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In the past decade, the volume of “omics” data generated by the different high-throughput technologies has expanded exponentially.
The managing, storing, and analyzing of this big data have been a great challenge for the researchers, especially when moving
towards the goal of generating testable data-driven hypotheses, which has been the promise of the high-throughput experimental
techniques. Different bioinformatics approaches have been developed to streamline the downstream analyzes by providing
independent information to interpret and provide biological inference. Text mining (also known as literature mining) is one of
the commonly used approaches for automated generation of biological knowledge from the huge number of published articles.
In this review paper, we discuss the recent advancement in approaches that integrate results from omics data and information
generated from text mining approaches to uncover novel biomedical information.

1. Introduction

The advances in biotechnology have allowed biomedical
research to answer efficiently important biological questions
in the different omics scales: genetics, genomics, transcrip-
tomics, epigenomics, proteomics, and metabolomics [1–4].
The omics data can characterize the behaviors of cells,
tissues, and organs at the molecular level and allow the
comprehensive understanding for the etiology of human
diseases. Among the various omics studies, genetic and
genomic studies are widely adopted in biomedical research
to discover new genes or susceptibility loci associated with
different human traits or diseases [5, 6]. Proteomic study
is concerned with the structure, function, and modification
of proteins expressed in a biological system, specifically the
posttranscriptional modifications such as phosphorylation,
methylation, and acetylation, which lead to transcription
and translation of the same genome into various types
of proteomes [7, 8]. Epigenomic study has attracted great
attention in the last 5 years. It characterizes the epigenetic

modifications of the genome and aims to understand the
regulations of the gene expression. Transcriptomic study, in
turn, enables the genome-wide assessment of gene expression
patterns in cells and tissues by studying the complete set of
RNA transcriptomes [9]. Finally, metabolomic study charac-
terizes the metabolites present in cell, tissue, and body fluid
and identifies the fluctuation of these metabolites in various
disease conditions [10]. The different types of omics studies
accumulate a huge volume of data through high-throughput
sequencing experiments and provide insights towards the
cellular and metabolic processes related to disease diagnoses,
treatment, and prevention.

According to the PubMed, over 36,000 research articles
have been published in the past ten years and annotated by
at least one of the above “omics” experiments (by using the
following search phrase: “(genomics [MeSH] OR proteomics
[MeSH] OR metabolomics [MeSH] OR transcriptomics
[MeSH]) AND humans [MeSH]”). The interest in omics
studies has not declined and their applications are evident
from the publications in recent years, when compared to
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only over 10,000 research articles published prior to 2006 by
using the same search phrase. However, the acquired data
raises various significant challenges: (i) the interpretation of
high-throughput results; (ii) the translation of biological data
to clinical application; (iii) the data handling, storage, and
sharing issues; and (iv) the reproducibility when comparing
between different experiments [11, 12]. Among these, the last
challenge has been a long-lasting issue, most likely due to
the potential discrepancies in processing and interpreting the
high-throughput data or due to “cherry-picking” approach
to subjectively focus on the components that are indeed
false positives. The traditional strategies to overcome these
challenges are to conduct extensive literature search and seek
professional opinions from domain experts to decipher the
mechanism and then conduct downstream experiments to
verify the findings. However, this has proven to be time
consuming and subjective and has not been a common
practice when researchers publish their results from high-
throughput experiments. On the other hand, automated
approaches have gained much interest in recent years to
annotate gene functions [13], to identify biomarkers [14], and
to explore geneticmutations [15]. Text mining (also known as
literaturemining) is a technique that has been used to retrieve
and process research articles from PubMed database and can
summarize biomedical information present across articles. In
molecular biology, text mining is typically used to retrieve
relevant documents, prioritize the documents, extract the
biomedical concepts (e.g., genes, proteins, cell, tissue, and
cell-type), and extract the causal relationships between con-
cepts [16, 17]. Text mining can significantly decrease the
time and effort required, compared with traditional labor-
intensive approaches.

