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Abstract

Host immunity limits iron availability to pathogenic bacteria, but whether immunity limits 

pathogenic bacteria from accessing host heme, the major source of iron in the body, remains 

unclear. Using Citrobacter rodentium, a mouse enteric pathogen and Escherichia coli, a major 

cause of sepsis in humans as models, we find that interleukin-22, a cytokine best known for its 

ability to promote epithelial barrier function, also suppresses the systemic growth of bacteria by 

limiting iron availability to the pathogen. Using an unbiased proteomic approach to understand the 

mechanistic basis of IL-22 dependent iron retention in the host, we have identified that IL-22 

induces the production of the plasma hemoglobin scavenger haptoglobin and heme scavenger 

hemopexin. Moreover, the anti-microbial effect of IL-22 depends on the induction of hemopexin 

expression, while haptogloblin is dispensable. Impaired pathogen clearance in infected Il22−/− 

mice was restored by hemopexin administration and hemopexin-deficient mice had increased 

pathogen loads after infection. These studies reveal a previously unrecognized host defense 

mechanism regulated by IL-22 that relies on the induction of hemopexin to limit heme availability 

to bacteria leading to suppression of bacterial growth during systemic infections.
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Introduction

Iron is an essential nutrient for nearly all microorganisms, including pathogenic bacteria (1). 

In mammals, the majority of iron is found inside erythrocytes, contained in the prosthetic 

heme groups of hemoglobin (2). Given their strict requirement for iron, pathogenic bacteria 

evolved strategies to trigger hemolysis as the means to extract iron from hemoglobin (1). 

Bacterial pathogens possess several mechanisms to overcome the limited availability of iron 

in the circulation or at local niches. These include production of siderophores that bind iron 

at extremely high-affinity, heme acquisition systems, and mechanism for the uptake of 

transferrin- and lactoferrin-bound iron (1). Host immunity encompasses several mechanisms 

that limit host iron availability to pathogenic bacteria (3-6), a defense strategy known as 

nutritional immunity (7). This host defense strategy involves a reduction of circulating or 

local iron by inhibition of cellular iron export and the induction of cellular iron import by 

host cells via hepcidin-dependent and independent mechanisms (3-6). Whether nutritional 

immunity limits pathogenic bacteria from accessing host heme, the major source of iron, 

remains unclear.

Interleukin-22 (IL-22) is an important cytokine that promotes early host defense, epithelial 

barrier function and tissue repair at mucosal surfaces (8, 9). In response to bacterial 

infection, IL-22 is produced by several immune cells, leading to the induction of innate 

antimicrobial molecules that are thought to promote host defense and intestinal barrier 

protection against pathogens (10). The protective function of IL-22 was revealed by the 

observation that Il22−/− mice are highly susceptible to the attaching and effacing mouse 

pathogen Citrobacter rodentium. In the absence of IL-22, there was marked intestinal 

damage and bacterial translocation in orally infected mice (8, 9). IL-22 signals through a 

heterodimeric receptor complex comprised of an ubiquitously expressed IL-10R2 subunit 

and an epithelial-specific IL-22RA1 subunit (11, 12). Because of the highly restricted 

expression of the IL-22RA1 subunit, IL-22 stimulates epithelial cells on certain organs such 

as the liver and kidney as well as epithelial barriers including the skin and the intestine (13). 

Using C. rodentium and E. coli infection models, we report that IL-22 induces a systemic 

protective response that is mediated by hemopexin, a plasma heme scavenger produced in 

the liver, that limits the availability of heme-iron to the microbes and suppresses bacterial 

systemic growth.

Results

IL-22 promotes pathogen clearance and host survival after systemic infection with C. 
rodentium

Consistent with earlier studies (8, 9), Il22−/− mice succumbed early to oral infection with C. 
rodentium, which was associated with increased pathogen load in blood, liver, and spleen 

(Fig. S1). Systemic C. rodentium infection induced rapid production of IL-22 in plasma 

(Fig. 1A). To determine whether IL-22 controls pathogen growth systemically, wild-type 

(WT) and Il22−/− mice were infected with C. rodentium intravenously and monitored for 

survival and pathogen load in the blood. Surprisingly, >90% of the Il22−/− mice succumbed 

to intravenous infection compared to ~20% of the WT mice (Fig. 1B). Mortality of infected 

