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Abstract

Animals continuously alternate between sleep and wake states throughout their
life. The daily organization of sleep and wakefulness is orchestrated by
circadian, homeostatic, and motivational processes. Over the last decades,
much progress has been made toward determining the neuronal populations
involved in sleep/wake regulation. Here, we will discuss how the application of
advanced in vivo tools for cell type—specific manipulations now permits the
functional interrogation of different features of sleep/wake state regulation:
initiation, maintenance, and structural organization. We will specifically focus
on recent studies examining the roles of wake-promoting neuronal populations.
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Introduction

Animals—including nematode worms'’, bees™, flies™®, fish’*,
rodents, humans, and even birds during migration’—alter between
wake and sleep states throughout their life. During wakefulness,
animals engage in various adaptive and motivated behaviors related
to foraging, courting, mating, and predator evading, among many
others. Sleep is a state of quiescence with reduced responsiveness to
external stimuli yet is restorative and recruits essential mechanisms
for homeostatic balance'*'”.

The daily organization of sleep and wake periods is orchestrated
by circadian, homeostatic, and motivational processes'*'*. The
circadian clock (about 24 hours long) synchronizes sleep to an
appropriate time of day; for example, night in diurnal animals and
day in nocturnal animals. The homeostatic process is responsible
for compensating sleep loss. In addition, environmental circum-
stances and internal needs, such as hunger”>'%, the presence of a
predator'*~*, or mating opportunities’, can powerfully modulate
sleep and wake states.

Sleep is ubiquitous in the animal kingdom, and the molecular path-
ways associated with sleep in the worm, fly, and mammals show
much conservation, suggesting an ancient and common origin for
sleep'””*~’. For example, in both insects and mammals, histaminer-
gic, noradrenergic, and dopaminergic neurotransmission promotes
wakefulness whereas GABAergic and serotonergic neurotransmis-

sion promotes sleep”*~"~.

Sleep/wake disturbances are a major public health concern and
affect 6% to 30% of the general adult population worldwide*’. Sleep
disturbances have numerous deleterious effects, including impaired
cognition, reduced immunity, and elevated risks of cancer and heart
disease™*. Perturbations of sleep/wake states are also associated
with various neuropsychiatric disorders, such as major depression,
substance abuse, and anxiety disorders®. Increasing evidence sug-
gests that several co-morbid pathologies found in neuropsychiat-
ric disorders arise from a destabilization of sleep mechanisms**.
Elucidating the neurobiological substrates of sleep and wakeful-
ness could not only reveal how the brain orchestrates one of the
most striking transitions in behavior and physiology, but could also
provide a mechanistic framework for improved intervention with
therapeutic purposes.

Neuronal circuitry underlying the regulation of sleep/
wake states

In mammals, birds, and reptiles, there are three general states of
vigilance: wakefulness, non-rapid eye movement (NREM) sleep,
and rapid eye movement (REM) sleep. The different states can
be distinguished using electroencephalogram (EEG) and electro-
myogram recordings, which measure global cortical and muscu-
lar activity, respectively. The three vigilance states also differ in
various physiological parameters, such as thermoregulation, brain
metabolism, and breathing*. How does the mammalian brain con-
trol sleep and wake states? von Economo*’, Ranson*, and Moruzzi
and Magoun® were among the first to examine a neuronal mecha-
nism for sleep/wake regulation. Many subsequent studies have
contributed to the identification of distinct neuronal populations
across the brain that participate in sleep/wake regulation. It is
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currently understood that sleep/wake states are regulated by
complex interactions between several neuronal populations,
which show robust arousal state—dependent alterations in neuronal
activity . Subcortical neuromodulatory neurons in the brainstem,
midbrain, hypothalamus, and basal forebrain (BF) send widespread
projections across the brain and interact with each other, the tha-
lamus, and the cortex to drive behavioral, physiological, and elec-
trocortical sleep/wake states'*'***2 In this review, we will focus
mainly on wake-promoting populations. Key components of the
arousal system are the following:

1) Monoaminergic neurons, including the noradrenergic
locus coeruleus (LC)***, dopaminergic ventral tegmen-
tal area (VTA)*'*?, dopaminergic and serotonergic dorsal
raphe nucleus (DRN)**¢ and histaminergic tubero-
mammillary nucleus (TMN)**" neurons.

2) Cholinergic neurons of the pedunculopontine and latero-
dorsal tegmental nuclei (PPT/LDT)*** and BF**¢!,

3) Hypocretinergic (Hert, also known as orexinergic)
neurons of the lateral hypothalamus (LH)*~*.

In each of these nuclei reside additional populations of
GABAergic and glutamatergic neurons that have been shown
to participate, or may participate, in sleep/wake regulation
(for example,”). A balance between the wake-promoting and
the sleep-promoting neurons—such as the GABAergic neu-
rons of the ventrolateral preoptic area and the median preoptic
area®, the GABAergic neurons of the parafacial zone™’!, and
melanin-concentrating hormone neurons of the LH’>—has been
hypothesized as a theoretical model to understand sleep-to-wake
transitions'’. According to this model, the mutually inhibitory inter-
actions of wake-promoting and sleep-promoting neurons produce a
state similar to a flip-flop switch in an electrical circuit'’.

