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Abstract

Background—The Sholl technique is widely used to quantify dendritic morphology. Data from
such studies, which typically sample multiple neurons per animal, are often analyzed using simple
linear models. However, simple linear models fail to account for intra-class correlation that occurs
with clustered data, which can lead to faulty inferences.

New Method—Mixed effects models account for intra-class correlation that occurs with
clustered data; thus, these models more accurately estimate the standard deviation of the parameter
estimate, which produces more accurate p-values. While mixed models are not new, their use in
neuroscience has lagged behind their use in other disciplines.

Results—A review of the published literature illustrates common mistakes in analyses of Sholl
data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus
of male and female mice using both simple linear and mixed effects models demonstrates that the
p-values and standard deviations obtained using the simple linear models are biased downwards
and lead to erroneous rejection of the null hypothesis in some analyses.

Comparison with Existing Methods—The mixed effects approach more accurately models
the true variability in the data set, which leads to correct inference.

Conclusions—Mixed effects models avoid faulty inference in Sholl analysis of data sampled
from multiple neurons per animal by accounting for intra-class correlation. Given the widespread
practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to
apply mixed effects models more widely.
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1.1 Introduction

The central nervous system’s ability to process and distribute information relies on neural
connectivity, and a key determinant of neural connectivity is the morphology of the dendrite
(Libersat and Duch 2004; Menon and Gupton 2016; Scott and Luo 2001). Altered dendritic
morphology, including increased or decreased dendritic arborization are a shared feature of
many neurodevelopmental disorders (NDDs) (Bourgeron 2009; Fukuda et al. 2005; Garey
2010; Keown et al. 2013; Supekar et al. 2013) and neurodegenerative diseases (Cochran et
al., 2014, Kweon et al., 2016). Therefore the analysis of dendritic morphology is a critical
tool in neuroscience studies.

1.1.1 Analysis of dendritic morphology in brain tissue sections

A common problem encountered in neuroscience research is how to analyze complex
dendritic structures. Sholl analysis is a method that has been widely used for decades to
describe the complexity of neurons both from brain tissue sections and /n vitro systems
(Sholl, 1953), and it remains a key tool in neuroscience research for this application. In this
method, concentric circles at specified radii (usually in 10 micrometer (um) increments) are
centered on the neuronal soma and the number of dendritic intersections at each circle is
counted. Commonly reported endpoints from this analysis include the sum of all
intersections within the Sholl radii, the number of intersections at individual radii, and the
area under the curve for the whole or regions of the neuron (Ferreira et al., 2013, Sholl,
1953). However, the statistical analysis of data generated using the Sholl technique is not
consistent in the literature.

1.1.2 Methods commonly used to analyze Sholl data and associated problems

A common experimental design in studies of dendritic morphology, as well as many other
studies in neuroscience, is that of multiple observations per subject, for example analyzing
multiple neurons from one experimental animal. Simple linear models are commonly used to
analyze these data; however, these models do not account for the clustered data structure of
this experimental design, despite multiple reports over that last several years describing the
issues associated with these approaches (Aarts et al., 2014; Boisgontier and Cheval, 2016;
loannis, 2005). While simple statistical methods such as ¢tests, Wilcoxon rank sum test,
ANOVA, and regression are in widespread use, there are many situations in scientific
research where the data structure violates the assumptions of these simple models. The
effects of intra-subject correlation have been understood for several decades (Walsh, 1947).
In the case where more than one observation is made on the same subject animal, for
example, measurements on multiple neurons per animal, intra-subject correlation violates
the assumption of complete independence of the observations. While in the last several
years, the use of mixed effects models has increased in a variety of scientific and medical
disciplines, neuroscience has lagged behind (Boisgontier and Cheval, 2016), despite
publications warning of the sharp increase in faulty experimental designs, false positives,
and spurious inferences that result (Aarts et al., 2014; Boisgontier and Cheval, 2016;
loannis, 2005).
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As Aarts et. al., 2014 point out, an increase in the number of neurons per animal gives the
appearance of a large increase in power if a simple linear model is used. However, the true
increase in power with increasing numbers of neurons per animal is relatively small, and this
is only accounted for when the correct mixed effects model is used. Resources should be
geared towards more animals rather than more neurons per animal. The reason for this is that
data observed on neurons from the same animal are likely to have more in common with
each other than with neurons from a different animal. Hence, an additional neuron from the
same animal does not provide the same amount of additional information as another neuron
from a different animal. When a simple linear model is fit to test for differences between
treatments or other characteristics on two or more groups of animals, the variance is
calculated under the assumption that each observation is independent of every other. The
lower variability caused by similarity (dependence) between neurons from the same animal
will result in an under-estimation of the within condition variance, which in turn results in an
under-estimation of the p-value for the test of differences between conditions.

