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Abstract

Epstein–Barr virus (EBV) encodes 49 microRNAs (miRNAs) in the BART and 
BHRF1 regions of its genome. Although expression profiles of EBV-encoded 
miRNAs have been reported for EBV-positive cell lines and nasopharyngeal 
carcinoma, to date there is little information about total miRNA expression, 
including cellular and viral miRNAs, in the primary tumors of EBV-associated 
B-lymphoproliferative disorders. In this study, next-generation sequencing and 
quantitative real-time reverse transcription-PCR were used to determine the 
expression profiles of miRNAs in EBV-infected cell lines and EBV-associated 
B-cell lymphomas, including AIDS-related diffuse large B-cell lymphoma 
(DLBCL), pyothorax-associated lymphoma, methotrexate-associated lymphopro-
liferative disorder, EBV-positive DLBCL of the elderly, and Hodgkin lymphoma. 
Next-generation sequencing revealed that EBV-encoded miRNAs accounted for 
up to 34% of total annotated miRNAs in these cases. Expression of three miR-
BHRF1s was significantly higher in AIDS-related DLBCL and pyothorax-associated 
lymphoma compared with methotrexate-associated lymphoproliferative disorder 
and EBV-positive DLBCL of the elderly, suggesting the association of miR-
BHRF1s expression with latency III EBV infection. Heat map/clustering analysis 
of expression of all miRNAs, including cellular and EBV miRNAs, by next-
generation sequencing demonstrated that each EBV tumor, except methotrexate-
associated lymphoproliferative disorder, formed an isolated cluster. Principal 
component analysis based on the EBV-encoded miRNA expression showed that 
each EBV tumor formed a distinguished cluster, but AIDS-related DLBCL and 
pyothorax-associated lymphoma formed larger clusters than other tumors. These 
data suggest that expression of miRNAs, including EBV-encoded miRNAs, is 
associated with the tumor type and status of virus infection in these tumors.
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Introduction

Epstein–Barr virus (EBV) is associated with the patho-
genesis of malignant tumors, including lymphoma, gastric 
cancer, and nasopharyngeal carcinoma [1, 2]. These EBV-
associated tumors have different patterns of EBV-encoded 
mRNA expression, which are categorized as latency types 
I, II, and III. Type III latency is characterized by the 
expression of all EBV latent genes, including EBV-encoded 
nuclear antigens (EBNAs) and latent membrane proteins 
(LMPs). In EBV-associated malignancies with type I and 
II latency, the expressions of EBV genes are restricted by 
the activity of a specific promoter. While EBNA1 and 
EBV-encoded small RNAs (EBERs) are expressed in almost 
all types of EBV-infected cells, the expressions of LMPs 
and other EBNAs are downregulated in EBV-positive 
Burkitt lymphoma and gastric cancer. Different expression 
profiles are thought to contribute to the pathogenesis of 
EBV-associated malignancies [2]. LMP1 and EBNA2 are 
expressed in malignancies of type III latency, such as 
opportunistic EBV-associated lymphoma.

MicroRNAs (miRNAs) are short 20–23 nucleotide RNAs 
[3, 4]. EBV encodes 25 pre-miRNAs and 49 mature  
miRNAs in two clusters, BHRF1 and BART [5–9]. The 
BHRF1 cluster encodes three miRNAs, miR-BHRF1-1, -2, 
and -3, while the BART cluster encodes at least 22 pre-
miRNAs (miR-BARTs). Both miR-BHRF1s and miR-
BARTs are expressed in spontaneously EBV-transformed 
lymphoblastoid cell lines (LCLs), but expression of miR-
BHRF1s is restricted in EBV-associated nasopharyngeal 
carcinoma (NPC) and nasal NK/T-cell lymphoma [10–14]. 
In addition, EBV strain B95-8, a commonly used labora-
tory strain, has a deletion in the BART cluster, resulting 
in lack of expression of some miR-BARTs [15]. Since the 
B95-8 strain has full transforming potential in human B 
cells, this indicates that the miR-BARTs that are missing 
in B95-8 are not required for B-cell transformation [16]. 
However, other studies demonstrated that EBVs that lack 
the BHRF1 cluster have a reduced ability to transform 
human B cells, suggesting a contribution of miR-BHRF1s 
to B-cell transformation [17, 18]. Furthermore, some EBV-
encoded miRNAs were shown to repress BCL6 expression 
in diffuse large B-cell lymphoma [19]. Another report 
demonstrated that miR-BHRF1-2 regulated PRDM1/
Blimp1, a master regulator of B-cell terminal differentia-
tion [20]. Thus, these reports and other previous studies 
suggested some contributions by EBV-encoded miRNAs 
to the pathogenesis of B-cell lymphoma [21].

