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ABSTRACT

The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with

animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are

associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and

young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA

deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups

of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are

correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm

the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids

play important roles in innate and acquired immunity and in the body’s response to inflammation. Although animal models have been useful in

investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in

the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between

inflammation and retinoid and carotenoid metabolism and status are the topics of this review. Adv Nutr 2017;8:197–212.
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Introduction
Many factors influence the plasma transport, tissue uptake,
and metabolism of vitamin A (VA)9 and carotenoids, includ-
ing nonmodifiable factors such as age, sex, and genetic pre-
disposition (1–3) and modifiable factors such as smoking,
diet, and exercise. Inflammation is a “hard-wired” systemic
response to infection or injury but may also be modified
by anti-inflammatory hormones, cytokines, and drugs.

Inflammation is a component of injury response that is nec-
essary for tissue repair and represents a program of meta-
bolic changes necessary for survival (4), but if the process
is prolonged or excessive, it becomes potentially life-
threatening. Acute inflammation may be triggered by an in-
fection or a sterile stimulus such as LPS that can be used to
induce inflammation experimentally.

Inflammation (acute or chronic) relies on several media-
tors that transmit signals in the bloodstream or other fluids.
These mediators include a variety of cytokines (e.g., ILs, in-
terferons, chemokines), NO, intercellular adhesion mole-
cules, or other messenger molecules, such as prostaglandins.
Manymediators are regulated further upstream by transcription
factors. Among those involved in inflammation are NF-kB,
which is related to the release of several cytokines (e.g., IL-6,
IL-8, TNF-a, IL-1b) and MAPKs (Figure 1). In addition, be-
cause of the interactions between oxidative stress and inflamma-
tion, nuclear factor (erythroid-derived 2)–like 2 (Nrf2) appears
to play a fundamental role, strengthening the body’s antioxidant
enzymatic defenses (5), which include superoxide dismutase,
glutathione peroxidase, catalase, and heme oxygenase 1.
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VA intake and metabolism are seriously altered during
the acute-phase response (APR) to inflammation (Figure 2)
(6). The APR is a systemic metabolic response to infection,
trauma, or tissue injury that induces fever, increases the syn-
thesis of inflammatory cytokines, and enhances white blood
cell production. The APR is well conserved among verte-
brate species (7). This review discusses VA and carotenoid
metabolism and biomarkers during inflammation, with a
particular emphasis on infants and children in relation to
animal models.

Current Status of Knowledge
Inflammation as a modifier of vitamin A transport and
metabolism
Retinol-binding protein (RBP) and transthyretin form the
plasma transport complex for retinol; both proteins are
chiefly synthesized in the liver (8), the major organ involved
in the APR (9). The APR results in dramatic alterations in
protein synthesis and energy metabolism (10). A principal
characteristic of the APR is the hepatic synthesis and secre-
tion of acute-phase proteins (APPs) that play anti-infective
roles and, consequently, function in response to tissue injury
after trauma or infection (9). The leading regulators of the
APR in hepatocytes are IL-1 and IL-6 (11). The kinetics
of APP responses vary; C-reactive protein (CRP) changes

most rapidly and increases dramatically in plasma
within 8 h of APR induction. Other APPs, such as a1-acid
glycoprotein (AGP), increase more slowly and remain ele-
vated during convalescence.

Both RBP and transthyretin R are negative APPs be-
cause their concentrations decline during the APR. Retinol
binds nearly stoichiometrically to RBP; thus, they are
equally affected. The reduction in plasma holo-RBP
(RBP bound to retinol) occurs quickly, even before CRP
and AGP have reached peak concentrations. The rapidity
of the response may be caused by the inherently short
half-life of RBP (;12 h in adults) (12, 13), which must
be continuously synthesized to maintain normal holo-
RBP concentrations (14). The APR may reduce plasma
amino acid concentrations (15), which further inhibits
RBP synthesis, a process that is sensitive to protein and
calorie malnutrition (16).

Low serum retinol (SR), i.e., hyporetinolemia, has been
reported in children and adults in association with acute in-
fections (e.g., measles, malaria, diarrhea, HIV), multiple
morbidities (17), and trauma (18). Several studies have pro-
vided evidence that retinol and RBP concentrations are in-
versely correlated with serum concentrations of IL-6, the
major regulator of the APR because it induces the gene ex-
pression of many APPs (9).