Il22−/− mice was associated with impaired pathogen clearance, resulting in increased 
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pathogen load in blood (Fig. 1C). Pathogen-induced lethality in Il22−/− mice required live 

bacteria because the animals did not succumb when injected intravenously with heat-killed 

C. rodentium (Fig. S2). While antibody production is critical to control C. rodentium oral 

infection (14, 15), the production of pathogen-specific IgM and IgG was not impaired in 

Il22−/− mice, as compared with WT mice (Fig. S3). To ascertain the role of IL-22 in 

controlling pathogen growth, we pre-treated Il22−/− mice with recombinant IL-22 prior to 

intravenous C. rodentium infection and assessed the pathogen loads in the blood. 

Administration of IL-22 reduced pathogen load (Fig. 1D). In our mouse colony, ~ 90% of 

the bacteria present in the liver of orally infected Il22−/− mice were C. rodentium although a 

few commensals, particularly Lactobacillus spp., were also identified (Fig. S1G). To 

determine whether C. rodentium infection could induce mortality in the absence of 

commensals, we pre-treated WT germ-free (GF) mice with an IL-22 neutralizing antibody 

and infected the mice with the pathogen via the oral route. Neutralization of IL-22 reduced 

the survival of GF mice after oral C. rodentium infection (Fig. 1E), which was associated 

with increased pathogen loads in blood, liver and spleen (Fig. 1F-H). Collectively, these 

results indicate that IL-22 limits the systemic expansion of C. rodentium and promotes host 

survival.

IL-22 regulates plasma hemopexin and haptoglobin after pathogen infection

To understand further the mechanism by which IL-22 promotes systemic pathogen 

clearance, we set to identify, by liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS) analysis, plasma proteins regulated by IL-22 before and after 

infection of WT and Il22−/− mice with C. rodentium intravenously. Consistent with previous 

studies (16, 17), several proteins including serum amyloid-A1, serum amyloid-A2, inter-

alpha-trypsin inhibitor heavy chain, adiponectin, C-reactive protein, alpha-2-macroglobulin 

and complement factors were reduced in the plasma of infected Il22−/− mice compared with 

infected WT mice (Fig. 2). In addition, the induction of the plasma extracellular heme 

scavenger hemopexin (HPX) (18) and the hemoglobin scavenger haptoglobin (HP) (19) in 

response to C. rodentium infection was severely impaired in Il22−/− mice compared to WT 

mice (Fig. 2). This was associated with the accumulation of extracellular hemoglobin α- and 

β-globin chains in the plasma of infected Il22−/− mice compared to WT mice (Fig. 2). 

Importantly, intraperitoneal administration of IL-22 restored the induction of HP and HPX 

expression in the plasma of Il22−/− mice compared to Il22−/− mice treated with control 

protein (Fig. 2).

Hemolysis driven by bacterial virulence factors promotes pathogen growth in IL22−/− mice

Accumulation of extracellular hemoglobin α- and β-globin chains in the plasma of Il22−/− 

mice suggested that IL-22 deficiency is associated with augmented hemolysis after systemic 

C. rodentium infection and/or with impaired disposal of extracellular hemoglobin from 

plasma. To verify that hemoglobin proteins are regulated by IL-22, we assessed the amounts 

of α-globin in the plasma of uninfected and infected WT and Il22−/− mice by 

immunoblotting. The analysis confirmed that the amounts of α-globin were increased in the 

plasma of Il22−/− mice in response to intravenous or oral infection with C. rodentium (Fig. 

3A,B). Because scavenging of extracellular hemoglobin dimers by HP prevents the release 

of the prosthetic heme groups of hemoglobin (20, 21), we asked whether induction of HP by 
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IL-22 was associated with inhibition of heme accumulation in plasma. Il22−/− mice infected 

via the intravenous or oral route accumulated heme in plasma whereas infected WT mice did 

not (Fig. 3C). Consistent with a role of hemoglobin release from lysed erythrocytes in 

promoting pathogen growth, intravenous administration of lysed erythrocytes to C. 
rodentium infected WT mice increased their pathogen loads in the blood (Fig. 3D). The 

filament protein EspA as well as EspB and EspD are required for the assembly of the 

translocon of the enterocyte effacement (LEE)-encoded T3SS and promote the formation of 