In addition to viral miRNAs, cellular miRNAs also play 
important roles in the oncogenesis of B-cell lymphomas 
[22]. miR155 is accumulated in B-cell lymphoma cells 
and plays a crucial role in the growth of B-cell lymphoma 
[23, 24]. miR155 has been shown to suppress 

activation-induced cytidine deaminase-mediated MYC-
IGH translocation in Burkitt lymphoma [25]. miR19a and 
miR19b in Burkitt lymphoma cells are a direct transcrip-
tional target of C-MYC [26]. EBV infection also induces 
expression of oncomiRs, such as miR-21 and miR-146a, 
in B-cells [27–29].

To clarify the roles of cellular and EBV-encoded mi-
RNAs in vivo, it is important to determine the expression 
profile of total miRNAs in primary tumors of EBV-
associated lymphoma. To date, the expression profiles of 
EBV-encoded miRNAs have been investigated in primary 
NPC, nasal NK/T-cell lymphoma, gastric cancer samples, 
and LCLs using real-time RT-PCR [10, 11, 14, 30–37], 
but there is little information about EBV-encoded miRNA 
expression in primary tumors of EBV-associated B-cell 
lymphoma. Next-generation sequencing (NGS) is a power-
ful tool for investigating the expression of small RNAs, 
including cellular and viral miRNAs. The expression profile 
of cellular and viral miRNAs has been reported in EBV-
positive diffuse large B-cell lymphoma (DLBCL) of the 
elderly and Burkitt lymphoma cases by NGS, DNA micro-
array, and real-time PCR analysis [33, 37–40]. However, 
no report has compared the miRNA expression profiles 
among different histological categories of EBV-associated 
B-cell lymphomas. In this study, the expression of cellular 
and EBV-encoded miRNAs was investigated using NGS 
and quantitative real-time RT-PCR analysis in EBV-positive 
cell lines and clinical samples of EBV-associated B-cell 
lymphomas.

Materials and Methods

Samples

Studies using human tissue were performed with the 
approval of the Institutional Review Board of the National 
Institute of Infectious Diseases (Approval No. 271 and 
272) and Tokyo Metropolitan Komagome Hospital 
(Approval No. 628). All clinical samples were collected 
from Japanese patients in Japan. All data in this study 
were analyzed anonymously. Seventeen frozen samples of 
EBV-associated diseases were examined by NGS. Samples 
included three AIDS-related DLBCL (ARL), four 
pyothorax-associated lymphoma (PAL), five methotrexate-
related lymphoma (MTX), three EBV-positive DLBCL of 
the elderly (ELD), and two Hodgkin lymphoma (HL) 
cases. In addition, 18 ARL, four PAL, four MTX, five 
ELD, and six HL cases were analyzed by real-time RT-
PCR. The four ARL case samples that were analyzed by 
real-time RT-PCR were formalin-fixed paraffin-embedded 
(FFPE) tissues. Histological diagnosis of lymphoma was 
based on the 4th edition of World Health Organization 
classification of lymphoma [41]. All cases were confirmed 
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positive for EBV infection using in situ hybridization of 
EBERs. All EBV-positive samples contained EBER-positive 
cells, but the fraction of positive cells varied among sam-
ples (Fig.  1). EBER-positive cells comprised 30–100% of 

the cells in ARL, PAL, MTX, and ELD samples. In the 
HL samples, only the Reed–Sternberg cells were positive 
for EBER, but they were less than 10% of all cells. All 
ARL and PAL cases were positive for LMP1 and EBNA2 