From a functional dynamic perspective, one could identify neuro-
nal circuits involved in the initiation, maintenance, and structural
organization of the three vigilance states. With traditional strategies,
such as brain lesions, pharmacological interventions, and animal
knockout models, it was very difficult to address the causal role of
specific populations in the regulation of the different components
of vigilance states because they lacked both cellular specificity and
temporal resolution. With the application of in vivo optogenetic’
and chemogenetic’’ tools for cell type—specific neural manipu-
lations and genetically encoded calcium indicators” for neural
activity recordings, it is now possible to functionally interrogate
the specific roles of, and interactions between, genetically defined
neuronal populations across the brain in sleep/wake regulation.

Initiation of vigilance states

Animals typically wake up rapidly—an adaptive response since
they may need to flee or defend themselves when awakened.
The transition between sleep and wakefulness has been hypoth-
esized to involve fast glutamate transmission and wake-promoting
neuromodulators'***’®. Optogenetic manipulations have demon-
strated that increasing activity in noradrenergic LC"’, dopaminergic
VTA*, and cholinergic BF’**! neurons during sleep can rapidly
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initiate wakefulness. Hert LH neurons have been hypothesized to
regulate sleep-to-wake transitions based on homeostatic and envi-
ronmental conditions*~**. Hert LH neurons are sensitive to diverse
peripheral and central signals associated with nutritional state, such
as low glucose (for example,**%), and optogenetic stimulation of
Hert LH neurons during NREM sleep increases the probability
for a sleep-to-wake transition®” only under low sleep pressure®.
Cholinergic neurons have long been suggested to play a critical role
in cortical activation during both wakefulness** and REM sleep’’.
Optogenetic stimulation of cholinergic BF neurons during NREM
sleep can elicit a transition to either wakefulness or REM sleep”,
whereas optogenetic inhibition prolongs NREM sleep®. These find-
ings suggest that BF cholinergic neurons have an important role in
NREM sleep termination, allowing the brain to transition to either
wake or REM sleep®.

Transitions from wakefulness to sleep are not instantaneous and
can take a few seconds to minutes'’. With the initiation of NREM
sleep, the EEG progressively changes from high-frequency, low-
voltage waves characteristic of wakefulness, to higher-voltage,
slower waves designating NREM sleep'****’. Although the physi-
ological and electrophysiological characteristics preceding and
accompanying wake-to-NREM sleep transitions have been well
studied””’, relatively little is known about the neuronal underpin-
nings of naturalistic behaviors that precede sleep. Animals typi-
cally display species-specific behaviors prior to sleep”; they will
search for a safe place, may build a nest, assume a specific body
posture’”™*, and engage in other behaviors, such as grooming and
drinking”™*. A recent study demonstrated that mice drink prior to
sleep in anticipation to the sleep period and not as a response to
an immediate physiological need’’. Moreover, drinking prior to
sleep is controlled by circadian output from the central clock in
the suprachiasmatic nucleus to the organum vasculosum lamina
terminalis neurons’’. We have recently identified a neuronal sub-
strate for sleep-preparatory nest-building®’. We demonstrated
that chemogenetic inhibition of VTA dopaminergic neurons pro-
motes sleep, only in the presence of a nest. In the absence of a
nest, the inhibition of VTA dopaminergic neurons first promoted
nest-building and only later sleep. Taken together, these findings
suggest that electrocortical sleep is coupled with preceding behav-
ioral manifestations, yet the role of this preparatory phase in sleep
structure and quality remains to be elucidated.

Maintenance of vigilance states

During a normal sleep phase, animals continuously alternate
between short periods of wakefulness, NREM sleep, and REM
sleep. Typically, individuals enter NREM sleep from wakefulness
and transition from NREM to either REM sleep or wakefulness. In
humans, each cycle lasts around 90 minutes, whereas in rodents
the cycles are shorter, lasting only several minutes. Once wakeful-
ness, NREM sleep, or REM sleep is initiated, it is maintained for
the duration necessary to fulfill its physiological purposes. How is
the maintenance of vigilance states attained? One potential mecha-
nism is continuous, tonic, or phasic activity in a certain neuronal
population, such as histaminergic TMN neurons (for wakefulness).
Activity in these neurons could directly support the maintenance of
specific states, or inhibit the initiation of other vigilance states, by
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specific downstream projections. Another possibility, yet not mutu-
ally exclusive, is irregular phasic activity in a neuronal ensemble
that initiates and supports a range of behavioral and physiologi-
cal characteristics via various downstream targets. For example,
Hert LH neurons are phasically active only during the transitions
between sleep and wakefulness and during wakefulness when envi-
ronmental conditions change® . This “kickstart” pattern of activity
is likely widespread in arousal centers as it allows more adaptive
responses to changing environments.