FIGURE 1 The current understanding of the role of carotenoids in the mitigation of negative effects of ROS in response to insults.
COX-2, cyclooxygenase 2; GPx, glutathione peroxidase; HO-1, heme oxygenase 1; IKK, IkB kinase; iNOS, inducible NO synthase; NQO1,
NADPH quinone dehydrogenase 1; Nrf-2, nuclear factor (erythroid-derived 2)–like 2; RAS, proteins with intrinsic GTPase activity involved
in cellular signal transduction; ROS, reactive oxygen species; SOD, superoxide dismutase. Reproduced from reference 5 with permission.
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Animal studies of hyporetinolemia during inflammation.
The most common experimental models of inflammation
induce the APR with LPS, which is a natural component
of the outer wall of gram-negative bacteria that causes
sterile inflammation (19). The response to LPS is dose-
dependent, wherein lower doses induce an APR and
higher doses result in vascular collapse and death. LPS
signals through toll-like receptor 4, which triggers signal
transduction cascades that result in the activation and
nuclear translocation of NF-kB, which induces the release
of proinflammatory cytokines TNF-a, IL-1, IL-6, and type
1 interferons (20). LPS acts rapidly, triggering the APR
within hours (21). In the liver, IL-6 alone is sufficient to
initiate similar changes by signaling through glycoprotein
130 and signal transducer and activator of transcription 3
pathways (11, 21). In rats treated with low-dose LPS
sufficient to elevate body temperature but not cause
serious lethargy or sickness, SR concentrations reached a
nadir between 12 and 24 h, with a reduction $50% (22,
23). Serum RBP declined with similar kinetics (22), and
although liver RBP synthesis was substantially reduced by
24-h post-LPS treatment, liver retinol concentration was
maintained. RBP 4 (Rbp4) mRNA concentrations in the
liver were reduced to 50% of the control value by 12 h
after LPS treatment. This work provided evidence that
inflammation-induced hyporetinolemia is caused by a
reduction in liver RBP synthesis that was initiated by
the reduced transcription of Rbp4. Similar results were
obtained in a rat model of inflammation induced by
recombinant human IL-6 that caused a more dramatic
and prolonged decline in SR, possibly caused by persistent
inflammation (24).

Although RBP was substantially reduced in the liver and
kidney, these organs responded differently regarding Rbp4
mRNA. Rbp4 mRNA was reduced in the liver but did not
change in the kidney, which is normally between ;5%
and 10% of the liver concentration (8). Because the decrease
in Rbp4 mRNA in the liver was coincident with or preceded
the decrease in serum RBP, a reduced rate of transcription
may account for the hyporetinolemia (22). The reduction
in RBP but not its mRNA in the kidney may signify that
the reduction in RBP is caused by reduced uptake, low
RBP in serum, or the reduced reuptake of RBP after filtra-
tion, which occurs normally (25).

The “look-alike” problem. A practical concern is that if SR
and RBP concentrations are reduced by inflammation, the
results lend a false impression regarding VA status. An ex-
perimental illustration is shown in Figure 3 for an animal
study in which low SR resulting from dietary restriction
was quantitatively similar to hyporetinolemia induced by
LPS in animals fed adequate VA. Whereas in experimental
settings causality is known, in human settings, in which
dietary intake often is uncertain or seasonal, low SR concen-
trations could easily be attributed to nutritional inadequacy
when, in fact, they are caused by inflammation. Although
this look-alike problem is now well recognized, the
ap-propriate interventions remain uncertain. One opinion
is that low SR, regardless of etiology, signifies that the
uptake of retinol by tissues might be restricted, and the
low values should receive intervention. Another opinion is
that low SR values might be adjustable by measuring
markers of inflammation, such as CRP or AGP, with the
use of these factors as covariates to assess what the adjusted

FIGURE 2 Inflammation can negatively affect
vitamin A balance through decreased dietary
intake, reduced intestinal absorption, and
increased urinary excretion. Inflammation may
also cause the sequestration of vitamin A in
the liver, which leads to hyporetinolemia.
Reproduced from reference 6 with permission.
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SR concentrations would be in the absence of inflamma-
tion (26). In this approach, inflammation is viewed as an
interference to the assessment of whether VA liver stores
may or may not be adequate. How one assesses these
approaches depends on the question being addressed. In
either case, understanding the etiology of low SR is critical
for properly addressing the underlying problem.