Figure 1. Histological sections of samples used in this study. Hematoxylin-eosin (HE) stain (left panels) and Epstein–Barr virus (EBV)-encoded small 
RNAs (EBERs) in situ hybridization (right panels) are shown in representative cases of EBV-associated lymphoma. ARL: AIDS-related diffuse large B-cell 
lymphoma, ELD: EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly, HL: Hodgkin lymphoma, LCL: lymphoblastoid cell line, MTX: 
methotrexate-associated lymphoproliferative disorder, PAL: pyothorax-associated lymphoma.
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by immunohistochemistry or RT-PCR, suggesting latency 
III. Cases of MTX and ELD were negative for LMP1, but 
some of them were not examined. HL cases were positive 
for LMP1 and negative for EBNA2 in Reed–Sternberg 
cells, suggesting latency II. Histological subtypes of DLBCL 
included centroblastic and immunoblastic variants, but 
some cases were not distinguishable histologically. Six 
EBV-negative DLBCL tumors from immunocompetent 
patients were also examined. In addition to the tumors 
from clinical cases, one EBV-transformed EBV LCL (spon-
taneous transformation), four EBV (strain B95-8)-
transformed LCLs, and two EBV-negative and 
KSHV-positive primary effusion lymphoma cell lines, TY-1 
and BCBL-1, were examined.

RNA extraction

Total RNA, including miRNA, was extracted from frozen 
or paraffin-embedded samples and cell lines using the 
High Pure miRNA purification kit (Roche Molecular 
Biochemicals, Indianapolis, IN) and subsequently treated 
with Turbo DNase (Ambion, Austin, TX), all according 
to instructions from the manufacturers.

NGS

Small RNA libraries were established with the TruSeq 
small RNA kit (Illumina, San Diego, CA) from 18- to 
35-nucleotide cDNAs using 5  μg of DNase-treated total 
RNA. Small RNA was sequenced using the Illumina Genome 
Analyzer IIx platform with cBot-SR v2 and SBS 36 cycle 
v5 kit. Sequence reads were analyzed with CLC Genomics 
Workbench (version 7.5.1, CLC bio, Aarhus, Demark). 
miRBase release 21 was used as the miRNA database 
(http://www.mirbase.org/). Homo_sapiens.GRCh37.57.
ncrna was used as a comprehensive noncoding RNA data-
base (http://www.ncrna.org/). All annotated reads matching 
to pre-miRNA were counted as miRNA reads.

Real-time RT-PCR for miRNA

Total RNA (100  ng) was reverse-transcribed using the 
miScript Reverse Transcription Kit from Qiagen (Valencia, 
CA). Real-time reverse transcription polymerase chain 
reaction (RT-PCR) for the quantification of 42 EBV-
encoded miRNAs and human cellular miRNAs miR16 and 
miR21 was carried out with the miScript PCR system 
(Qiagen). Ratios of the copy numbers of EBV-encoded 
miRNA to miR16 were calculated as follows: ratio of target 
miRNA to miR16  =  2Ct of miR16/2Ct of target (Ct = cycle 
threshold). Each Ct was determined by results of EBV-
negative controls for EBV-encoded miRNA and nontem-
plate controls for miR16 in each experiment. In addition, 

stem-loop real-time RT-PCR (Taqman microRNA assay, 
Applied Biosystems, Foster City, CA) was also performed 
for comparison with the miScript PCR system. Synthesized 
miR21 with deletion or addition of single or double 
nucleotides in the 3′ end (Fasmac, Tokyo, Japan) was 
examined.