Many (Aarts et al., 2014, Galbraith et al., 2010, Senn, 1998) have shown through simulation
and theoretical proofs that studies using simple linear models to analyze data with multiple
measurements per subject have very high false positive rates. That is, if there is in fact no
difference between the conditions, studies that do not adequately account for the clustered
nature of the data will falsely yield a statistically significant result a large percentage of the
time. Mixed effects models correctly model the clustering that results from measurements
made on multiple neurons per animal and, hence, produce accurate p-values upon which
inference is based. In the case of Sholl profile analysis where the number of intersections is
measured at each radius, there is multi-level nesting (radii within neuron as well as neuron
within animal) and an autoregressive covariance structure because measurements made at
radii close to each other are likely to be more highly correlated than those far from each
other. The commonly performed ¢test cannot accommodate either the multi-level nesting or
the autoregressive covariance; in contrast, mixed effects models can accommodate both. One
solution is a repeated measures analysis across radii, but this approach does not control for
clustering due to multiple neurons per animal. Some authors (Wallin-Miller et al., 2016;
Pawluski et al., 2012; Beauquis et al., 2013) have approached this problem by averaging the
measurements across neurons to obtain one observation per animal at each radius, and then
using a repeated measures analysis across radii. While this approach does not violate any
model assumptions it does result in the loss of information about variability across neuron.

An additional complication in Sholl profile analysis is the multiple testing at multiple radii.
Type one error inflation can be severe when multiple tests are performed. For example, when
10 radii are used, the probability of at least one type | error is about 40%. It is not
uncommon for researchers performing Sholl profile analysis to fail to correct for global type
I error inflation, and those who do often use methods that are either too severe, leading to an
unnecessary loss of power, or too lenient, leading to a less than adequate control of error
inflation. For example, using Bonferroni’s is too severe, while the Least Significant
Difference correction for post-hoc comparisons is too lenient; more appropriate would be
Scheffe’s (Neter et. al. 1996; Zar, 1984). Here, we illustrate how to implement a method for
controlling the false discovery rate in Sholl profile analysis, which addresses the issue of
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experiment-wise type | error inflation but is both powerful and accurate (Benjamini and
Hochberg, 1995).

In this study, we review some of the issues involved in the analysis of clustered data,
examine the misuse of the ftest and the Wilcoxon rank sum test. We also compare the results
of using mixed effects models versus simple linear models on real data from Sholl analyses
of dendritic arborization of Golgi stained male and female wild type mouse hippocampal
neurons to show how results of statistical analyses differ between the correct method (mixed
effects models) and the incorrect method (simple linear models). Finally, we provide SAS®
software code and annotated output for use of the mixed model in analyzing neuron
architecture to simplify the analysis for non-statisticians.

2.1 Methods
2.1.1 Animals

All procedures and protocols were approved by the University of California, Davis Animal
Care and Use Committee and were conducted in accordance with the NIH Guide for the
Care and Use of Laboratory Animals. C57BI1/6J wild type mice were purchased from
Jackson Labs (Bar Harbor, ME) and housed in clear plastic cages containing corn cob
bedding. Mice were maintained on a 12 h light and dark cycle at 22 + 2 °C. Feed (Diet 5058,
LabDiet, St. Louis, MO) and water were available ad /ibitum.

2.1.2 Golgi Staining and Sholl Analysis

For this study we used an existing data set consisting of 10 (5 male; 5 female) wild type
C57BI/6J juvenile mice with the number of neurons analyzed per mouse ranging from 1 to
8. Postnatal day (P) 28 mice were euthanized via CO, inhalation. Brains were removed,
bisected and immediately processed for Golgi staining using the FD Rapid GolgiStain kit
(FD NeuroTechnologies Inc., Columbia, MD) according to the manufacturer’s instructions.
Brightfield image stacks of CA1 hippocampal pyramidal neurons were captured using an
IX-81 inverted microscope (Olympus, Shinjuku, Japan) and MetaMorph Image Analysis
Software (version 7.1, Molecular Devices, Sunnyvale, CA) by an individual blinded to sex.
Criteria for selection of neurons for Golgi analyses have been described previously (Lein et
al., 2007). Basilar dendritic arbors of selected neurons were traced using NeuroLucida
(version 11, MBF Bioscience, Williston, VT) and arbor complexity was quantified by Sholl
analysis using NeuroLucida Explorer (version 11, MBF Bioscience). The outcome measures
were mean dendritic length, number of basilar dendritic tips divided by the total number of
dendrites, the sum of dendritic intersections within Sholl radii, total area under the Sholl
curve (0-150 microns analyzed at 10 micron increments) and area under the Sholl curve
corresponding to the proximal (0—70 microns) and distal (70-150 microns) portions of the
dendritic arbor.

