

miRNAs are needed in order to implement 

their use as biomarkers in the clinical 

practice.   
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