Heat map and cluster analysis

Heat map images were produced using TreeView and 
Cluster software by Michael Eisen, University of California 
at Berkeley (http://rana.lbl.gov/EisenSoftware.htm) [42].

Principal component analysis

Principal component analysis (PCA) was performed on 
normalized data of ratios of EBV-encoded miRNA copy 
number to miR16 copy number using the PCA function 
of SPSS software (IBM, Armonk, NY). The first three 
principal components were used to produce two-
dimensional and three-dimensional plots. Resolution and 
convex hulls in three-dimensional plots were calculated 
and plotted using MATLAB (MathWorks, Natick, MA), 
as reported previously [31]. Volumes of convex hulls were 
measured by MATLAB ConvexHull function after 
Delaunay-triangulation.

Accession number

The annotated miRNAs detected in cell lines and clinical 
samples by NGS in this study are registered as accession 
number DRA002823 in the DDBJ Sequence Read Archive.

Statistical analysis

Mann–Whitney U-test was used for nonparametric two-
group comparison (Graph Pad Prism 5, GraphPad Software, 
La Jolla, CA).

Results

Small RNA libraries

Small RNA libraries were established from an EBV-
transformed LCL and 17 clinical samples of EBV-associated 
lymphoproliferative disorders to determine the miRNA 
profiles. Although more than 100,000 reads were sequenced 
in each sample by NGS, unannotated rates ranged from 
13.91% to 65.61% (Table S1). Noncoding RNA reads 
ranged from 14.43% to 79.38% and miRNA reads ranged 
from 1.16% to 71.66%. A total of 688 cellular and EBV 
miRNAs were annotated from all small RNA libraries 
(Table S2). EBV-encoded miRNAs ranged from 0.03% to 

http://www.mirbase.org/
http://www.ncrna.org/
http://rana.lbl.gov/EisenSoftware.htm
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34.7% of all annotated miRNA reads, and their percent-
ages varied among cases (Table S1).

Expression profile of miRNAs in EBV-
infected clinical samples using NGS

Among all annotated miRNAs, the most abundant miRNA 
in the average expression of all samples was miR21, a 
cellular miRNA, followed by miR143, -181a, -10b, -92a, 
-7641-2, -22, and -155 (Table  1). About 25% of all anno-
tated miRNAs was miR21 in ARL and HL samples (Fig. 2). 
miR143, which is associated with angiogenesis [43, 44], 
was detected in 3.8% to 8.1% of total miRNA reads in 
EBV-associated lymphoma cases, but in only 0.01% in 
LCL (Fig.  2). miR155, which is associated with B-cell 
lymphomagenesis [45], was also expressed constantly 
among EBV-associated lymphoma cases. Among the 

EBV-encoded miRNAs, miR-BART6, -10 and -11 and 
miR-BHRF1-1 were frequently detected in the cases 
(Table  1 and Figs.  2 and 3). miR-BHRF1-1 was expressed 
higher in the group of LCL, ARL, and PAL than in the 
group of MTX, ELD, and HL (Figs.  2 and 3, Mann–
Whitney U-test, P  <  0.01).

Since all reads matching to pre-miRNAs were counted 
as miRNAs in this system, the read counts contained 
both 5p and 3p mature miRNAs but also immature  
miRNAs. We also investigated the profile of coverage in 
each pre-miRNA. Coverage profiles in pre-miRNAs dem-
onstrated frequent deletion or addition of a single nucleo-
tide in the 3′ end of mature miRNAs in both cellular 
and EBV-encoded miRNAs in a spontaneous transformed 
LCL (Fig.  4). Among 20 miRNAs picked up randomly 
from cellular and viral miRNAs, the frequencies of changes 
in the 3′ end of mature miRNAs were not different between 

Table 1. Detection rates of miRNAs in each category.

miRNA LCL ARL PAL MTX ELD HL Average S.D.