2.1.3 Statistical Analyses

We used independent sample £tests, Wilcoxon rank sum tests and mixed effects ANOVA to
compare the differences in standard errors and p-values obtained using simple linear models
(¢tests and Wilcoxon rank sum tests) versus mixed effects models. The normal and equal
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variance assumptions were tested using histograms, summary statistics, and residual plots. If
an outcome variable did not appear to be normal or if unequal variances were observed, the
appropriate transformation was used to achieve approximate normality and the appropriate
model was specified to account for unequal variance. For the Wilcoxon test, we used
untransformed data because this is a common practice in the field that we wanted to
compare to the mixed models. We discuss a method for controlling the false discovery rate
to account for multiple testing at multiple radii, a common practice in Sholl profile analysis.
For the simple linear model analyses we used the SAS® procedures TTEST and
NPARIWAY. We used the SAS® software procedure MIXED for all mixed effects models.
We used the variance components options to specify the covariance structure for all models
except for the Sholl profile with multi-level nesting where we used an autoregressive
(AM(1)) covariance structure. The SAS® procedure MULTTEST was used to obtain
corrected p-values (g-values) for controlling the false discovery rate (FDR) with
interpretation at FDR=.05, .10, and .20. All analyses were conducted in SAS® software
version 9.4 of the SAS System for Windows® (SAS Institute Inc, Cary, NC). Code is shown
in the Appendix. SAS output is shown in both the body of the article for illustration and
annotated in the appendix for completeness.

2.1.4 Literature Search

A literature search was conducted via PubMed search using the search terms “Sholl
analysis” and “neuron” to identify studies which examined dendritic morphology using
Sholl analysis in brain tissue sections. Articles going back to 2005 were included. /n7 vitro or
computer modeling studies were excluded to keep the focus of this manuscript on data
structure generated from animal studies. A summary of this search is presented in Table 1
and specific references can be found in Supplemental Table 1.

3.1 Results and Discussion

Without the proper statistical method that accounts for the experimental design and data
structure, the results of scientific research are questionable and non-reproducible. Without
the ability to accurately quantify uncertainty and reproduce experimental results, scientists
are not, in fact, meeting the demands of the scientific method for testing hypotheses. These
issues have been recognized by the National Institutes of Health (Collins and Tabak 2014,
Landis et al., 2012, Pusztai et al., 2013) and in an effort to enhance rigor and transparency in
scientific research, new reviewer guidelines assess the scientific premise, experimental
design for robust and unbiased results, and consideration of relevant biological variables
such as sex in grant applications.

In neuroscience, it is common for multiple neurons to be analyzed per animal and treated as
independent observations, which is a violation of the model assumptions and can lead to
faulty inference. Table 1 summarizes studies using Sholl analysis of Golgi-stained neurons
in brain tissue sections to measure dendritic arborization, and includes the number of
animals and neurons used as well as the statistical tests applied. From a total of 79 published
papers examined, only ~23% reported using a mixed model approach to analyze Sholl data
despite the fact that 72% of these studies use multiple neurons per animal (Table 1). Further,
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of the papers we reviewed, ~37% were unclear as to the number of neurons taken from each
animal (Table 1). Details regarding the papers included in our review, including the
experimental design and 77 values reported, can be found in Supplemental Table 1. Together,
these results indicate the need for wider acceptance and use of standardized, correct
statistical approaches to consistently quantify neuron morphology for multiple observations
per animal.