In this review, we first discuss the various omics tech-
niques used in healthcare and summarize the recent advances
in utilizing text mining approaches to facilitate the interpre-
tation and translation of these omics data. We then focus
on biomedical literature mining and clinical text mining
and further describe the challenges involved in integrating
the knowledge from different resources to enhance the
biomedical research. Finally, we explain the recent methods
to integrate omics and biomedical literature mining data in
order to uncover novel biomedical information.

2. The Study of (Omics)

Traditionally, “omics” corresponds to the study of four major
biomolecules: genes, proteins, transcriptomes, and metabo-
lites [4]. Since the discovery of DNA [31], much interest has
been gained towards understanding the roles of genes and
proteins in cellular functions and transduction. Healthcare is
considered to vary from one individual to another based on
his genome, proteome, transcriptome, and metabolome. The
digital revolution has paved the way for integrating patient
omics data with the findings in literature for the discovery
of novel biomarkers and drug targets [32–34]. Therefore, the
study of omics has expanded beyond these four major omics
studies, and Table 1 summarizes the various types of omics
data applied to biomedical discoveries. The study of omics

has introduced the realm of big data to biomedicine [35, 36].
While the first human genome project took more than a
decade to complete and involved $3 billion dollars, the entire
genome can be sequenced and analyzed within hours for
∼$1000 now. Thus, biomedical projects are now possible to
generate information at the petabyte (i.e., 1,012 bytes) scale.
Nevertheless, the greatest challenge is the large-scale data
analysis and its integration with clinical data available in
patient electronic health records (EHR) [37].

Cloud [38] and parallel computing [39] are currently used
in omics research to handle the huge volume of data. Cloud
computing is described as a network of computers connected
together through the Internet for effective processing. It is
available remotely, through cloud computing providers (e.g.,
Microsoft, Google, and Amazon), and researchers have an
option tomake use of it at an affordable cost. Parallel comput-
ing speeds up the processing time using the same hardware
and Internet setup. The combined approach of using cloud
computing and parallel computing together is capable of
processing omics data in a feasible time [40, 41]. Other
high performance computing platforms include clusters [42],
grid computing [43], and graphical processing units [44].
Processing omics data and applying bioinformatics models
to the data require expertise to integrate computational,
biological, mathematical, and statistical knowledge.

3. Text Mining

PubMed database is a main repository for biomedical lit-
erature and contains over 26 million articles. The num-
ber of articles being published and indexed by PubMed
is increasing exponentially, and therefore text mining has
become an attractive (and standard) approach in mining
literature data when comparing with the traditional labor-
intensive strategies. Researchers use the textmining approach
to tackle information overload, both in biomedical and in
general areas of big data collection, because it automates data
retrieval and information extraction from the unstructured
biomedical texts to reveal novel information [45, 46]. While
information extraction examines the relationships between
specific kinds of information contained within or between
documents, information retrieval focuses on summarizing
data from the larger units of documents [47]. Another
automated approach to deal with unstructured data is Natural
Language Processing (NLP). While text mining concentrates
on solving a specific problem in a particular domain, NLP
attempts to understand the text as a whole [48]. Recently,
text mining and NLP have been used to address different
biological questions in omics research [49].

3.1. Biomedical Literature Mining. The era of applying text
mining approaches to biology and biomedical fields came
into existence in 1999. It was first applied to the biomedical
domain for gene expression profiling [50], as well as the
extraction and visualization of protein-protein interaction
[51]. It emerged as a hybrid discipline from the edges
of three major fields, namely, bioinformatics, information
science, and computational linguistics. Biomedical literature
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mining is concerned with the identification and extraction of
biomedical concepts (e.g., genes, proteins, DNA/RNA, cells,
and cell types) and their functional relationships [17]. The
major tasks include (i) document retrieval and prioritization
(gathering and prioritizing the relevant documents); (ii)
information extraction (extracting information of interest
from the retrieved document); (iii) knowledge discovery
(discovering new biological event or relationship among the
biomedical concepts); and (iv) knowledge summarization
(summarizing the knowledge available across the docu-
ments). A brief description of the biomedical literature
mining tasks is listed as follows.