EspB/EspD pores that mediate erythrocyte lysis in vitro (22). To assess whether C. 
rodentium translocators induce erythrocyte lysis, mouse erythrocytes were incubated in vitro 
with WT and C. rodentium mutants deficient in EspA, EspB and Ler, the global regulator of 

the LEE that is critical for pathogen virulence (23). The WT bacterium, but not the EspA, 

EspB and Ler mutants, induced erythrocyte lysis (Fig. 3E). To determine whether EspB is 

important for hemolysis associated with systemic growth and lethality of C. rodentium in 

vivo, we infected Il22−/− mice with WT or the EspB mutant and monitored the pathogen 

loads in blood as well as mouse survival. Notably, deficiency of EspB was associated with 

reduced pathogen loads and absence of lethality when compared to the WT bacterium that 

caused 100% mortality in Il22−/− mice (Fig. 3F,G). Ler expression was detected in the blood 

of mice after intravenous infection with C. rodentium (Fig. S4A). Furthermore, the reduced 

ability of the EspB mutant to grow systemically was not associated with reduced expression 

of ler in infected WT or Il22−/− mice (Fig. S4B). In contrast to the EspB mutant, the 

pathogen load of a C. rodentium mutant deficient in EspH, a T3SS effector that regulates 

phagocytosis (24), was comparable to that of the WT bacterium in infected Il22−/− mice 

(Fig. S5). The Ler mutant that regulates the expression of LEE-encoded proteins including 

EspB, also exhibited reduced pathogen loads and failed to cause mortality in Il22−/− mice 

when compared to the WT bacterium (Fig. S6). Importantly, growth of the EspB mutant was 

enhanced in vivo by intravenous administration of lysed erythrocytes (Fig. 3H). 

Furthermore, EspB and Ler promoted heme accumulation in plasma after intravenous 

infection of Il22−/− mice with C. rodentium (Fig. 3I and Fig. S6). In contrast, the amounts of 

iron and the unsaturated iron-binding capacity in plasma before and after infection with C. 
rodentium were comparable in WT and Il22−/− mice (Fig. S7). Thus, IL-22 regulates heme, 

but not free iron, accumulation in the plasma following systemic C. rodentium infection. 

These results indicate that hemolysis driven by LEE-encoded EspB translocator and ensuing 

release of heme in plasma promotes C. rodentium growth in vivo.

IL-22-dependent induction of hemopexin inhibits heme-mediated bacterial growth

Analysis of plasma proteins by LC-MS/MS revealed that HPX and HP are positively 

regulated by IL-22 in response to systemic C. rodentium infection (Fig. 2). Immunobloting 

analysis of plasma proteins confirmed that IL-22 is required for induction of HPX and HP in 

response to intravenous and oral C. rodentium infection (Fig. 4A,B,C). The IL-22 receptor is 

expressed on epithelial cells including hepatocytes, the major site of HPX and HP 

production (25, 26). Consistently, intraperitoneal administration of IL-22 induced HPX and 

HP mRNA in the liver (Fig. S8). To determine whether C. rodentium infection induces anti-

bacterial activity in plasma, C. rodentium colonies were monitored in vitro after incubation 

with plasma from uninfected and infected mice. Plasma from infected WT mice inhibited C. 
rodentium colony formation compared to plasma of uninfected WT mice (Fig. 4D). Notably, 
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plasma from infected Il22−/− mice failed to limit colony formation compared to the plasma 

of infected WT mice (Fig. 4D). Consistently, intravenous administration of recombinant 

IL-22 to Il22−/− mice restored the plasma anti-bacterial activity (Fig. 4E). To identify the 

mechanism underlying this anti-bacterial activity in plasma, we fractionated plasma proteins 

from IL-22-treated mice by column chromatography and assessed the pathogen inhibitory 

activity in the fractions by agar plating assay. Immunoblotting analysis showed that the 

presence of the heme scavenger HPX, but not the hemoglobin scavenger HP, correlated with 

the ability of the plasma fractions to suppress C. rodentium colony formation (Fig. 4F). To 

determine whether heme promotes C. rodentium growth, the pathogen was incubated in vitro 
with and without synthetic heme (i.e. hemin) in the presence of increasing concentrations of 

HPX. In the absence of HPX, hemin promoted robust C. rodentium colony formation in 

vitro (Fig. 4G), while addition of HPX, at a concentrations range found in mouse plasma, i.e. 