3.1.1 Using mixed effects model to analyze Sholl data

Mixed effects models correctly model the clustering that results from measurements made
on multiple neurons per animal, and thus produce accurate p-values upon which inference in
based. The simplest mixed model is the random intercepts model. In this model, the
clustering within animal is modeled by allowing each animal to have its own (random)
intercept. Where n7is the number of animals and 4 is the number of observations per animal,
the model can be written:

Yij=Bo+u;+51T+ei;

where /=1,...nand j=1,...kand where e;; ujare independent and where &;;~M0, &%) and

u;~N (0, 02). Here, we simplify by assuming that & is the same for every animal, but SAS®
software does not require this restriction. In our example data, y;;represents the dendritic
morphological outcome from the Sholl analysis for the i" mouse and the j neuron; 5
represents the common intercept; u;represents the individual random component of the
intercept for each mouse; S is the group or condition difference, in our example between
male and female mice, in the dendritic morphological outcome; x;= 0 if the mouse is female
and x;= 1 if the mouse is male. Finally, e;;represents the random error for the it mouse and
the j™ neuron.

Mixed models also have a degree of flexibility in that they are robust to failures in
distributional assumptions (i.e., they work well even when the errors are not normally
distributed) and that they can correctly model heterogeneity of variance if the correct
variance structure is specified. For example, if the variance of the outcome for the male mice
appears to be larger than for the female, it can be specified in the code to estimate the
variances separately and to use Satterthwaite’s approximation for the degrees of freedom.
This model is written exactly as above except that to account for different variances for each
sex the equation is

eij~N (0,00 + M+0} + F)

where M = 1 if the mouse is male and 0 if female; and F = 1 if the mouse is female and O if
male. Additionally, there are other covariance structures that can be modeled, specifically
the unstructured covariance, which has the most flexibility but also requires the most
parameters. For this reason, specifying the unstructured covariance model tends to work well
for small models but may not converge for larger models (Kincaid, 2005).
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Additionally, for data where sequential measurements are correlated with each other, such as
in Sholl profile analysis with measurements taken at successive radii, an autoregressive
variance structure can be specified. In the case of Sholl profile analysis, the measurements of
the number of intersections at radii close to each other are likely to be more highly
correlated with each other than those taken at radii far from each other. Hence, a more
specialized variance structure is required. For complicated variance structures or large
models with several conditions or covariates, or models where a distribution other than
normal, such as binary or Poisson is required, we recommend seeking consultation and
collaboration from a statistician.

When using the MIXED procedure in SAS the data should be formatted in the data file with
the repeated measures per animal and neuron in long form (multiple rows per animal and
neuron across radii), not wide form (multiple columns). See Appendix for an example of a
properly formatted data set.

3.1.2 The normality and equal variance assumptions

The Student’s ¢test and its multi-group extension, ANOVA, assume complete independence
of the observations and approximate normality of the response variable. When these
assumptions are violated the p-value is not accurate. Mixed effects models can accommodate
multiple observations per animal and heterogeneity of variance, but do assume approximate
normality. However, they are robust to failures in the normality assumption, which means
that they produce accurate estimates and reasonably accurate p-values, even with somewhat
skewed distributions.

In our data set, two of the outcome variables showed both non-normality and heterogeneity
of variance: the number of tips divided by the number of dendrites and mean dendrite length.
Figure 1 shows the histograms of the raw and transformed data and Table 2 shows the mean
and standard deviations. The transformation corected both the extreme skew and the gross
inequality of variance (Fig. 1). Note that the effectiveness of the transformation needs to be
verified by examining the residual panel from the mixed model.

3.2 Simple linear models versus mixed effects ANOVA

We next compare side by side, the outcome when using a linear model #test versus a mixed
effects ANOVA model to analyze dendritic morphology. Analytical results are shown in
Table 3 to illustrate the deflation of the standard error and p-values that occurs when the
intra-animal correlation is not accounted for by the statistical model such as is the case when
using the ztest.

Note that proper identification of the variance structure can affect the validity of the
inference. When the heterogeneity of variance is not accounted for the p-values can change.
For example, incorrectly assuming equal variance in the distal (70-150 microns from the
soma) area under the curve analysis produced a p-value of p=0.042 (not shown), compared
to the p=0.09 using Satterthwaite shown in Table 3. In terms of biological relevance, it is
clear that the conclusions drawn from these experiments are affected by the structure of the
data as well as the models used. When using ¢tests, nearly all variables are significantly
different between the sexes; however, when accounting for the structure of the data, and the
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heterogeneity of variance, only one variable remains significantly different: the log-
transformed number of dendritic tips divided by total dendrites, which is a measure of
dendritic complexity, is significantly greater in male compared to female hippocampal
neurons (Table 2, 3).