Biomedical Text Mining Tasks

Document Retrieval. The process of extracting relevant docu-
ments from a large collection is called document retrieval or
information retrieval [52].The two basic strategies applied are
query-based and document-based retrieval. In query-based
retrieval, documents matching with the user specified query
are retrieved. In document-based retrieval, a ranked list of
documents similar to a document of interest is retrieved.

Document Prioritization.The retrieved documents are usually
prioritized to get themost relevant document.Many biomed-
ical document retrieval systems achieve prioritization based
on certain parameters including journal-relatedmetrics (e.g.,
impact factor, citation count) [53] and MeSH index [54, 55]
for biomedical articles.The similarity between the documents
is estimated with various similarity measurements (e.g.,
Jaccard similarity, cosine similarity) [56].

Information Extraction. This task aims to extract and present
the information in a structured format. Concept extraction
and relation/event extraction are the two major components
of information extraction [57, 58]. While concept extraction
automatically identifies the biomedical concepts present in
the articles, relation/event extraction is used to predict
the relationship or biological event (e.g., phosphorylation)
between the concepts [59, 60].

Knowledge Discovery. It is a nontrivial process to discover
novel and potentially useful biological information from
the structured text obtained from information extraction.
Knowledge discovery uses techniques from a wide range of
disciplines such as artificial intelligence, machine learning,
pattern recognition, data mining, and statistics [61]. Both
information extraction and knowledge discovery find their
application in database curation [62, 63] and pathway con-
struction [64, 65].

Knowledge Summarization. The purpose of knowledge sum-
marization is to generate information for a given topic from
one or multiple documents. The approach aims to reduce
the source text to express the most important key points
through content reduction selection and/or generalization
[66]. Although knowledge summarization helps to manage
the information overload, the state of the art is still open
to research to develop more sophisticated approaches that
increase the likelihood of identifying the information.

Hypothesis Generation. An important task of text mining is
hypothesis generation to predict unknown biomedical facts
from biomedical articles. These hypotheses are useful in
designing experiments or explaining existing experimental
results [67].

Conventional text mining approaches process PubMed
abstracts rather than the full-text articles and fail to mine
the information not in abstracts. Recently, text mining from
the full-text articles is gaining more interest [59]. However,
it involves many challenges: (1) the availability of full-text
articles is limited (4 million full-text articles in PubMed
Central versus 26 million abstracts in PubMed); (2) text
mining within tables, figures, and equations is complicated;
and (3) information redundancy within the articles. An
automated text mining system is generally evaluated using
a standard corpus (Table 2). However, the availability of
standard corpora in biomedical domain is limited because
its generation is expensive, time consuming, and requires
domain experts. In general, a gold standard is developed
within the research groupswhen the standard corpora are not
available, but mostly not available to other researchers. The
textmining systems are commonly evaluated using precision,
recall, and f-score. Precision is defined as the relevance
accuracy, recall is defined as the retrieval accuracy, and f-
score is defined as the harmonic mean of precision and recall
[56].

3.2. Clinical Text Mining. Electronic health records, dis-
charge summaries, and clinical narratives of patients are
rich in information that could be useful for improving the
healthcare. In addition, the information is also available
from the transcription of dictations, direct entry by clini-
cians/physicians, or speech recognition software. The encod-
ing of structural information from the clinical resources is
useful to clinicians and researchers. For example, automated
high-throughput clinical applications can be developed to
support clinicians’ information needs [68]. However, manual
encoding is expensive and limited to primary and secondary
diagnoses. Clinical textmining, also known as clinicalNLPor
Medical Language Processing (or simply MLP), is suggested
as a potential technology by Institute of Medicine for mining
clinical resources. The tasks described above in biomedical
literature mining are applicable to clinical text mining and
include additional subtasks [69]: (i) negation recognition
(e.g., “patient denies on developing rashes”), (ii) temporal
extraction (e.g., “small bumps noticed last year”), and (iii)
patient-event relationship (e.g., “patient mother had arthri-
tis”).