~500-1000 μg/ml (27), inhibited hemin-driven pathogen growth in a dose-dependent manner 

(Fig. 4G). Hemoglobin also promoted robust C. rodentium colony formation in vitro, which 

was inhibited by HPX in a dose-dependent manner (Fig. 4H) whereas HP did not (Fig. S9). 

Furthermore, exogenous HPX largely restored the anti-bacterial activity of the plasma 

isolated from infected Il22−/− mice in vitro (Fig. 4I). Collectively, these results suggest that 

once released from extracellular hemoglobin, heme promotes C. rodentium growth, a 

pathogenic effect countered via a mechanism mediated by the IL-22-dependent induction of 

the plasma heme scavenger HPX.

IL-22 limits heme-mediated E. coli growth via hemopexin

E. coli, a Gram-negative bacterium that normally inhabits the intestine, is a major cause of 

bacteremia and sepsis in humans (28, 29). As it was observed with C. rodentium, hemin 

promoted robust colony formation of an E. coli strain isolated from the mouse intestine 

which was inhibited by HPX in vitro (Fig. 5A). Furthermore, administration of recombinant 

IL-22 to Il22−/− mice restored the ability of plasma to suppress E. coli colony formation in 

vitro (Fig. 5B), which was strictly dependent on the expression of endogenous HPX (Fig. 

5C). Furthermore, Il22−/− and Hpx−/− mice were more susceptible and had more bacterial 

loads than WT mice after intravenous infection with E. coli (Fig. 5D,E,F,G).These results 

indicate that E. coli colony formation is promoted by heme which is inhibited by IL-22-

mediated induction of HPX.

IL-22 requires hemopexin, but not haptoglobin, to suppress pathogen growth in vitro and 
in vivo

We next assessed the requirement for HPX and HP in IL-22-mediated suppression of 

bacterial growth. Importantly, the ability of plasma from IL-22-treated WT mice to suppress 

C. rodentium colony formation was comparable to that of plasma from Hp−/− mice treated 

with IL-22 (Fig. 6A). In contrast, the plasma of Hpx−/− and Hpx−/−Hp−/− mice treated with 

IL-22 was impaired in suppressing C. rodentium growth which was comparable to the 

plasma of untreated WT mice (Fig. 6B,C). To confirm that IL-22 suppresses pathogen 

growth in vivo via a mechanism involving heme neutralization by HPX, WT, Hpx−/−, Hp−/−, 

and Hpx−/−Hp−/− mice received IL-22 intraperitoneally and then the mice were infected with 

C. rodentium intravenously. While administration of IL-22 induced a comparable reduction 

of pathogen loads in the blood of WT and Hp−/− mice (Fig. 6D), this anti-bacterial effect 
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was lost in Hpx−/− and Hpx−/−Hp−/− mice (Fig. 6E,F). Thus, IL-22 requires HPX, but not 

HP, to suppress pathogen growth in vitro and in vivo. To assess whether HPX is sufficient to 

promote pathogen clearance in the absence of IL-22 administration, WT, Hpx−/−, Hp−/−, and 

Hpx−/−Hp−/− mice were infected with C. rodentium intravenously and pathogen loads and 

mouse survival were monitored in infected mice. There was impaired pathogen clearance in 

Hpx−/− and Hpx−/−Hp−/− mice, but not Hp−/− mice, compared to WT mice (Fig. 6G). 

Furthermore, administration of HPX reduced the pathogen load in Il22−/− mice compared to 

mock-treated mice after intravenous (Fig. 6H) and oral infection (Fig. 6I,J). Together, these 

results indicate that IL-22 limits the growth of C. rodentium via HPX in vivo.