The SAS® software output for log10 mean dendrite length is shown in Table 4. The data are
the estimate for the difference between males and females, with males set as the reference
level, the standard error of the estimate, the degrees of freedom, the #statistic, the p-value
(Pr > [t]), the set alpha level, and the lower and upper confidence limits for the 1-alpha=0.95
confidence limits. Because this is a log transformed model, we must back transform to
interpret the parameter in the original units. We have 10(-0-16) = 0.69. This means that we
expect the median of mean dendritic length to be a factor of 69% less for females than for
males, or equivalently, 31% less, though this difference is not statistically significant. More
extensive SAS output is shown in the Appendix.

Often in these analyses, the outcome variable shows strong deviations from normality, so
non-parametric techniques, such as the Wilcoxon rank sum test, are used. However, the
common version of these tests also assumes independence of the observations, and that the
group variances are equal. Hence, these tests cannot accommodate clustered data or
heterogeneity of variances. While rank-sum tests for clustered data have been developed
(Datta and Satten, 2005), these tend to be advanced techniques that a non-statistician may
find difficult to implement. Comparatively, mixed model techniques are easier to explain and
are available in most statistical software packages such as SAS, Matlab, R, and SPSS
(Brown, 2015, Littell, et. al., 2006, Aarts, et. al., 2014). Therefore, a better solution is often
to transform the data to approximate normality and use a mixed effects model that can
accommodate both clustered data and any inequality of variance remaining after the
transformation by specifying the correct covariance structure.

As shown in Figure 1, two parameters in our data set showed both non-normality and
heterogeneity of variance: the number of tips divided by the number of dendrites and mean
dendrite length. Using these examples, we next illustrate a typical occurrence when a non-
parametric technique is used in response to a skewed distribution, while not taking into
account the clustering or inequality of variance (Table 5).

The residual panels for the mixed model for the log base 10 transformation of mean dendrite
length is shown in Figure 2. The residuals have an even spread centered at zero between
-0.5 and 0.5 across the range of predicted values, the histogram of the residuals is
approximately symmetric and unimodal, and the residual quantile plot shows residuals lying
closely on the normal quantile line (Fig. 2). If the residual panel showed problems with large
deviations from normality, other transformations should be attempted to normalize the data.
However, mixed models are robust to failures in normality, hence, so long as the deviations
are not striking, the model will produce reasonably accurate p-values as well as accurate
parameter estimates. If there appeared to be heterogeneity in the variance, Satterthwaite’s
degrees of freedom could be specified during model fitting (See Appendix). Figure 2 shows
the residual panel for the untransformed mean dendrite length, where it is clear that there are
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problems with model assumptions. Figure 3 shows the residual panel for the log10
transformation.

3.1.3 Sholl profile analysis: t tests vs mixed effects models at each radius

As illustrated in Table 1 and Supplemental Table 1, aside from accounting for multiple
measures per neuron and per animal, there is variability in how statistically significant
differences are determined using Sholl analysis. Figure 4A shows a representative tracing of
the basal dendrites of a Golgi-stained pyramidal neuron in a female mouse hippocampus.
The number of dendritic intersections at each radius is plotted, as represented in Figure 4B.

When this analysis is used to compare dendritic complexity between multiple treatment
groups it can become challenging to determine what is statistically and biologically
significant. For example, one method of analysis is to conduct #tests (or ANOVA depending
on how many treatment groups are being compared) at each individual distance from the
soma. Ultimately, each radii is treated as an individual point. This procedure does not take
into account neurons within animal and creates the additional problem of family-wise type |
error inflation due to a large number of tests (Abdi, 2007). Multiple mixed effects models
can be fit, one for each radius, and then a procedure to control the false discovery rate can be
implemented, which is more powerful than classical methods for controlling the family-wise
error rate (Benjamini and Hochberg, 1995).

We applied this method to our data set comparing male and female basal dendrites from
Golgi stained hippocampal neurons, and compared the raw p-values for the ztests alone, the
mixed models at each radius and the corrected p-values (g-values) used for inference when
controlling the false discovery rate (Table 6). The g-value obtained when controlling the
false discovery rate is an estimate of the false positive rate; and the g-values, while usually
considered to be adjusted p-values, are not equivalent in meaning or interpretation to p-
values. Hence, researchers may have more flexibility when choosing an FDR than when
choosing a in traditional analyses. If a large number of radii are being tested, there is a
substantial loss of power when using an FDR of 5%. The investigator should consider what
is a tolerable false discovery rate given the number of radii being tested, what it implies in
the context of the problem for some radii to be significant but not others, and the real-world
implications of false positives. Ideally, this acceptable FDR should be decided before any
analysis of the data has taken place.