The modern healthcare relies on big data analytics for
integrating, organizing, and utilizing different pharmacolog-
ical or clinical information. A hybrid approach to combine
patient genomic data and electronic health record infor-
mation is expanding as the future vision of healthcare.
The omics data has become an emerging tool for diagno-
sis/clinical investigations of common and rare diseases and
helps in clinical decision making (i.e., selecting the best
possible treatments for patients). Genome-Wide Association
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Study (GWAS), also known as Whole Genome Association
Study (WGAS), is a relatively new approach for identifying
genes (i.e., loci associated with human traits) through rapid
scanning of markers across whole DNA or genome [70].
GWAS has been applied also to cancer research for drug
repositioning [71], prioritizing susceptible genes in Crohn’s
disease [72], and analyzing the human variants in the area
of precision medicine [73]. As an example, the Michigan
Genomics Initiatives (MGI) at theUniversity ofMichigan has
developed an institutional based DNA and genetics reposi-
tory combined with patient phenotype. The project aims to
bring awareness to each patient/participant about the disease
development and response to treatments for better health
and wellness. The current studies at MGI include analgesics
outcome study (AOS), understanding opioid use in chronic
pain patients, a pivotal study on high-frequency nerve block
for postamputation pain, Michigan body map (MBM), and
positive piggy bag (https://www.michigangenomics.org/).

Clinical text mining faces the following specific chal-
lenges: (1) access to patient EHR requires permission from
Institutional Review Board (IRB); (2) personal details of
the patients should be deidentified; (3) mining approaches
depend on the types of clinical documents (e.g., EHR,
discharge summary, medical billing, and clinical narratives);
(4) mining of dosage information, different types of for-
mulations, and temporal information is demanded; and (5)
spelling mistakes and grammatical errors are common in
clinical text [69]. The state of the art for both biomedical
literature mining and clinical text mining is still open with
many challenges and requires more sophisticated and robust
approaches.

4. Role of Text Mining in Omics Study

Relationship between concepts of the same kind (e.g., gene-
gene) or different kind (e.g., gene-disease) is commonly
known as “event” [74].The events are useful to identify many
clinical facts such as disease onset and response to drug
treatment. Overwhelming of biomedical articles from omics
research has accumulated abundance of information and
requires advanced event extraction systems to support the
complexity of available information and coverage of varieties
of biomedical subdomains [16]. Text mining approaches do
not replace the manual curation of biomedical information
but support speeding up the process by several-fold [75,
76]. In this section we describe the various text mining
approaches developed for mining omics related information.

4.1. Genomics and Text Mining. In the current era of genom-
ics, text mining plays an important role in mining gene-
gene interactions [77, 78] and other gene involved interac-
tions (e.g., gene-chemical, gene-disease) [79, 80] to support
integrative analysis of gene expression [81, 82], pathway con-
struction [83, 84], ontology development [85], and database
annotation [62, 86, 87].

Genes encode proteins and proteins enroll in various
biological functions by interacting with other proteins. This
encoding process is defined in two steps: transcription
(i.e., DNA to RNA) and translation (RNA to protein).

Many cellular processes are regulated by microRNA through
mRNA degradation and suppression of gene expression
such that the protein synthesis is interrupted. This is the
fundamental of genomics. In genomics, gene function is
assessed from the involvement of genes/proteins in biochem-
ical pathways. The functional genomics is a revolutionary
area in text mining where the gene/protein mentions in the
biomedical articles and their relationship are considered to be
important. Furthermore, gene and protein names are highly
complex and text mining has contributed to their recognition
in the unstructured text [57, 58].

Different text mining implementations for exploring the
finding of genome research have been developed in the
past decade. miRTex is a text mining system developed
for mining experimentally validated microRNA gene targets
from PubMed articles. The system has been successfully
implemented to identify the Triple Negative Breast Cancer
related genes that are regulated by microRNAs [81]. More
sophisticated approaches integrate gene expressions from
microarray experiments, biomedical data extracted by text
mining, and gene interaction data to predict gene-based drug
indications [82]. A similar approach [87] attempts to support
manual curation of links between biological databases such
as Gene Expression Omnibus (GEO) and PubMed database.
Another approach [88] combines text mining data with
microarray data for discovering disease-gene association by
using unsupervised clustering. The gene-drug interaction
information extracted by text mining is used to predict the
drug-drug interaction [89]. Above all, the researchers have
attempted to use text mining for annotating genome function
with gene ontology [90]. Thus, text mining and genomics
together uncover much biomedical information that was
previously unknown.