Discussion

IL-22 has been primarily linked to the regulation of host defense, cellular proliferation and 

tissue repair at intestinal barriers (10). In the current studies, we provide evidence for a role 

of IL-22 in protecting the host against the enteric pathogen C. rodentium and E. coli by 

mediating the production of HPX in plasma. Although produced by immune cells in 

response to microbial stimuli, IL-22 stimulates its heterodimeric IL-22RA-1/IL-10R 

receptor on epithelial cells including hepatocytes that are known to produce large amounts of 

HPX (18). Induction of HPX in response to systemic infections was so far thought to protect 

the infected host from heme-induced cell toxicity, inflammation and multi-organ dysfunction 

(30), without interfering with the host pathogen load and as such conferring disease 

tolerance to systemic bacterial infections (30, 31). This protective effect of HPX and its 

removal by macrophages and parenchymal cells has also been extended to several other 

pathologies associated with varying degrees of hemolysis (25). Our work demonstrates that 

IL-22-induced HPX also confers resistance to systemic bacterial infections by limiting the 

heme availability to bacteria. Pathogens possess several mechanisms to overcome iron-

limiting defenses induced by the host including siderophores, hemophores and heme/

hemoprotein receptors (1). Thus, pathogens capable of colonizing iron-poor niches are likely 

to be less susceptible to IL-22-mediated HPX induction. C. rodentium and E. coli appear to 

rely on strategies to acquire iron from heme when they colonize the plasma and systemic 

organs. C. rodentium and E. coli produce enterobactin, a siderophore, and its receptor FepA 

to acquire iron and may express functional heme uptake systems (32, 33). Our results 

suggest that C. rodentium promotes hemolysis and heme acquisition through pore formation 

via T3SS-mediated factors and specifically EspB/EspD. EspH, a T3SS effector that regulates 

phagocytosis, was dispensable for pathogen growth in IL22−/− mice. These findings suggest 

that the T3SS promotes bacterial growth by inducing hemolysis. However, there maybe 

additional factors including compromised ability to block phagocytosis that might contribute 

to the impaired ability of T3SS mutants to infect the mice. Further work is needed to 

understand how C. rodentium and E. coli acquire iron from heme in vivo.

Our studies indicate that pathogenic bacteria such as A/E pathogens take advantage of 

virulence strategies such as expression of Ler-dependent factors normally used to colonize 

the intestinal epithelium to survive in alternative niches such as the blood in the event of 

causing bacteremia. Administration of IL-22-binding protein (IL-22-BP), a natural 

antagonist of IL-22 signaling, has been reported to enhance the systemic clearance of 

commensal bacteria in a model of polymicrobial sepsis (34). Further work is needed to 
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determine whether the protective function of IL-22-BP is mediated through the induction of 

HPX and/or another mechanism. Our results suggest that strategies to scavenge heme in 

plasma, such as that afforded by the administration of IL-22, HPX or other approaches may 

be beneficial in the treatment of systemic bacterial infections.

Material and Methods

Study design

The aim of this study was to elucidate and characterize the mechanism by which IL-22 

mediates systemic protection against bacterial infection using the C. rodentium and E. coli 
models in mice. The experimental design involved in vivo and in vitro experiments, 

including protein identification by LC-tandem MS, chromatographic fractionation of plasma 

proteins, immunoblotting, histological analysis, reverse transcription polymerase chain 

reaction (RT-PCR) analysis and bacterial colony enumeration. The animal experiments were 

not randomized. The investigators were not blinded to the allocation during experiments and 

analyses unless otherwise indicated. Experimental replication is indicated in the figure 

legends.

Animals

Six to eight weeks old WT C57BL6 mice were bred in our animal facility. Il22−/−, Hp−/−, 

Hpx−/−, and Hp−/−Hpx−/−, mice on C57BL6 background have been described (35, 36) and 

bred under specific pathogen-free (SPF) conditions at the University of Michigan Cancer 

Center. Il22−/− mice were obtained from Genentech. GF mice were bred and maintained at 

the GF Animal Core Facility of the University of Michigan. The animal studies were 

conducted under protocols approved by the University of Michigan Committee on Use and 

Care of Animals.

Citrobacter rodentium infection

Kanamycin (Km)-resistant WT Citrobacter rodentium strain DBS120 (pCRP1::Tn5) was a 

gift of Dr. David Schauer, Massachusetts Institute of Technology. The isogenic C. rodentium 
Δler mutant strain has been described (37). C. rodentium strains with nonpolar deletion 

mutants of espA, espB and espH have been described (23). For inoculations, bacteria were 

grown overnight in Luria-Bertani (LB) broth supplemented with Km (50 μg/ml) with 

shaking at 37°C. Mice were infected by oral gavage with 0.2 mL of PBS containing 

approximately 1 × 109 colony-forming units (CFU) of C. rodentium, or by intravenous 

injection with 0.2 mL of PBS containing approximately 5 × 107 CFU of C. rodentium. The 

investigators were not blinded to allocation during experiments. To mimic the continuous 

source of bacteremia observed in Il22−/− mice orally infected with the pathogen, mice were 

infected with 5 × 107 CFU of C. rodentium intravenously daily for 9-10 days. To assess the 

role of HPX in C. rodentium clearance in vivo, Il22−/− mice were orally infected with the 

pathogen (1 × 109 CFU) and the mice were treated intravenously with purified HPX (Athens 