Readers should also note that different approaches to controlling the false discovery rate are
both currently available and in development. Some are more lenient and more powerful than
the one chosen here. The simple FDR was chosen in the example as a middle-ground in the

balance between too high an FDR and too low power. We recommend seeking the advice of
a statistician if more advice is needed.

For our example data set, using ftests, five radii showed significant differences between
male and female (radii 90, 110,120,130 and 140) at the 5% level. Using a mixed effects
model, 4 of these were significantly different, with all p-values higher compared to the ¢
tests. Using FDR g-values none of the radii were significantly different at the 5% or 10%
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rate, but 5 radii (the same as for the t test) were significant at the 20% rate. In this case, the
investigator would consider whether a 1 in 5 likely false positive was acceptable.

These data demonstrate that based on the question being addressed, and the structure of the
data, the type of analysis run can lead to different conclusions. In this case, significant
differences observed using ¢tests at all radii may be an artifact of multiple tests being run.
On the other hand if one radius is of particular interest, then using a mixed model approach
on the specific radius will account for the sampling structure of the data.

3.1.4 Overall test for differences using t test versus mixed effects model

In the case of Sholl profile analysis there is multi-level nesting (radii within neuron as well
as neuron within animal) and an autoregressive covariance structure because measurements
made at radii close to each other are likely to be more highly correlated that those far from
each other. In an overall test for differences in the number of intersections, if a ftest is used,
both the nesting of radii within neuron and neuron within animal is unaccounted for. This
leads to a drastic false increase in power. Additionally, the autoregressive covariance
structure cannot be adequately addressed. Table 7 displays the results of the ¢test.

The SAS output shows the means for both sexes, the difference between them and the
confidence intervals for the means and the standard deviations. This output also shows the
results for the equal variance and Satterthwaite tests (Table 7).

The commonly performed #test cannot accommodate either the multi-level nesting or the
autoregressive covariance. Mixed models can accommodate both. Table 8 shows the results
for the nested mixed model that accounts for both the multi-level nesting of radii within
neuron and neuron within animal, and the autoregressive covariance structure of
measurements taken sequentially across space. Table 8 shows the estimated difference
between the natural log(number of intersections + 1), the standard error, the degrees of
freedom, the p-value (Pr > |t|) and the alpha =0.05 confidence interval. It also shows the test
for an intercept of zero which is not of particular interest in this example. Figure 5 shows the
residual panel for the mixed model that illustrates good conformity with distributional
assumptions. Compared to independent #tests at each radii with false discovery rate
correction (Table 6), using the nested mixed model there is a significant difference between
male and female neurons (male more complex than female neurons) (Table 8), which
accounts for both the structure of the data in terms of neurons per animal and the
autoregressive covariance structure of the Sholl data. Overall, these data demonstrate the
power of statistical models in both accurately representing the structure of the data and what
this means in terms of drawing scientifically sound conclusions.

4.1 Conclusions

Here, we show an example data set that requires mixed effects model analysis and compare
the results to common approaches that do not account for the clustered nature of the data.
We show how both the standard error of the model parameters and the p-values are under-
estimated, leading to faulty inference. We show an example of a common transformation
that works well with these data to help normalize the distribution. We also show a method
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for analyzing Sholl profiles to account for both the number of neurons per animal as well as
multi-level nesting and autoregressive covariance. Using this model, we identify differences
between male and female basal hippocampal dendrite complexity with males showing
greater complexity compared to female neurons. While we only used one example data set
and only a few outcome variables, many others have shown using simulation and probability
theory, the type | error inflation that occurs when using simple linear models that do not
account for intra-class correlation in clustered data. Our aim here is to provide
neuroscientists with a manageable method for understanding and correctly analyzing
clustered data, as well as the SAS code and output to run these analyses. We strongly
recommend seeking the collaboration of a statistician for those with larger or more
complicated models where fitting the model may require more in-depth expertise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: SAS Data file, Code, and Output

Example Data Set showing 4 animals, with 2 neurons per animal, and 3 radii

per neuron

A B 5

1 Sex Animal Neuron
e F 1037
S||F 1037
4 |F 1037
Bl F 1037
6 F 1037
7. (F 1037
8 M 3001
9 M 3001
10 M 3001
11 M 3001
12 M 3001
13 M 3001
14 F 3003
15 'F 3003
16 'F 3003
17 |F 3003
18 F 3003
19 |F 3003
20 M 5002
21 M 5002
22 M 5002
23 M 5002
24 M 5002
25 M 5002

[
=]

Mixed Model with Simple Covariance Structure (Variance Components)