The different arousal systems vary in their capacity to promote
wakefulness, and it has been hypothesized that the different neu-
ronal populations have distinct roles in supporting arousal under
specific environmental conditions’’. For example, histaminergic
TMN neurons have an important role in maintaining arousal in
novel environments**”*. Noradrenergic LC neurons promote atten-
tion and cognition during wakefulness” and have a pivotal role in
supporting arousal in threatening circumstances'’*'"'. Dopaminer-
gic VTA neurons have a crucial role in wake maintenance in the
face of various motivational processes, including mate- and food-
seeking and predator evading®'. Serotonergic DRN neurons have
been suggested to support quiet wakefulness, possibly preceding
sleep initiation”"'>1%, A distinct role for each wake-related neuro-
nal population in promoting distinct forms of arousal under specific
environmental conditions could clarify the relatively surprising
redundancy in wake-promoting circuits'*'.

It is important to note that specific sleep/wake regulatory popu-
lations could have a more complex role than supporting one
vigilance state. Histaminergic TMN neurons that have long been
implicated in wake maintenance via histamine neurotransmission'’
also release GABA, which rather seems to promote sleep'”, at
least via some projections. The co-transmission of histamine and
GABA could serve as a break to the wake-promoting effects of
histamine'™. Tt would be of interest for future studies to further
determine the importance of co-transmission in additional sleep/
wake neuronal populations and the precise role the neuromodula-
tory substrates by themselves play in sleep/wake regulation.

Structural organization of vigilance states

Another important feature of sleep/wake regulatory circuits is
maintaining the boundaries between vigilance states. A failure to
maintain these boundaries could have severe consequences for sur-
vival if, for instance, a predator defense behavior were interrupted
by an unexpected transition to sleep. In addition, the restorative
and memory consolidation functions of sleep are dependent upon
proper consolidation of sleep, as demonstrated by the deleterious
effects of sleep fragmentation*-'*>.

The daily organization of sleep and wake periods is orchestrated by
circadian, homeostatic, and motivational processes. The circadian
clock (about 24 hours long) synchronizes sleep to an appropriate
time of day (that is, night in diurnal animals and day in nocturnal
animals). The homeostatic process is responsible for compensating
sleep loss following sleep debt. In addition, environmental circum-
stances and internal needs, here referred to as “motivational proc-
esses”, can powerfully affect sleep/wake states.
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How do regulatory circuits maintain the boundaries between the
vigilance states? The hypocretin system is hypothesized to orches-
trate the structural organization of sleep/wake states*'". The
hypocretins are two neuropeptides, Hert-1 and Hert-2, produced
from the pre-pro-hypocretin precursor, which are expressed solely
in a glutamatergic neuronal population in the LH. Hert neurons
project to diverse areas of the central nervous system, including
to major sleep/wake nuclei, such as the LC, TMN, DRN, PPT,
LDT, and VTA®*'?", that express the Hcrt receptors, Hert-R1 and
Hert-R2'%. In vitro electrophysiology and histological studies dem-
onstrate that Hert neurons are activated by neurotransmitters that
promote arousal, including corticotropin-releasing factor'” and
thyrotropin-releasing hormone''’, and inhibited by sleep-promoting
substances, including GABA!'' and adenosine'".

Hert LH neurons are essential for the stability of arousal and mal-
function of the Hert network fragments sleep and wake states. The
loss of Hert neurons, or its receptors, in rodents''*~'", canines'',
and humans''’~"" is associated with narcolepsy with cataplexy, a
neurological disorder characterized by an inability to control the
boundaries between sleep/wake states. In narcoleptics, periods of
wakefulness are interrupted by unexpected sleep episodes, and
REM-like episodes coexist with conscious wakefulness'”’. Simi-
larly, Hert knockout or Hert-R2-deficient mice show increased
arousal state—transitions but do not vary in the total daily duration
of sleep and wake states from control animals. Lastly, optogenetic
stimulation of Hert LH neurons during sleep, in rodents, increases
the probability for a sleep-to-wake transition*’. Together, these find-
ings support the premise that under physiological conditions Hert
LH neurons are important in maintaining the boundaries between
sleep/wake states.

It is also important to note that the three vigilant states are not
always mutually exclusive, and different dissociated states exist
in humans as well as other animals. Slow-wave sleep can occur
locally in cortical areas'”'='** as well as in individual neurons while
animals are behaviorally awake'”. In addition, unihemispheric
slow-wave sleep (USWS) has been documented in a number of
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aquatic mammals'> and birds'*. During USWS, the eye contralat-
eral to the awake hemisphere is open and could monitor the envi-
ronment. This plasticity could permit birds to defend themselves
from predators or continuously fly during long migration periods
and aquatic mammals to breathe or take care of their young during
critical periods'*‘.

Conclusions and perspectives

During the last decade, major advances have been made in char-
acterizing the neuronal populations participating in sleep/wake
regulation. However, it is still unclear how the brain integrates
information from diverse populations to control overt arousal. Are
the different arousal populations promoting wakefulness in dif-
ferent ecological contexts? How does the brain prioritize arousal
based on environmental circumstances and homeostatic needs? In
addition, future studies should further examine the role of distinct
subpopulations of GABAergic, glutamatergic, and peptidergic
neurons in sleep/wake regulatory nuclei.
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