4.2. Proteomics and Text Mining. Protein-protein interaction
is important to explore the mechanism involved in biological
processes and onset of diseases [91]. Intact [92], BIND [93],
MIND [94], and DIP [95] are the major databases available
for protein-protein interaction.These databases are manually
curated by the domain experts, but a larger portion of infor-
mation is still available only in the biomedical literature. Text
mining provides a bridge to cover the gap existing between
themanual curation and information hidden in the literature.
The approaches to extract protein-protein interaction range
from simple rule-based systems and cooccurrence systems
to more sophisticated NLP methods [60] and machine
learning systems [96]. Apart fromprotein-protein interaction
extraction systems, text mining also provides automated
approaches for extracting posttranslational modification of
proteins such as protein phosphorylation [59].

4.3. Transcriptomics, Metabolomics, and Text Mining. Text
mining approaches for transcriptomics andmetabolomics are
limited. One major fact is that these two areas of genomics
are comparatively new when compared to genomics and pro-
teomics. A recent study compares the metagenome charac-
teristics of healthy individuals with autism patients to analyze
the enzymes involved [97].The computational approach uses
text mining for genomics and metabolomics information
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extraction. A web-based tool called 3Omics is available
for integrating, comparing, analyzing, and visualizing data
from transcriptomics, metabolomics, and proteomics [98].
Another tool called Babelomics integrates transcriptomics,
proteomics, and genomics data to uncover the underlying
function profiles [99].Thus, a wide variety of hidden biomed-
ical information within the omics data are extracted and
predicted through text mining.

5. Conclusion

In this review, we summarized the current state of the art in
omics research and contribution of text mining approaches
to uncover the omics related biomedical information hid-
den within the published articles. We discussed the core
concepts of omics and the challenges involved in storing
and analyzing the huge volume of omics data generated
from high-throughput experiments. We also highlighted the
use of computer techniques such as parallel processing and
cloud computing to manage omics data and elaborated on
text mining approaches for biomedical literature and clinical
text with emphasis on omics. While the omics approach is
emerging to be commonly used practice for basic science
or clinical diagnosis technique, it is imminent to note that
data interpretation and translation is the bottleneck. The
advances in textmining can be useful to resolve the challenges
with the omics data and further support in novel biomedical
discoveries.
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[38] L. Griebel, H. Prokosch, F. Köpcke et al., “A scoping review of
cloud computing in healthcare,” BMC Medical Informatics and
Decision Making, vol. 15, article 17, 2015.

[39] K. Ocaña and D. De Oliveira, “Parallel computing in genomic
research: advances and applications,”Advances andApplications
in Bioinformatics and Chemistry, vol. 8, pp. 23–35, 2015.

[40] D. P. Wall, P. Kudtarkar, V. A. Fusaro, R. Pivovarov, P. Patil, and
P. J. Tonellato, “Cloud computing for comparative genomics,”
BMC Bioinformatics, vol. 11, article no. 259, 2010.

[41] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–
58, 2010.

[42] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster ComSpark: cluster computing with
working sets,” in Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, p. 10, Boston, Mass, USA, June
2010.

[43] M. Baker, R. Buyya, andD. Laforenza, “Grids and grid technolo-
gies for wide-area distributed computing,” Software—Practice&
Experience, vol. 32, no. 15, pp. 1437–1466, 2002.

[44] I. S. Ufimtsev and T. J. Martinez, “Quantum chemistry on
graphical processing units. 2. Direct self-consistent-field imple-
mentation,” Journal of Chemical Theory and Computation, vol.
5, no. 4, pp. 1004–1015, 2009.

[45] M. A. Hearst, “Untangling text data mining,” in Proceedings of
the the 37th annual meeting of the Association for Computational
Linguistics (ACL ’99), pp. 3–10, College Park, Maryland, June
1999.

