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Abstract

Nitrogen fixation, the enzymatic conversion of atmospheric N (N,) to ammonia
(NHs), is a microbially mediated process by which “new” N is supplied to
N-deficient water bodies. Certain bloom-forming cyanobacterial species are
capable of conducting N, fixation; hence, they are able to circumvent N
limitation in these waters. However, this anaerobic process is highly sensitive to
oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are
faced with a paradoxical situation, where one critically important (for supporting
growth) biochemical process is inhibited by another.

N,-fixing cyanobacterial taxa have developed an array of biochemical,
morphological, and ecological adaptations to minimize the “oxygen problem”;
however, none of these allows N, fixation to function at a high enough
efficiency so that it can supply N needs at the ecosystem scale, where N losses
via denitrification, burial, and advection often exceed the inputs of “new” N by N
, fixation. As a result, most marine and freshwater ecosystems exhibit chronic
N limitation of primary production. Under conditions of perpetual N limitation,
external inputs of N from human sources (agricultural, urban, and industrial)
play a central role in determining ecosystem fertility and, in the case of N
overenrichment, excessive primary production or eutrophication. This points to
the importance of controlling external N inputs (in addition to traditional
phosphorus controls) as a means of ensuring acceptable water quality and safe
water supplies.

Nitrogen fixation, the enzymatic conversion of atmospheric N, to ammonia (NH
3) is a microbially-mediated process by which “new” nitrogen is supplied to
N-deficient water bodies. Certain bloom-forming cyanobacterial species are
capable of conducting N, fixation; hence they are able to circumvent nitrogen
limitation in these waters. However, this anaerobic process is highly sensitive to
oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are
faced with a paradoxical situation, where one critically-important (for supporting
growth) biochemical process is inhibited by another. Diazotrophic
cyanobacterial taxa have developed an array of biochemical, morphological
and ecological adaptations to minimize the “oxygen problem”; however, none of
these allows N, fixation to function at a high enough efficiency so that it can
supply N needs at the ecosystem scale, where N losses via denitrification,
burial and advection often exceed the inputs of “new” N by N, fixation.
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As a result, most marine and freshwater ecosystems exhibit chronic N-limitation
of primary production. Under conditions of perpetual N limitation, external
inputs of N from human sources (agricultural, urban, industrial) play a central
role in determining ecosystem fertility and in the case of N-overenrichment,
excessive primary production, or eutrophication. This points to the importance
of controlling external N inputs (in addition to traditional phosphorus controls)
as a means of ensuring acceptable water quality and safe water supplies.
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Nitrogen fixation, the biochemical conversion of “inert”
atmospheric N (N,) to biologically available ammonia (NH,),
is a microbially mediated process of global significance because
it provides “new” N to aquatic ecosystems in which biological
production is often controlled by N availability'~. N, fixation is
an anaerobic process carried out by specific prokaryotes, includ-
ing heterotrophic and chemolithotrophic bacteria and some cyano-
bacteria (blue-green algae)’. The process likely evolved during
the oxygen (02)-devoid Precambrian period some 2+ billion years
ago®’. Of the N -fixing microbial taxa, the cyanobacteria are of
particular biogeochemical and ecological interest because they
were also the first O,-evolving photosynthetic organisms on
Earth®; their proliferation during this period is thought to be an
evolutionary “milestone” because it led to the generation of an
O,-rich atmosphere, a prerequisite for the evolution of O,-requiring
fungi, bacteria, animals, and higher plant species on our planet.

Ironically, the development of an O, -rich atmosphere, hydro-
sphere, and pedosphere constituted a formidable biochemical
challenge for the cyanobacteria because, while they were capable
of fixing N,, the process had to be confined to an O,-free micro-
environment’. This requirement posed a serious dilemma, especially
for aquatic cyanobacteria, because they require illuminated condi-
tions in surface waters, but the high ambient O, levels produced
by photosynthesis in these waters also represents an environmen-
tal barrier to O,-sensitive N, fixation. Over their long evolutionary
history, cyanobacteria have developed biochemical and structural
adaptations as well as biotic associations in order to optimize
N, fixation while relying on oxygenic photosynthesis to provide
energy and organic carbon (C) compounds to support metabolism
and growth. The adaptions include (1) confining N, fixation to
night-time when photosynthesis is “turned off”, (2) forming
colonies and aggregates to reduce illumination and form low-O,
“microzones”, (3) participating as endosymbionts in biological
associations, and (4), forming heterocysts (non-photosynthetic,
O,-free cells) in some filamentous taxa, which allows N, fixation
to proceed while receiving photo-reductant and organic C through
photosynthesis from adjacent cells®.

