
A New Framework to Explain Sensorimotor Beta Oscillations

Clare Palmer1, Laura Zapparoli2, and James M. Kilner1,*

1Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, 
London, WC1N 3BG, UK

2fMRI Unit, IRCCS Galeazzi, 20161, Milan, Italy

Abstract

Oscillatory activity in the beta frequency range from sensorimotor cortices is modulated by 

movement; however, the functional role of this activity remains unknown. In a recent study, Tan et 
al. tested a novel hypothesis that beta power reflects estimates of uncertainty in parameters of 

motor forward models.

It is well established that oscillatory activity originating from sensorimotor cortices in the 

beta frequency range (~15–30 Hz) is modulated by movement. Beta power decreases when 

we move and is transiently increased once the movement has stopped (postmovement beta 

synchronization, PMBS) [1]. However, despite extensive research into these neuronal 

oscillations, their functional role is not known [2]. In a recent study, Tan et al. [3] tested a 

novel theory of the functional role of sensorimotor PMBS that provides an important link 

between theoretical models of motor control and neurophysiological measures of 

sensorimotor activity.

Every movement we make stimulates peripheral sensory receptors that provide sensory 

feedback of the motor act. It is thought that, when we move, we predict the sensory 

consequences of that movement (through forward models) and compare this prediction to 

the actual sensory input [4,5]. Any difference between the predicted and actual sensory input 

will result in a prediction error, which is used to update the forward model for more accurate 

future predictions. To determine the relevance of any prediction errors, the model requires 

estimations of both the uncertainty in the motor prediction and the uncertainty of the actual 

sensory input [6]. This can be likened to a two-sample t-test: a measure of the variance 

(uncertainty) of each sample is essential to determine whether any difference between the 

sample means is significant. Tan et al. [3] manipulated task uncertainty to modulate the 

uncertainty in parameters of the model and tested the hypothesis that PMBS was correlated 

with these parameters.

The authors measured cortical activity with EEG from 17 healthy participants while they 

performed a visuomotor adaptation task. Participants were instructed to move a joystick to 

direct a cursor from the centre of a circle to a target located at one of eight points on the 

circumference of the circle. Participants completed 80 trials of either: (i) a random prime, in 
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which a random angular error varying from trial to trial was added between the actual 

movement of the joystick and the visual feedback of the cursor (–60° to 60°); or (ii) a stable 

prime in which the perturbation (0°) remained stable across trials. Afterwards, all 

participants performed 150 trials of a constant 60° perturbation, followed by another 80 

trials of no perturbation, for each condition. The authors predicted that, during the random 

priming block, participants’ uncertainty in parameters of the forward model (estimation 

uncertainty) would be high due to their inability to correctly predict future movements, 

whereas when the perturbation was stable, this uncertainty would be low. They predicted 

that PMBS would correlate with this uncertainty rather than with the movement error. A 

Bayesian learning model, which uses the mean and variance of the movement error across 

trials to estimate this uncertainty, was applied to the behavioural data. The authors then 

correlated the magnitude of the PMBS in each condition with the estimated values of 

uncertainty. They reported that the amplitude of the PMBS over sensorimotor cortex was 

negatively correlated with this uncertainty variable. This result is consistent with a novel 

functional role of PMBS, which suggests that beta oscillations are related to the uncertainty 

of the parameters of generative models that underlie motor control.

Although this paper introduces a new functional account for PMBS, this account does not 

generalize easily to explain all known modulations in sensorimotor beta oscillations. For 

example, it is known that beta power decreases during movements. If the new account is 

applied to this desynchronisation, then the conclusion would be that we have the highest 

uncertainty in our model while we move. This would seem unlikely. However, uncertainty is 

not only estimated for parameters of the forward model. According to motor control theory, 

an estimate of uncertainty in the actual sensory input is also required. The importance of the 

estimate of uncertainty at both of these levels was highlighted in a recent theoretical account 

of motor control and movement initiation: active inference [7]. Within this framework, it has 

been proposed that an increase in the estimate of the uncertainty of the actual sensory input 

is an essential step for being able to move (Figure 1). However, the neurophysiological 

correlates of this change in uncertainty are unknown. The study by Tan et al. [3] makes it 

possible to hypothesise that sensorimotor beta oscillatory power might be either the 

neurophysiological correlate of the estimate of uncertainty or causally modulating the 

uncertainty. Indeed, prima facie there is compelling evidence to predict that sensorimotor 

beta power and estimates of sensory uncertainty might be negatively correlated. For 

example, sensorimotor beta oscillations are known to be attenuated during motor preparation 

and execution [8], when active inference would predict an increase in sensory uncertainty. 

Similarly, increases in sensorimotor beta power are associated with the inhibition of 

executed actions [9], when active inference would require a decrease in somatosensory 

uncertainty to inhibit an action. Finally, sensorimotor beta power is augmented in patients 

with Parkinson's disease compared with healthy controls [10], when active inference would 

predict a lower level of sensory uncertainty in patients with Parkinson's disease compared 

with healthy controls.

Tan et al. [3] have provided the first demonstration of a link between a key parameter in 

theoretical models of motor control, uncertainty, and modulations in sensorimotor beta 

power. Future work will be required to investigate whether the modulations in beta power 
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are best accounted for by modulations in the uncertainty of the actual sensory input, the 

uncertainty of the model space, or the relative uncertainties of the two.
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Figure 1. Schematic Illustrating Movement Initiation within the Active Inference Framework.
In the schematic, each panel depicts both the actual and the predicted sensory inputs. The 

character shows the action that is currently being performed (left) alongside the predicted 

action (right). The width of the distributions below and the clarity of the figure illustrate the 

uncertainty in these values. Before we start to plan a new movement, our prediction of our 

sensory input and the actual sensory input are equivalent (left panel). According to the active 

inference framework, when we start to prepare a movement, we generate a prediction of 

what the sensory input of this movement will be and this creates a prediction error between 

the current and the predicted sensory states (second panel). To minimize this error, an 

individual can: (i) stay still and update their prior beliefs (within the forward model) so that 

the predicted sensory input matches the actual sensory input (top row); or (ii) move, so that 

the actual sensory input matches the predicted sensory input (bottom row). Modulating the 

relative uncertainty in these sensory states will determine which option is selected. For 

example, to initiate movement [option (ii)], the uncertainty in the current sensory state is 

increased such that the individual will shift to the predicted sensory state with the lowest 

uncertainty.
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