PROC SORT

DATA=GOLGI_HIPPO;

D
Radius
1 Radius_0
1 Radius_10
1 Radius_20
2 Radius_0
2 Radius_10
2 Radius_20
1 Radius_0
1 Radius_10
1 Radius_20
2 Radius_0
2 Radius_10
2 Radius_20
1 Radius_0
1 Radius_10
1 Radius_20
2 Radius_0
2 Radius_10
2 Radius_20
1 Radius_0
1 Radius_10
1 Radius_20
2 Radius_0
2 Radius_10
2 Radius_20

E
Intersections

[y
G WG Wa DGR 00N O NN WO N

BY ANIMAL NEURON; /* SORTING BY SUBJECT THEN BY NEURON*/

RUN

PRCC M XED

DATA=GOLGI_HIPPO PLOTS=RESIDUALPANEL;
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CLASS SEX; /* SPECIFYING SEX AS A CATEGORICAL/CLASS VARIABLE */

MODEL LOGMDL = SEX/CL; /* LOGMDL AS RESPONSE, SEX AS CONDITION */

RANDOM INT / TYPE=VC SUB=ANIMAL; /* RANDOM INTERCEPT, VARIANCE COMPONENTS,
SUBJECT LEVEL IS THE ANIMAL. */

RUN

QT

Annotated Output for Mixed Model with Simple Covariance Structure
(Variance Components)

The Mixed Procedure

Model Information

Data Set WORK.GOLGI_HIPPO
Dependent Variable logMDL

Covariance Structure Variance Components
Subject Effect Animal

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method | Containment

The Model Information table shows the data set, the dependent variable, the covariance
structure specified, the subject level (animal), the estimation method, and other default
settings for model fitting.

Class Level Information

Class | Levels | Values

Sex 2 | FM

The Class Level Information table specifies the number of levels of any class variables
declared in the model.

Dimensions

Covariance Parameters 2
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Dimensions

Columns in X

Columns in Z per Subject 1

Subjects

10

Max Obs per Subject

8

The Dimensions table shows the number of subjects and the maximum number of
observations per subject as well as covariance structure parameters.

Number of Observations

Number of Observations Read 66

Number of Observations Used 66

Number of Observations Not Used 0

Page 15

The Number of Observations table identifies the number of observations and notes any that
were not used due to missing values.

Iteration History

Iteration | Evaluations | —2 Res Log Like Criterion
0 1 28.01839126

3 22.23198728 | 0.00021177

2 1 22.22128805 | 0.00000195

3 1 22.22119468 | 0.00000000

Convergence criteria met.

The previous two tables verify convergence of the procedure.

Covariance Parameter Estimates

Cov Parm | Subject | Estimate
Intercept | Animal 0.01868
Residual 0.06510

This table shows the estimates for the residual variance (ejj) and the random intercept

variance (Lj)-
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Fit Statistics

-2 Res Log Likelihood

222

AIC (Smaller is Better)

26.2

AICC (Smaller is Better)

26.4

BIC (Smaller is Better)

26.8

Page 16

Fit statistics are used in model selection and not usually applicable for most studies.

Solution for Fixed Effects
Effect Sex | Estimate | Standard Error | DF | tValue | Pr>|t| | Alpha Lower Upper
Intercept 2.2416 0.07577 8 29.58 | <.0001 0.05 2.0668 2.4163
Sex F -0.1622 0.1072 56 -1.51 | 0.1357 0.05 | -0.3769 | 0.05243
Sex M 0

The Solution for Fixed Effects table shows the estimate for Sex, which represents the
difference between males and females in log10(mean dendrite length), the standard error of
the estimate, the degrees of freedom, the t statistic, the p-value, the alpha level used for the
confidence interval, and the upper and lower confidence limits for the 1-alpha confidence

interval.
Type 3 Tests of Fixed Effects
Effect | NumDF | DenDF | FValue | Pr>F
Sex 1 56 2.29 | 0.1357

This table shows the Type 3 p-value for the fixed effects. This will be the same as for the
parameter estimate in models with only one condition/independent variable.

The residual panel (see Figure 3) is used to verify goodness-of-fit to model assumptions.
This panel of graphs shows reasonably good conformance to the normal assumption.