An NIH-sponsored working group, Inflammation and
Nutritional Science for Programs/Policies and Interpretation
of Research Evidence, reviewed the literature on inflamma-
tion and biomarkers of micronutrient status for several mi-
cronutrients (27). The review provides useful guidance to
clinicians, researchers, and programmatic planners with
regard to the impact of inflammation on micronutrient
biology and biomarkers. The findings are intended to be
integrated into the Biomarkers of Nutrition for Develop-
ment project (28). Researchers in European countries have
conducted a similar review on the impact of inflammation
on biomarkers (29).

Redistribution of retinol during the APR. In well-
nourished humans, SR concentrations return to normal
values during the convalescent/resolution stage of infection.
This suggests that the APR involves a redistribution of
retinol from plasma to other body compartments, from
which it is later able to return to plasma. A redistribution
rather than a net loss may also be inferred from the results
of animal studies in which the urinary loss of retinol during

infection was quantitatively small compared with normal
VA turnover (23). In the VA-adequate state, the plasma
retinol pool is small compared with the body reserves with
which it equilibrates (30). Consequently, determining the
“missing plasma retinol” in tissues can be challenging.
Nevertheless, the use of [3H]retinol tracer kinetics
together with mathematical modeling of the data
have shed light on the trafficking of retinol during
inflammation (31). In rats in which [3H]retinol was
orally administered and time elapsed for equilibration,
the induction of inflammation resulted within 1 d in a
downward deviation of the plasma [3H]retinol decay
curve that was of greater magnitude in recombinant
human IL-6-treated rats than in LPS-treated rats.
However, during the resolution of the APR (;10 d), the
plasma [3H]retinol curve increased and followed the
trajectory established before inflammation induction
(Figure 4). Mathematical modeling indicated a 79%
reduction in the hepatic mobilization of retinol within 15 h
after LPS administration and a 75% reduction by 5.6 h after
the IL-6 injection. The results imply that retinol exits
plasma transiently during inflammation and accumulates
in the liver, but based on its reappearance there is not an
appreciable irreversible retinol loss (24). It was hypothesized
that inflammation-induced hyporetinolemia reflects a
sequestration of plasma retinol that is associated with
impaired mobilization of retinol caused by reduced RBP
synthesis.

Inflammation during VA deficiency and repletion. VA
deficiency and inflammation may interact to result in a
quantitatively greater reduction in plasma retinol than
from either condition alone (23). When marginally VA-
deficient rats were supplemented with an oral dose of VA
to simulate a relative dose response (RDR) test (32), the in-
crease in plasma retinol after the oral dose in rats with in-
flammation was less than that of VA-marginal rats without
inflammation (23, 33). Thus, LPS-induced inflammation
limited but did not completely prevent the ability of VA
supplementation to improve plasma retinol concentrations.
In addition, the physiologic response of plasma retinol to a
VA supplement provided for repletion may be altered
qualitatively in an induced state of inflammation, whereas
retinyl esters accumulate in the plasma (23). This
finding suggests that the hydrolysis of newly absorbed VA,
transported as retinyl ester in chylomicra or their remnants,
was delayed. Lipoprotein lipase activity is known to be
reduced by LPS (34, 35). Consistent with the hypothesized
delay in chylomicron clearance, liver retinyl esters were
lower in the LPS- and VA-supplemented group (23).
Reduced hepatic metabolism has also been suggested by
the reduction in the liver of mRNA concentrations for
several genes involved in VA uptake, b-carotene and retinol
metabolism (e.g., b-carotene oxygenase 1, lecithin retinol
acyltransferase and dehydrogenase/reductase 3), and retinoic
acid (RA) oxidation (e.g., cytochrome P450 family 26)
(36). In addition, studies in other models have shown

FIGURE 3 Plasma retinol (A), RBP (B), and TTR (C) and liver RBP
(D), RBP mRNA (E), and retinol (F) in control rats and in rats after
the induction of inflammation by the administration of LPS. Data
are means, n = 5. Results are for 24 h after the administration of
LPS except for panel E, which represents results at 12 h. Data are
from reference 22. *Different from C, P , 0.02. C, control group;
RBP, retinol-binding protein; TTR, transthyretin.
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that liver injury results in the gradual mobilization or loss
of retinyl esters from stellate cells, which can eventually
lead to liver fibrosis (37). Inflammation also alters the
distribution and metabolism of RA, the major active
metabolite of VA. When inflammation was induced by low-
dose LPS in rats with marginal VA status, [3H]RA uptake and
metabolism to polar metabolites were considerably
reduced (38, 39).