These are all remarkably clever adaptations to a modern-day
oxic biosphere, which help circumvent the “O, problem™. From
an ecosystem perspective, they have allowed N,-fixing species to
provide biologically available N from the vast reservoir of atmos-
pheric N,. However, on the ecosystem scale, recent N budget
analyses indicate that N, fixation inputs fall far short of meeting
ecosystem requirements when biologically available N inputs (from
terrestrial and atmospheric sources) and losses (via denitrifica-
tion, sedimentation and burial, and advection) are considered”''.
As a result, freshwater, estuarine, and marine systems are often
chronically N deficient''-". Pervasive N limitation has many
implications for ecosystem function, especially when excessive
external nutrient inputs lead to accelerating primary production
(eutrophication), harmful algal blooms, and excessive O, consump-
tion (hypoxia). If chronic N-limited conditions prevail in water
bodies and N, fixation cannot meet ecosystem N requirements,
then external N inputs often supply N to support eutrophication
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and its unwanted symptoms. From a management perspective, this
means that the growing global glut of N inputs from agricultural,
urban, and industrial sources'*'**" needs to be controlled, in addi-
tion to the broadly accepted phosphorus (P) input constraints, in
order to protect our waterways and water supplies.

Why does N, fixation fall short of meeting ecosystem demands?
Apparently, this process does not operate at sufficient rates in
a modern-day, oxic world to compensate for losses via burial,
export, and denitrification, even though it is protected and opti-
mized by the various biological adaptations mentioned above. It
is counteracted at larger scales by biogeochemical processes, such
as denitrification, that run in the opposite direction (NO, — N,).
The N,-fixing process is an energy-demanding one, requiring
16 ATP molecules to fix one molecule of N,’. In cyanobacteria,
this energy demand has to be met by photosynthesis, while in
non-photosynthetic bacteria, organic matter and redox reactions
serve as energy sources’. In highly productive (eutrophic), turbid
waters where cyanobacteria and bacteria thrive, the availability of
photosynthetically active radiation (PAR: 400-700 nm) is often
restricted, causing a radiant energy deficit and suboptimal N,
fixation rates. Secondly, cyanobacteria taxa that dominate in
eutrophic waters often accumulate as thick surface “blooms”, in
part to circumvent light limitation in subsurface waters''. High rates
of photosynthesis in such blooms lead to O, supersaturation, often
in excess of 200% saturation”'. These ambient O, levels inhibit N,
fixation in situ, even in heterocystous taxa**. Thirdly, N, fixa-
tion requires high levels of P (to support the energetics, e.g. ATP
formation and nucleic acid production) and metals, most promi-
nently iron (Fe), which is a co-factor in the enzyme complex
nitrogenase’. In highly oxygenated surface waters, Fe occurs as
the insoluble and biologically unavailable Fe** ion that may lead
to Fe-limited conditions™. Lastly, wind-induced turbulence and
vertical mixing can reduce N, fixation potential by disrupting
colonies and aggregates and enhancing inward diffusion of O,
(Figure 1)* and deepening the mixed layer, reducing light
availability.

Thus, while N, fixation converts inert N, into biologically avail-
able NH, to support aquatic fertility in a remarkable fashion,
it faces multiple constraints and limitations in aquatic environ-
ments, especially in surface waters, which are often N limited.
Geochemists, some limnologists, and a few oceanographers have
assumed that as long as P and Fe are readily available, N, fixa-
tion should make up for an N deficit, given the unlimited supply
of N, available’*”. However, this assumed linear stoichiometric
relationship is not straightforward. Major environmental factors
constrain this process, preventing it from functioning at optimal
rates and supplying complete ecosystem N requirements™''. As a
result, much of the world’s marine and freshwater environments
remain chronically N deficient. In practical (management) terms,
this limitation means that external inputs of N play a key role in
providing adequate and excessive fertility (eutrophication) of
many freshwater and most marine ecosystems'"'>'°. Tremendous
increases in anthropogenically generated bioavailable N in the
form of synthetic (Haber process) fertilizers, agricultural, industrial,
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Figure 1. The nitrogen fixing process, as mediated by cyanobacteria (utilizing oxygenic photosynthesis as an energy and carbon
source) as well as heterotrophic and chemolithotrophic microorganisms, in eutrophic surface waters. Potential environmental controls,
including phosphorus (P) and iron (Fe) availability, energy sources, and dissolved oxygen inhibition, are shown in red. The background photo
is of an O,-supersaturated (during daytime) cyanobacterial surface bloom in Lake Taihu, China. Photograph by H. Paerl.

and urban wastes, and N, emissions (as both oxides and reduced
forms of N) far overshadow biological fixation of N, in provid-
ing available N to receiving waters. Effective future management
and protection of our fresh and marine waters will depend on the
control of external inputs of both N and P’ instead of depending
on the more traditional approach of controlling P inputs without
N restrictions™.
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