Research and Technology; 2 mg/mouse) or saline on day 3, 4, 5 and 6 post-infection. For 

systemic infections, HPX (2 mg/mouse) or saline (sham) was injected intravenously on three 

consecutive days before infection or control (sham) into Il22−/− mice and then the mice were 

infected with 5×107 CFU of C. rodentium intravenously. To determine pathogen loads in the 
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feces, fecal pellets were collected from individual mice, homogenized in cold PBS and 

plated at serial dilutions onto MacConkey agar plates containing 50 μg/ml Km, and the 

number of CFU was determined after overnight incubation at 37°C. To determine bacterial 

number in the blood, liver and spleen, mice were euthanized at various time points post-

infection and blood or tissue samples were plated onto MacConkey agar containing 50 μg/ml 

Km, and the number of CFU was determined after overnight incubation at 37°C.

IL-22 neutralization and administration

To deplete endogenous IL-22 in mice, anti-IL-22 (150 μg/mouse per dose; 8E11; Genentech) 

or the equivalent amount of mouse isotype-matched control antibody (to ragweed; 

10D9.1E11.1F12; Genentech) were injected to the mice 3 times a week. To treat mice with 

IL-22, mice were injected intravenously with Fc-IL-22 (50 μg per dose; PRO312045; 

Genentech) or the equivalent amount of mouse isotype-matched control antibody (to 

ragweed; 10D9.1E11.1F12; Genentech) daily for 3 days, and 6 hrs after from final injection.

Escherichia coli infection

E. coli strain NI1076 was isolated from the mouse intestine mice as described (17). For 

infections, bacteria were grown overnight in Luria-Bertani (LB) broth with shaking at 37°C. 

Mice were infected by intravenous injection with 0.2 mL of PBS containing approximately 2 

× 108 CFU of E. coli.

Bacterial growth assays

1 × 105 CFU/mL of C. rodentium or E. coli were incubated in DMEM in the presence of 500 

μg/mL of Apo-transferrin (Athens Research and Technology) to chelate free iron. To assess 

bacterial growth, hemin (2.5 μg/ml; Sigma) or hemoglobin (25 μg/ml; Sigma) was added to 

the culture medium in the presence and absence of different concentrations of HPX (Athens 

Research and Technology) or HP (Athens Research and Technology).

Statistical analysis

Statistical significance was calculated as indicated in the figure legends using GraphPad 

Prism 6 software. Log-rank test was used to assess mouse survival. Non-parametric Mann-

Whitney test was used for pair comparisons and Dunn’s test for multiple comparisons. 

Differences were considered significant when p values were less than 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IL-22 promotes pathogen clearance and host survival after systemic infection with C. 
rodentium
A, Production of IL-22 after a single intravenous injection of C. rodentium (5×107 CFU) 

into WT mice (n=4). IL-22 amounts in plasma on indicated time points after injection are 

shown. B, Survival of WT (n= 12) and Il22−/− (n= 17) mice after intravenous pathogen 

infection. Mice were injected daily with 5×107 CFU of C. rodentium from day 0 to 9 to 

mimic bacteremia resulting from oral infection of Il22−/− mice. C, Pathogen loads in the 

blood on the indicated time points after systemic C. rodentium infection using bacteremia 

model employed in panel B. D, The effect of IL-22 administration on bacterial clearance. 