Infections increase the risk of VA deficiency
Nutritionists have recognized for several decades that infec-
tious diseases can increase the risk of malnutrition in chil-
dren (40). Diarrhea and lower respiratory tract infections
have a particularly pronounced effect on infant growth
(41), presumably because of a combination of illness sever-
ity, such as pneumonia, and increased stool frequency
(e.g., diarrhea is a common childhood illness in regions
with inadequate sanitation). Relatively few studies have
demonstrated the effects of infection on the risk of specific
nutritional deficiencies. With regard to VA, an observa-
tional study in Indonesia demonstrated an association be-
tween respiratory infections and diarrhea on the increased
risk for xerophthalmia, the principal clinical manifestation
of VA deficiency (42). Common infections (e.g., chicken-
pox, respiratory infections) have been implicated in the de-
pletion of liver stores or failure of VA intake to maintain
liver stores (43, 44). The observation that common child-
hood infections increases the risk of VA deficiency is an im-
portant public health concern in many areas of the world
because deficiency can lead to blindness (45) and death (46).

Infections increase the risk of malnutrition by a variety of
mechanisms that were originally described for vitamin
B-12 (47) and reviewed for VA (6). Although the specific
categories vary among authors, they generally include de-
creased food intake, impaired nutrient absorption, direct
nutrient loss, altered transport to target tissues, and in-
creased metabolic requirements or catabolic losses. Indeed,
acute infections during childhood cause decreased food

intake, which is often lower with higher illness severity. In
community-based studies of generally healthy children, the
occurrence of acute respiratory infections decreased caloric
intake by 8% relative to periods when children were asymp-
tomatic; the decrease was 11% for children with malaria
(48) and 18% with diarrheal illness (49). Measles generally
cause a more severe infection, and a study showed a caloric
deficit of 75% compared with intake during recovery (50),
although the intake during recovery might be slightly higher
than normal. Interestingly, a community-based study of
infants that quantified breastmilk and food intake showed
that although the total energy intake from nonbreastmilk
sources was decreased by diarrhea and fever, the intake of
breastmilk was not affected (51), offering further benefits
for breastfeeding.

Enteric infections can decrease the absorption of many
nutrients. Enteric infections damage the intestinal epithe-
lium and decrease the expression of brush-border enzymes
such as lactase, as shown in a piglet model of neonatal
diarrhea (52). Intestinal barrier damage during mild Ascaris
infections of children also decreases lactose absorption,
which recovers upon antiworm treatment (53). For VA pro-
vided as b-carotene, absorption may be improved by round-
worm treatment (54). The absorption of physiologic doses
of preformed VA is generally quite high (;99%) but is lower
(70–80%) in children with diarrhea, an Ascaris infection,
and nonenteric infections such as pneumonia (55, 56). Al-
though the mechanisms of this absorptive defect are unclear,
impaired absorption contributes to an increased risk of VA
deficiency in children with low dietary intakes.

After absorption, several infections can cause direct nu-
trient loss, perhaps from intestinal “leakiness” resulting in
protein-losing enteropathy, which occurs with postmeasles
diarrhea (57), or by the direct loss of blood, which occurs
during hookworm infection and leads to iron-deficiency
anemia (58). Considerable amounts of VA can be lost in
the urine as a result of proximal tubular dysfunction in
the kidney (6). Low-molecular-weight plasma proteins,

FIGURE 4 The specific activity, calculated as the
fraction of the dose divided by the plasma retinol
concentration, in rat plasma during an insult with
PBS (n = 2 for 3 and 7 d), LPS (n = 5 for 3 d), or
recombinant human IL-6 (n = 5 for 7 d). The
dashed line is the time that the insult was initially
administered. The model-based compartmental
analysis indicates a reduced mobilization of
hepatic vitamin A during inflammation in rats.
fdose; fraction of dose; ROHp; plasma retinol. This
research was originally published in the Journal of
Lipid Research (31). Gieng SH, Green MH, Green JB,
Rosales FJ. Model-based compartmental analysis
indicates a reduced mobilization of hepatic
vitamin A during inflammation in rats. J Lipid Res
2007;48:904–13. �2007 the American Society for
Biochemistry and Molecular Biology. Reproduced
from reference 31 with permission.