[46] K. B. Cohen and L. Hunter, “Natural language processing and
systems biology,” in Artificial Intelligence Methods and Tools for
Systems Biology, vol. 5 of Computational Biology, pp. 147–173,
Springer, Dordrecht, The Netherlands, 2004.

[47] M. Weeber, H. Klein, A. R. Aronson, J. G. Mork, L. T. de
Jong-van den Berg, and R. Vos, “Text-based discovery in
biomedicine: the architecture of the DAD-system,” Proceedings
of the AMIA Symposium, pp. 903–907, 2000.

[48] A. S. Yeh, L. Hirschman, and A. A. Morgan, “Evaluation of text
data mining for database curation: lessons learned from the
KDD Challenge Cup,” Bioinformatics, vol. 19, supplement 1, pp.
i331–i339, 2003.

[49] Y. Liu, Y. Liang, and D. Wishart, “PolySearch2: a significantly
improved text-mining system for discovering associations
between human diseases, genes, drugs, metabolites, toxins and
more,” Nucleic Acids Research, vol. 43, no. 1, pp. W535–W542,
2015.

[50] L. Tanabe, U. Scherf, L. H. Smith, J. K. Lee, L. Hunter, and
J. N. Weinstein, “MedMiner: an Internet text-mining tool for
biomedical information, with application to gene expression
profiling,” BioTechniques, vol. 27, no. 6, pp. 1210–1217, 1999.

[51] C. Blaschke, M. A. Andrade, C. Ouzounis, and A. Valencia,
“Automatic extraction of biological information from scientific
text: protein-protein interactions,” in Proceedings of the 7th
International Conference on Intelligent Systems for Molecular
Biology, pp. 60–67, AAAI, Heidelberg, Germany, August 1999.

[52] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval: The Concepts and Technology behind Search, ACM
Press, 2nd edition, 2011.

[53] Y. Lin, W. Li, K. Chen, and Y. Liu, “A document clustering and
ranking system for exploring MEDLINE citations,” Journal of
the American Medical Informatics Association, vol. 14, no. 5, pp.
651–661, 2007.



International Journal of Genomics 9

[54] S. J. Darmoni, L. F. Soualmia, C. Letord et al., “Improving
information retrieval using medical subject headings concepts:
a test case on rare and chronic diseases,” Journal of the Medical
Library Association, vol. 100, no. 3, pp. 176–183, 2012.

[55] M. Petrova, P. Sutcliffe, K. W. M. Fulford, and J. Dale, “Search
terms and a validated brief search filter to retrieve publications
on health-related values in Medline: a word frequency analysis
study,” Journal of the American Medical Informatics Association,
vol. 19, no. 3, pp. 479–488, 2012.

[56] C. D. Manning, P. Raghavan, and H. Schuetze, Introduction to
Information Retrieval, Cambridge University Press, 2008.

[57] R. Leaman andG.Gonzalez, “BANNER: an executable survey of
advances in biomedical named entity recognition,” in Proceed-
ings of the 13th Pacific Symposium on Biocomputing (PSB ’08),
pp. 652–663, Kohala Coast, Hawaii, USA, January 2008.

[58] K. Raja, S. Subramani, and J. Natarajan, “A hybrid named entity
tagger for tagging human proteins/genes,” International Journal
of Data Mining and Bioinformatics, vol. 10, no. 3, pp. 315–328,
2014.

[59] M. Torii, C. N. Arighi, G. Li, Q. Wang, C. H. Wu, and K. Vijay-
Shanker, “RLIMS-P 2.0: a generalizable rule-based information
extraction system for literature mining of protein phosphory-
lation information,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 12, no. 1, pp. 17–29, 2015.

[60] K. Raja, S. Subramani, and J. Natarajan, “PPInterFinder—a
mining tool for extracting causal relations on human proteins
from literature,”Database (Oxford), vol. 2013, Article ID bas052,
2013.