Il22−/− mice were treated with Fc-IL-22 or control protein (sham), and pathogen loads in 

blood were measured 18 hrs after a single intravenous injection with 5×107 CFU of C. 
rodentium. E, Mouse survival of GF mice pre-treated with anti-IL-22 neutralizing antibody 

(n= 11) or isotype-matched control antibody (n=9) infected orally with C. rodentium (1×109 

CFU). F-H, Pathogen loads in the blood (F), liver (G), and spleen (H) of GF mice pre-

treated with anti-IL-22 neutralizing antibody or control antibody. Pathogen loads were 

measured on day 7 after oral C. rodentium infection. The data in panels A-H are 

representative of at least 2 independent experiments. Each circle represents one mouse (C, 
D, F, G, H). Median values are indicated by a horizontal bar. NS, not significant, *p<0.05, 

**p<0.01, ***p<0.001, log-rank test (B, E), Mann-Whitney test (C, D, F, G, H).
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Figure 2. IL-22-mediated regulation of plasma proteins after C. rodentium infection
Heat-map analysis of protein abundance in plasma samples from indicated mice. Protein 

analysis was performed by LC-MS/MS. Left panel shows the abundance of all detected 

proteins. Right panel shows proteins increased (upper) or decreased (lower) in samples from 

infected IL22−/− mice compared to samples from infected WT mice or Il22−/− mice treated 

with Fc-IL-22 compared to Il22−/− treated with control protein. Plasma samples were 

collected from mice on day 7 after intravenous C. rodentium infection (infected WT and 

Il22−/− mice). Data are representative of two different experiments. HPX, HP, α- and β-

globin are boxed in light red.
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Figure 3. Erythrocyte lysis and heme release via the EspB translocator promote pathogen growth 
in vivo
A-B, Detection of hemoglobin subunit alpha (HBα) in the plasma of uninfected and infected 

Il22−/− mice. Mice were infected intravenously using bacteremia model (A) or orally (B) 

with C. rodentium. Plasma samples (n= 3 mice for each group) were imunoblotted with an 

antibody against HBα. Ponceau S staining of the gel is also shown. C, The amounts of heme 

in plasma were measured in uninfected mice and mice infected intravenously (left panel) or 

orally (right panel) with C. rodentium (C. r.). D, Administration of lysed erythrocytes 

enhances pathogen growth in vivo. Il22−/− mice were co-injected intravenously with lysed 

red blood cells (RBC) or vehicle and 5×107 CFU of C. rodentium and pathogen loads in 

blood were measured at 18 hrs post-infection. E, Erythrocyte lysis induced by WT and 

indicated mutant C. rodentium strains. Data are shown as mean of quintuplicates ± s. d. F, 
Pathogen loads in blood in bacteremia model used in Fig. 1B. Il22−/− mice were infected 

intravenously with WT or espB mutant C. rodentium strains. Blood samples were collected 

at the indicated time points. † indicates all mice succumbed. G, Survival of Il22−/− mice in 

the bacteremia model after infection with WT (n= 6) or espB mutant (n=6) C. rodentium 
strains. H, Loads of espB mutant C. rodentium in blood of Il22−/− mice at 18 hrs post-

infection with or without lysed RBC. I, The amounts of heme in plasma of indicated mice 

were measured after intravenous infection with WT or espB mutant C. rodentium (C. r.) 
strains. The data in panels A-I are representative of at least two independent experiments. 
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Each circle (C, D, F, H, I) represents one mouse. Median values are indicated by a 

horizontal bar. NS, not significant, *p<0.05, **p<0.01, ***p<0.001, Dunn’s test (C, left 

panel, E), Mann Whitney test (C right panel, D, F, H, I), log-rank test (G).
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Figure 4. Induction of HPX by IL-22 is essential for inhibition of C. rodentium growth in the 
presence of heme
A, B. Detection of HPX and HP in the plasma of uninfected and infected animals. WT (n= 

2-3 per group) or Il22−/− (n= 2-3 per group) mice were left uninfected or infected with WT 

C. rodentium i. v. (A) or orally (B) and the plasma samples were collected and 

immunoblotted with antibodies against HPX (Hpx) and HP (Hp). Staining of gels with 

Ponceau S is also shown. C, Detection of HPX and HP in the plasma of Il22−/− mice left 

untreated (−) or treated with recombinant Fc-IL-22. D, Growth of C. rodentium in the 

presence of plasma from WT and Il22−/− mice. Bacterial growth was measured by plating. 

E, Growth of C. rodentium in the presence of plasma from Il22−/− mice treated with Fc-

IL-22 or control protein (sham). Experiments were performed as in panel D. F, Mice were 

treated with Fc-IL-22 or control protein, and plasma samples were fractionated by column 

chromatography. Sequential fractions were pooled into 6 fractions that were analyzed for 

their ability to promote C. rodentium colony formation and for the presence of HPX or HP 

by immunoblotting. Analysis of unfractionated plasma samples is shown on right panel. G, 
Hemin promotes C. rodentium colony formation which is inhibited by HPX. Bacteria were 

incubated with and without hemin in the presence of indicated concentration of HPX. 