Vitamin A and carotenoids during inflammation 201



including RBP, filtered through the glomerulus are normally
reabsorbed in the proximal tubule (6). One hospital-based
study (59) found that adults with severe infections, such as
pneumonia or sepsis, excreted a mean of 223 mg retinol/d
(presumably bound to RBP), which is 25% of the RDA for
men and 32% for women. In that study, 24% excreted
>1 RDA/d, indicating that severe infections could result in
substantial urinary losses. (It should be noted that the use
of aminoglycoside antibiotics, potentially toxic to kidney tu-
bular epithelium, can be a contributing factor to urinary VA
loss). Children with sepsis also excrete substantial VA in the
urine, whereas children with pneumonia and diarrhea ex-
crete lower amounts (60). Losses may continue for several
days (61) and are associated with a high fever and evidence
of kidney tubular dysfunction (e.g., increased urinary con-
centrations of b2 microglobulin).

During the APR, the decrease in SR concentration caused
in part by the decreased mobilization from the liver (31)
suggests that retinol availability in peripheral tissues may
be diminished. In the eye, the retina is sensitive to low SR
concentrations because it expresses stimulated by retinoic
acid 6, the cell-surface binding receptor for RBP (62). Clin-
ical and genetic data (6) have suggested that low SR during
the APR may decrease retina sensitivity to light, perhaps as a
result of decreased availability of retinal for rhodopsin for-
mation. It is not known whether other tissues have specific
effects from retinol limitation during the APR (e.g., for pro-
ducing the RA needed for regulating gene expression). It is
possible that limited VA availability in the immune system
might be beneficial, perhaps by altering the type of immune
response to particular pathogens, because RA is produced by
immune cells and directly regulates the differentiation and
survival of particular subsets of immune cells, particularly
T lymphocytes (63). Carotenoid concentrations may also
be lower during the APR (64), but the implications of this
lowered concentration are unclear. It is not known whether
the decline in carotenoid concentrations is transient, as for
retinol, or if it represents “lost” carotenoids from increased
catabolism or diminished intakes during illness.

During infection, requirements for some nutrients may
increase because of increased utilization or catabolism.
The resting metabolic rate is increased during HIV infection
(65), which demands increased caloric intake to prevent

weight loss at equivalent levels of activity. In addition,
classical studies of model infections of human volunteers
have shown increased nitrogen loss as a result of protein
catabolism (66). With regard to VA during the APR, con-
sistent evidence of increased metabolism or catabolism
has not been demonstrated. However, tissue carotenoid
pools decrease during the induction of an APR in
chickens (67), suggesting catabolic losses. Interestingly,
tissue carotenoid pools are more resistant to change at
low dietary carotenoid concentrations. Similar data are
not available from humans, but oxidative metabolism in-
duced during inflammation might result in decreased tis-
sue carotenoids. Consequently, altered metabolism of
provitamin A carotenoids during infection could ad-
versely affect VA status.

Assessment of VA status during inflammation
Methods used to assess VA status are often affected by the

APR. The most common methods used to assess VA status
include the clinical evaluation of eye symptoms, serum
and breastmilk retinol concentrations, dose-response tests,
and isotope dilution assays (Figure 5) (68). This section de-
scribes how each method may be affected during an APR.

Biological and functional clinical tests. A close association
exists between xerophthalmia (e.g., Bitot’s spots, nightblindness)
and the APR assessed with the use of AGP and CRP (69,
70). Supplementation with VA increased plasma retinol
concentrations during deficiency but did not affect AGP
and CRP concentrations in children with and without
xerophthalmia (70). Furthermore, corneal involvement in
children who have an acute infection, such as measles, is
commonly observed (71). Measles is a known precipitat-
ing factor for the development of xerophthalmia in
children with VA deficiency (72). In fact, the WHO still
recommends giving 2 high-dose VA supplements 24 h
apart for children in developing countries who have
measles. VA supplements reduce the number of measles-
related deaths, replenish body stores, and prevent
xerophthalmia (73).

SR concentrations. Both RBP and transthyretin are de-
pressed during infection and inflammation. In the kidney,

FIGURE 5 The current understanding of the
relation of total liver reserves (expressed as
mmol retinol/g liver) and the dynamic working
range of the listed biomarker. Clinical signs of
deficiency and depressed serum retinol
concentrations occur during severe vitamin A
depletion. Breastmilk retinol is a unique
indicator for lactating women and can be
extrapolated to infants. The dose-response
tests offer more information on liver reserves
than serum retinol concentrations alone. Isotope dilution is the only indirect biomarker that has utility along the entire continuum of
reserves compared with a liver biopsy, which has limited feasibility but is considered the gold standard. Reproduced from reference 68
with permission.
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RBP becomes uncoupled from transthyretin, and during a
high fever holo-RBP is not reabsorbed but excreted in the
urine (6). SR concentrations are a static measure usually
performed on previously collected samples. The release of
plasma retinol bound to RBP from the liver is homeostatically
controlled, and therefore it does not change over a wide range
of liver reserves (74). As a biomarker of VA status, it may not
respond to interventions (68, 75). In rats, SR was actually
higher after VA withdrawal in the group that received marginal
daily VA (76) than in the groups that received more than the
daily requirement (76, 77). In children, SR concentrations
did not differ after treatment with high-dose supplements
(78) or after feeding with high b-carotene–biofortified
maize (79, 80).