[61] J. Natarajan, D. Berrar, C. J. Hack, andW.Dubitzky, “Knowledge
discovery in biology and biotechnology texts: a review of
techniques, evaluation strategies, and applications,” Critical
Reviews in Biotechnology, vol. 25, no. 1-2, pp. 31–52, 2005.

[62] K. E. Ravikumar, K. B. Wagholikar, D. Li, J.-P. Kocher, and
H. Liu, “Text mining facilitates database curation—extraction
of mutation-disease associations from Bio-medical literature,”
BMC Bioinformatics, vol. 16, no. 1, article 185, 2015.

[63] S. Matos, D. Campos, R. Pinho et al., “Mining clinical attributes
of genomic variants through assisted literature curation in
Egas,” Database (Oxford), vol. 2016, Article ID baw096, 2016.

[64] S. Subramani, R. Kalpana, P. M. Monickaraj, and J. Natarajan,
“HPIminer: a text mining system for building and visualizing
human protein interaction networks and pathways,” Journal of
Biomedical Informatics, vol. 54, pp. 121–131, 2015.

[65] J. Czarnecki, I. Nobeli, A. M. Smith, and A. J. Shepherd, “A text-
mining system for extracting metabolic reactions from full-text
articles,” BMC Bioinformatics, vol. 13, no. 1, article 172, 2012.

[66] R. Mishra, J. Bian, M. Fiszman et al., “Text summarization in
the biomedical domain: a systematic review of recent research,”
Journal of Biomedical Informatics, vol. 52, pp. 457–467, 2014.

[67] F. Zhu, P. Patumcharoenpol, C. Zhang et al., “Biomedical text
mining and its applications in cancer research,” Journal of
Biomedical Informatics, vol. 46, no. 2, pp. 200–211, 2013.

[68] S. M. Meystre, G. K. Savova, K. C. Kipper-Schuler, and J. F.
Hurdle, “Extracting information from textual documents in the
electronic health record: a review of recent research,” Yearbook
of medical informatics, pp. 128–144, 2008.

[69] K. Raja and S. R. Jonnalagadda, “Natural language processing
and data mining for clinical text,” inHealthcare Data Analytics,
C. K. Reddy and C. C. Aggarwal, Eds., pp. 219–250, CRC Press,
2015.

[70] D. Welter, J. MacArthur, J. Morales et al., “The NHGRI GWAS
Catalog, a curated resource of SNP-trait associations,” Nucleic
Acids Research, vol. 42, no. 1, pp. D1001–D1006, 2014.

[71] J. Zhang, K. Jiang, L. Lv et al., “Use of genome-wide association
studies for cancer research and drug repositioning,” PLoS ONE,
vol. 10, no. 3, Article ID e0116477, 2015.

[72] D. Muraro, D. A. Lauffenburger, and A. Simmons, “Prioriti-
sation and network analysis of Crohn’s disease susceptibility
genes,” PLoS ONE, vol. 9, no. 9, Article ID e108624, 2014.

[73] T. A. Peterson, E. Doughty, andM.G. Kann, “Towards precision
medicine: advances in computational approaches for the anal-
ysis of human variants,” Journal of Molecular Biology, vol. 425,
no. 21, pp. 4047–4063, 2013.

[74] J.-D. Kim, N. Nguyen, Y. Wang, J. Tsujii, T. Takagi, and A.
Yonezawa, “The genia event and protein coreference tasks of
the BioNLP shared task 2011,” BMC bioinformatics, vol. 13,
supplement 11, p. S1, 2012.

[75] T. C. Wiegers, A. P. Davis, K. B. Cohen, L. Hirschman, and C.
J. Mattingly, “Text mining and manual curation of chemical-
gene-disease networks for the Comparative Toxicogenomics
Database (CTD),” BMC Bioinformatics, vol. 10, article 1471, p.
326, 2009.

[76] L. Hirschman, G. A. P. C. Burns, M. Krallinger et al., “Text
mining for the biocuration workflow,” Database, vol. 2012,
Article ID bas020, 2012.

[77] E. K. Mallory, C. Zhang, C. Ré, and R. B. Altman, “Large-scale
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