miR21 5.78% 24.79% 10.39% 15.07% 4.67% 23.57% 14.05% 8.68%
miR143 0.01% 8.14% 5.54% 6.11% 3.82% 7.30% 5.15% 2.93%
miR181a-1 13.96% 0.97% 1.20% 2.84% 7.79% 2.57% 4.89% 5.08%
miR181a-2 14.15% 0.94% 1.19% 2.77% 7.73% 2.51% 4.88% 5.16%
miR10b 0.02% 4.83% 5.86% 4.74% 0.90% 1.33% 2.95% 2.47%
miR92a-1 2.75% 0.79% 2.64% 1.87% 6.01% 0.80% 2.48% 1.93%
miR7641-2 0.02% 0.12% 6.12% 4.80% 0.32% 5.34% 2.79% 2.92%
miR92a-2 2.48% 0.70% 2.38% 1.62% 5.24% 0.70% 2.19% 1.68%
miR22 0.74% 2.21% 2.83% 4.85% 1.96% 1.93% 2.42% 1.37%
miR155 3.52% 3.98% 3.99% 2.13% 1.36% 1.59% 2.76% 1.21%
miR191 10.21% 0.62% 2.65% 1.61% 2.24% 1.43% 3.13% 3.54%
miR142 1.36% 2.35% 1.30% 2.78% 0.55% 6.16% 2.42% 2.00%
let-7i 0.44% 1.77% 1.73% 2.46% 3.46% 1.89% 1.96% 0.99%
miR146b 2.23% 1.57% 1.73% 1.57% 1.15% 3.21% 1.91% 0.73%
miR146a 2.98% 4.06% 0.39% 0.66% 0.35% 2.87% 1.89% 1.61%
miR26a-2 0.72% 1.37% 1.23% 2.14% 1.08% 1.47% 1.34% 0.47%
miR26a-1 0.72% 1.36% 1.21% 2.15% 1.07% 1.47% 1.33% 0.48%
miR27b 0.72% 0.57% 1.30% 1.74% 1.66% 0.91% 1.15% 0.49%
miR10a 0.01% 1.78% 2.45% 0.82% 0.32% 1.02% 1.07% 0.91%
miR-BART6 1.60% 2.74% 0.85% 0.42% 2.21% 0.09% 1.32% 1.04%
miR-BART10 1.02% 3.18% 1.32% 0.70% 0.58% 0.34% 1.19% 1.03%
miR7641-1 0.01% 0.02% 2.06% 1.51% 0.14% 1.66% 0.90% 0.94%
miR30e 1.13% 0.62% 1.19% 1.23% 0.36% 1.33% 0.98% 0.39%
miR378a 1.68% 0.73% 0.98% 0.56% 1.07% 0.45% 0.91% 0.44%
miR4454 0.01% 0.02% 0.71% 1.10% 0.39% 4.41% 1.11% 1.67%
miR-BART11 2.42% 1.03% 0.56% 0.32% 2.21% 0.11% 1.11% 0.99%
miR126 0.00% 0.43% 1.10% 1.49% 0.26% 1.12% 0.73% 0.58%
let-7f-2 1.40% 0.61% 0.65% 1.03% 0.61% 0.72% 0.84% 0.32%
let-7f-1 1.35% 0.60% 0.62% 0.99% 0.60% 0.71% 0.81% 0.30%
miR-BART8 2.36% 0.91% 1.34% 0.58% 0.45% 0.11% 0.96% 0.80%
mir-BART7 1.11% 1.86% 0.77% 0.35% 1.05% 0.09% 0.87% 0.63%
mir-BHRF1-1 0.99% 0.39% 2.85% 0.01% 0.01% 0.03% 0.71% 1.11%