Code for Mixed Effects Model with Heterogeneous Covariance Structure

PROCC M XED

DATA=GOLGI_HIPPO PLOTS =RESIDUALPANEL;

CLASS SEX;
MODEL LOGMDL = SEX/CL DDFM=SATTERTHWAITE;

RANDOM
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RUN

QT

The above code shows how we specify to SAS to allow estimation of different variances for
each condition ( GROUP=SEX) and to use the Satterthwaite approximation for the degrees of
freedom ( DDFM=SATTERTHWAITE). The output from this code will be the same as shown
for the variance component model.

Code for Mixed Effects Model with multi-level nesting and Autoregressive

Covariance Structure

title “Mixed Model for Total Intersections Using Autoregressive Variance

Structure”;

proc m xed

data=sholl_zero plots=residualpanel;
class sex neuronlD radius;

model log_int = sex /cl;

random radius radius(neuronlD) / type=ar(

run

qui t

The nested structure of the data is specified in the * random’ statement with * radius’ and
radius within neuron (* radius(neuronlD)’) listed as random effects. The autoregressive
covariance structure is specified using the  type=ar (1)’ option in the random statement.
The output for this model will be very similar to the others.
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Highlights

. In vivo studies of dendritic morphology in which multiple neurons are
sampled per animal often use a simple linear model to detect significant
differences which can lead to faulty inference.

. Mixed models account for intra-class correlation that occurs with clustered
data often generated in dendrite analysis to accurately estimate the standard
deviation of the parameter estimate and, hence, produce accurate p-values.

. A mixed effects approach accurately models the true variability in data sets
sampling multiple neurons per animal, such as Sholl analysis.
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Figure 1.

Log transformation corrects skew and inequality of variance in outcome variables. Variables,
number of tips divided by number of dendrites (top) and mean dendritic length (bottom).
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Conditional Residuals for Mean_Dend length
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Figure 2.

Residual plots of untransformed mean dendritic length were produced to show lack of
conformation with model distributional assumptions.
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Conditional Residuals for logM DL
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Figure 3.

Residual panel for log10 transformed mean dendritic length shows symmetry and
homoscedasticity. Residual plots of transformed mean dendritic length were produced to
show improvement in conformation with model distributional assumptions.
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Figure 4.
Example Sholl profile and graph. A) Representative tracing of basal dendrites of a Golgi

stained pyramidal neuron in a female mouse hippocampus. Red rings indicate radii spaced at
10um increments from the cell body. B) Representative Sholl profile indicating the number
of dendritic intersections at each radius.
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Figure 5.

Residual Panel for the nested Mixed Effects ANOVA.
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Table 1

Summary of studies using Sholl analysis on brain tissue sections

Statistical Test

~ Percentage of Studies (79 Total Studies Examined)

T test 27
ANOVA (not using mixed effects models) 48
Mixed effects or repeated measures models 23
Not specified 3

Sampling Structure of Neurons

~ Percentage of Studies (79 Total Studies Examined)

Used multiple neurons per animal 72
Averaged multiple neurons per animal 8
No specified N value used in statistical test 33
No specified number of animals 16
No specified number of neurons/animal 37

Page 24

Summary of 79 studies of dendritic morphology of neurons in brain tissue sections identified via PubMed search using the search terms “Sholl
analysis” and “neuron”. Specific references can be found in Supplemental Table 1.
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The effect of sex on dendritic morphology assessed via the Wilcoxon Rank Sum Test versus Mixed Effects

ANOVA.

Table 5

Qutcome Variable

Untransformed, Wilcoxon p-value

Log10 Transformed, Mixed Effects p-value

#tips / # dendrites

0.008

0.04

Mean dendrite length

0.046

0.162
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Table 6

Page 29

Raw p-values from the #tests and the mixed models and the False Discovery Rate Corrected p-values for the
test of differences between the sexes in the number of intersections at each radius.

Radius (microns)

Raw p-values from t tests

Raw p-values from Mixed Models

FDR Corrected LME g-values

radius 10 0.11 0.19 0.24
radius 20 0.24 0.52 0.55
radius 30 0.09 0.31 0.37
radius 40 0.55 0.86 0.86
radius 50 0.42 0.46 0.52
radius 60 0.12 0.18 0.24
radius 70 0.15 0.13 0.24
radius 80 0.12 0.08 0.21
radius 90 0.01 0.03 0.17
radius 100 0.10 0.07 0.21
radius 110 0.004 0.05 0.19
radius 120 0.016 0.04 0.17
radius 130 0.04 0.03 0.17
radius 140 0.004 0.01 0.10
radius 150 0.09 0.10 0.22
radius 160 0.17 0.18 0.24
radius 170 0.17 0.18 0.24
radius 180 0.16 0.16 0.24
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