Bacterial growth was measured by plating. Data are shown as mean of sextuplicate cultures 

± s. d. H, Hemoglobin promotes C. rodentium colony formation which is inhibited by HPX. 

Bacteria were incubated with and without hemoglobin in the presence of indicated 
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concentration of HPX. Bacterial growth was measured by plating. I, Addition of HPX 

enhances the ability of plasma from Il22−/− mice to inhibit C. rodentium colony formation. 

Data in D and E represent means of six different mouse samples ± s. d. Data in G and H 
represent means of 6 technical replicates. The data in panels A-I are representative of at least 

two independent experiments NS, not significant, *p<0.05, **p<0.01, ***p<0.001, Dunn's 

test (D, I), Mann Whitney test (C right panel, E, F, G, H).
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Figure 5. Induction of HPX by IL-22 inhibits E. coli growth
A, Hemin promotes E. coli growth in vitro which is inhibited by HPX. Bacteria were 

incubated with and without hemin in the presence of indicated concentration of HPX. 

Bacterial growth was measured by plating. Data are shown as mean of quadruplicate 

cultures ± s. d. B, Growth of E. coli. in the presence of plasma from Il22−/− mice treated 

with Fc-IL-22 or control protein (sham). Data is shown as mean values ± s. d. C, Role of 

HPX in IL-22-mediated inhibition of E. coli growth. Growth of E. coli in the presence of 

plasma from WT and Hpx−/− mice pre-treated with Fc-IL-22 or control protein (−). Data are 

shown as the means of 13 technical replicates ± s. d. D, E, Bacterial loads in the blood after 

a single intravenous injection of E. coli. Blood samples were collected from WT (D, E), 

Il22−/− mice (D) and Hpx−/− mice (E) at 18 hrs post-infection. F, G, Survival of WT (n= 9) 

and Il22−/− (n= 11) (F) and WT (n=15 ) and Hpx−/− mice (n= 15) (G) after intravenous E. 
coli infection. The data in panels A-E are representative of at least two independent 

experiments. Data in panels F and G are results from two pooled experiments. Each symbol 

represents one mouse. Median values are indicated by a horizontal bar. NS, not significant, 

*p<0.05, Mann Whitney test (A, B, D, E), ***p<0.001, Dunn's test (C), *p<0.05, log-rank 

test (F, G).
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Figure 6. HPX, but not HP, is essential for inhibition of bacterial growth in vivo
A-C, Role of HPX and HP in IL-22-mediated inhibition of C. rodentium growth. Growth of 

C. rodentium in the presence of plasma samples from WT, Hp−/−, Hpx−/−, or Hp−/−Hpx−/− 

mice pre-treated with Fc-IL-22 or control protein (−). Data are shown as mean of at least six 

different mouse samples ± s. d. D-F, WT, Hp−/−, Hpx−/−, or Hp−/−Hpx−/− mice were treated 

with Fc-IL-22 or control protein and infected with 5×107 CFU of C. rodentium i. v. after Fc-

IL-22 or control protein administration. Pathogen loads in blood 18 hrs after infection are 

shown. G, Pathogen loads in the blood of indicated mice after C. rodentium infection using 

the bacteremia model shown in Fig. 1B. Pathogen loads in blood at the indicated time points 

are shown. H, HPX or saline (sham) was injected intravenously into Il22−/− mice and then 

the mice were infected with 5×107 CFU of C. rodentium intravenously. Pathogen loads in 

blood were measured 18 hrs after infection. I-J, Il22−/− mice were infected orally with 109 

CFU of C. rodentium and purified HPX or saline (sham) was injected intravenously into the 

mice on day 3, 4, 5 and 6 after infection. Pathogen loads in blood (H, I) and spleen (J) were 

measured on day 7 after infection. Each symbol represents one mouse (D-J). Median values 

are indicated by horizontal bar (D-J). The data in panels A-J are representative of at least 

two independent experiments. NS, not significant *p<0.05, **p<0.01, ***p<0.001, Dunn's 

test (A-G), Mann Whitney test (H-J).
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