S.D.: standard deviation; EBV, Epstein–Barr virus; HL, Hodgkin lymphoma.
The 32 most frequently detected miRNAs are listed. Percentages of the miRNA in total annotated miRNAs are shown. EBV-encoded miRNAs are un-
derlined. LCL was a spontaneously EBV-transformed lymphoblastoid cell line. Averages of all samples including both cell lines and clinical samples are 
shown in the right.
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Figure 2. Cellular and Epstein–Barr virus (EBV)-encoded miRNA expression in LCL and clinical samples. Ratio of miRNA copy number to total miRNA 
copy number is shown on the vertical axis. Four frequent cellular and viral miRNAs are shown. Error bars indicate standard error.
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those of cellular and viral miRNAs (data not shown). In 
addition, frequencies of changes in the 3′ end of mature 
miRNAs were not different between miRNAs frequently 
expressed in clinical samples of EBV-associated lymphomas 
and those in LCL (data not shown).

Expression profile of EBV-encoded miRNAs 
using real-time RT-PCR

To confirm the expression profile of EBV-encoded mi-
RNAs, we performed real-time RT-PCR of these EBV-
encoded miRNAs using additional cases of EBV-associated 
lymphoma (18 ARL, 4 PAL, 4 MTX, 5 ELD, and 6 HL 

cases). Since NGS demonstrated frequent deletion or 
addition of a single nucleotide in the 3′ end of mature 
miRNA, we first compared the miScript PCR system and 
stem-loop real-time RT-PCR by examining synthesized 
miR21 that contained a deletion or addition of one or 
two nucleotides in the 3′ end. The miScript PCR system 
succeeded in detecting miR21 with deletions and addi-
tions, whereas stem-loop real-time PCR detected miR21 
with deletion or addition with less than one-tenth sen-
sitivity (Fig.  5A). Thus, the miScript PCR system was 
employed to detect 5p and 3p mature miRNAs separately. 
Real-time RT-PCR analysis revealed a similar profile of 
EBV miRNAs between FFPE tissues and frozen samples 

Figure 4. Coverage of reads in each pre-miRNA in spontaneously transformed LCL samples. Three frequent cellular and EBV miRNAs are shown. 
Sequences of pre-miRNAs are shown under the figures. Under bars indicate 5p and 3p miRNAs. Vertical axis indicates coverage (reads). EBV, Epstein–
Barr virus.
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of xenotropically inoculated lymphoma tissues in severe 
combined immunodeficiency mice (Fig.  5B). In addition, 
cycle thresholds of miR16 were proportional to those of 

miR21 in 12 representative clinical samples (Fig.  5C); 
therefore, the copy numbers of EBV-encoded miRNAs 
can be normalized by those of miR16 in each sample. 

Figure 5. Conditions of real-time PCR. (A) Detection of mature miRNA with deletion or addition in the 3′ end by real-time RT-PCR. A total of 1 × 105 
copies of synthesized miR21, miR21 with deletion (miR21-1), miR21 with addition of single nucleotide (miR21 + 1), and miR21 with addition of two 
nucleotides (miR21 + 2) in the 3′ end of mature miRNA were examined with the miScript PCR system (miScript SYBR green real-time PCR) and stem-
loop real-time RT-PCR (Taqman microRNA assay). Error bars indicate standard error for triplicate analyses. (B) Comparison of formalin-fixed paraffin-
embedded (FFPE) and frozen samples by real-time RT-PCR. miR-BARTs and miR-BHRF1s were quantified by the miScript PCR system. FFPE and frozen 
samples were obtained from xenotropically inoculated lymphoma tissues in severe combined immunodeficiency mice. (C) Cycle thresholds (Ct) for 
miR16 and miR21. The copy numbers of two cellular miRNAs, miR16 and miR21, were measured and plotted in 12 representative clinical samples 
using the miScript PCR system. Linear approximation line (broken line) and correlation coefficient (R2) are indicated.

Figure 6. Epstein–Barr virus (EBV)-encoded miRNA expression in LCL and clinical samples by real-time RT-PCR. The EBV genome map is shown at the 
top. Ratios of copy numbers of EBV-encoded miRNA to miR16 are shown in each category. A number of samples are shown in the right of each panel. 
Error bars indicate standard error. Deletion in the middle portion of the BART gene in B95-8 is indicated by a gray bar (139,724-151,554 nt in 
GenBank NC_007605). EBV-encoded miRNAs were not detected in the EBV-negative cell lines, TY-1 and BCBL-1, and 6 EBV-negative cases of diffuse 
large B-cell lymphoma (DLBCL) (data not shown).
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Real-time RT-PCR revealed that the pattern of EBV-
encoded miRNA expression in ARL is similar to PAL 
(Fig.  6). miR-BHRF1-1 showed higher copy numbers in 
ARL and PAL than in MTX, ELD, and HL (Mann–Whitney 
U-test, P  <  0.01). In HL, we detected miR-BARTs 13-3p 
and 19-3p, with no or low level expression of the other 
miRNAs. In addition, total expressions of EBV-encoded 
miRNAs were low in MTX and HL cases compared with 
other cases (Mann–Whitney U-test, P  <  0.01).

Heat map, cluster analysis, and PCA

To determine if EBV-associated lymphoma cases were 
categorized based on expression patterns of miRNAs, we 

performed cluster analysis on our data set using heat maps 
and PCA. Heat map and cluster analysis based on the 
data by NGS demonstrated that ARL, PAL, HL, and ELD 
formed an individual cluster based on the data of total 
miRNA expression, including both cellular and viral miR-
NAs (Fig.  7). MTX cases belonged to various clusters and 
did not form a cluster. PCA based on the data by EBV-
encoded miRNA expression by real-time RT-PCR analysis 
showed small volumes of cluster in three-dimensional plots 
of PC1-3 corresponding to LCL (cluster volume = 0.023), 
HL (1.62  ×  10−5), MTX (8.63  ×  10−4), and ELD (0.029) 
samples, whereas ARL (1.426) and PAL (2.030) formed 
larger clusters (Fig. 8). PCA showed that each EBV tumor, 
other than ARL and PAL, formed a distinguished cluster, 
but samples of ARL and PAL distributed broadly in the 
three-dimensional plots of PC1-3 (Fig.  8D).

Discussion

In this study, we describe the expression profiles of cel-
lular and viral miRNAs in primary tumors of EBV-
associated lymphoma. High expression of miR21 is 
common among many types of tumors, including B-cell 
lymphoma [46–48]. In addition, miR21 was identified as 
a useful marker for primary diffuse large B-cell lymphoma 
of the central nervous system in the cerebrospinal fluid 
[49]. miR143 has a possible role in angiogenesis in tumors, 
suggesting an association between miR143 expression and 
lymphoma growth [43]. Downregulation of miR143 was 
demonstrated in B-cell lymphoma cell lines [50]. In this 
study, NGS revealed 0.008% of total annotated reads of 
miRNA in an EBV-transformed LCL (Fig. 2). Low expres-
sion of miR143 in EBV-positive cell lines was previously 
reported, such as 0.003% in Jijoye cells, 0.0004% in LCL35, 
0.0002% in LCL-BAC, and 0.0007% in SDLCL in total 
annotated reads of miRNAs [7, 51]. On the other hand, 
this study demonstrated that miR-143 comprised 6.07% 
of total miRNAs on average in clinical samples. This 
observation indicates a difference in miRNA expression 
between cell lines and clinical primary cases. We also 
confirmed high copy number of miR155 in EBV lymphoma 
in this study. Lower copy number of miR155 in ELD 
and HL than ARL and PAL may be associated with the 
presence of nontumor cells and inflammatory cells in the 
samples (Fig.  2). In particular, tumor cells are observed 
at low frequency in the lymph node with HL, whereas 
almost all cells were tumor cells in tumor tissues of ARL 
and PAL (Fig.  1).

Several reports have described expression levels of EBV-
encoded miRNAs using stem-loop RT-PCR [11, 52, 53] 
and NGS [33] in EBV-associated diseases. In our study, 
NGS identified frequent variants of mature miRNAs with 
3′ deletion and addition (Fig.  4), which the stem-loop 

Figure 7. Heat map and cluster analysis. Heat map and cluster analysis 
of miRNA expression using data of NGS. Individual patient samples are 
shown in columns and miRNAs including both cellular and EBV miRNAs 
in rows. Expression measured by NGS is displayed in red color and green 
color depending on expression above or below median expression level.

Low expression High expression 
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RT-PCR was unable to detect (Fig.  5). This is important 
information for detecting miRNAs using the stem-loop 
primer, because the stem-loop RT-PCR may fail to detect 
large portion of miRNAs with such a deletion or addition 
of nucleotide in the 3′ region.

In this study, the miScript PCR system failed to detect 
almost all miRNAs encoded by BART cluster 2 in the 
LCL transformed by B95-8 EBV (Fig.  6). These results 
were reasonable, as cluster 2 is missing in B95-8, which 
has been widely used in the establishment of LCLs. miR-
BARTs in cluster 2 were not detected in LCLs transformed 
by B95-8 EBV, but were detected at high levels in spon-
taneously transformed LCLs, ARL, and other clinical sam-
ples. A recent study revealed that at least 8 miRNAs in 
BART cluster 2 (miR-BARTs 15, 18-3p, 7-5p, 10-3p, 10-5p, 
11-3p, 13-5p, and 14-5p) were identified as associated 
with latency type III infection of EBV [31]. Our data 
confirmed this, in part. For example, miR-BARTs 15, 10-
3p, 11-3p, and 14-3p were expressed at higher levels in 
ARL than other tumors. However, expression levels of 

miR-BARTs 7-5p, 18-5p, and 13-5p were low in all sam-
ples. These observations are consistent with previous studies 
investigating lymphoma samples [31, 33], although others 
reported no impact of miR-BARTs on LCL growth or 
survival in vitro [15]. As reported previously [7, 51, 54], 
miR-BHRF1 expression is associated with latency III infec-
tion of EBV. Our results by NGS and real-time RT-PCR 
demonstrate relatively high copies of miR-BHRF1-1, -2, 
and -3 expressions in ARL and PAL, both of which are 
latency III infection of EBV. Thus, our data suggest that 
miRNA expression differs between tumors and may be 
associated with EBV latency, in part.

PCA showed a broad distribution of ARL and PAL sam-
ples, but close clusters were formed corresponding to HL, 
MTX, ELD in two- and three-dimensional plots (Fig.  8), 
suggesting that EBV-encoded miRNA expression was deregu-
lated in ARL and PAL. One study reported that EBV-
encoded miRNAs were strictly regulated in normal 
EBV-positive nontumor B-cells, and that deregulation of 
EBV-encoded miRNA expression was observed only in 

Figure 8. Principal component analysis (PCA) on the data of Epstein–Barr virus (EBV) miRNA expression by real-time PCR. PCA was based on the EBV-
encoded miRNA expression data analyzed by real-time RT-PCR. The sample size of each category was same as in Figure 6. (A-B) Two-dimensional plots 
of samples using first and second (A), and first and third (B) principal components (PC). (C) Three-dimensional plots of samples using the first three 
components. (D) PCA three-dimensional plots of grouped samples using the first three components. Clusters of samples in the groups are shown by 
different colors in three-dimensional plots of PCA using PC1, PC2, and PC3.
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tumor cells [31]. The results of heat map and PCA in this 
study suggest that EBV-encoded miRNA expression was 
partially regulated in HL, MTX, and ELD but drastically 
deregulated in ARL and PAL. The most probable difference 
in clinical manifestations between ARL/PAL and others is 
the immune status of the host. While the mechanism of 
viral miRNA expression is unknown, the immune status 
of the host may affect viral miRNA expression. Further 
studies are required to reveal details of the association 
between viral miRNA expression and host immunity.
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