Measuring CRP and AGP is recommended in surveys
to evaluate the impact of inflammation on SR concentra-
tions (79, 81). In Zambian children, negative shifts in SR
concentrations became apparent based on the degree of
inflammation (68, 81) (Figure 6A). By correcting for in-
flammation to lower the threshold of acceptable SR con-
centrations (82), the percentage of individuals with SR
concentrations <0.7 mmol/L decreased from 17% to 3%
(81).

Breastmilk retinol concentrations. The degree to which in-
flammation affects breastmilk retinol concentrations is not
currently known to our knowledge. One report from rural

Zambian mothers did not find an association in a prelimi-
nary analysis (83). Considering that breastmilk retinol is de-
rived from RBP and chylomicron delivery, this topic needs
further evaluation. In rats, chylomicra contribute ;40%
of milk retinol (84), and in lactating sows 13–26% of tracer
doses were either detected in milk or measured in nursing off-
spring (85, 86). It is likely that RBP-delivered retinol accounts
for 60–85% of breastmilk retinol in humans. If SR is de-
pressed during inflammation, breastmilk concentrations may
become depressed, especially in women who have low dietary
intakes.

Dose-response tests. Two dose-response tests are available
for assessing status in surveys and intervention studies.
The RDR and modified RDR (MRDR) tests are based on
the principle of accumulated RBP during VA depletion
released after a challenge dose (87). The major difference
is that the RDR uses retinyl ester, whereas the MRDR uses
3,4-didehydroretinyl acetate (68). Attributes of dose-
response tests are that they only require HPLC for analysis
and provide more information than SR regarding liver VA
reserves (Figure 5). The RDR uses 2 blood samples—at
baseline and 5 h after dosage—and may be affected by
inflammation, as observed in Peruvian children (88). The
MRDR measures newly ingested didehydroretinol in a
single blood sample and is therefore distinguishable from
circulating retinol. Three separate trials in infants and

FIGURE 6 The impact of elevated acute-
phase proteins on serum retinol
concentrations in children (A). The curve on
the far right reflects the distribution in children
without inflammation. The middle curve
reflects children who are in late convalescence
(only AGP elevated), and the curve on the far
left demonstrates serum retinol concentrations
during early convalescence when both CRP
and AGP are elevated. (B) The influence of
adding an extra correction factor in the
calculations for total liver retinol reserves in
Zambian children with elevated CRP. If
nonsymptomatic inflammation affects
absorption, the relation would be the opposite;
i.e., TLRs would be overestimated. Kernel
density estimations produce a smoothed curve
of data. AGP, a1-acid glycoprotein; CRP,
C-reactive protein; TLR, total liver reserve. Panel
A is reproduced from reference 68 with
permission.
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children did not detect an influence of the APR on MRDR
values (79, 89, 90).

The dose-response tests are qualitative measures of liver
VA reserves (68). Although infection and inflammation
may reduce dose absorption (55, 56), the response depends
more on the accumulation of RBP in the liver than on the
absolute dose absorbed. This is in contrast to retinol isotope
dilution (RID) tests that rely on the amount of dose ab-
sorbed for accurate calculations.

RID tests. RID tests are the most sensitive methods for as-
sessing VA status because they provide information on liver
reserves from deficiency through hypervitaminosis A (68). A
baseline blood sample is typically taken before dosage with
either deuterated or [13C]retinyl acetate, followed by another
blood sample 3–21 d after dosage depending on the applica-
tion (91, 92). The impact of inflammation on RID test ac-
curacy is currently a subject of field-based research. The
factors that may be affected by inflammation include the
amount of tracer absorbed (55, 56) and specific activity of
retinol in the serum compared with the liver (31).

In India, radioactive tracer dose absorption was reduced
from 99.2% in healthy children to 74.3% in children with
infections (55). In Zambia, the absorption of a 5-mg dose
was 81.2% in 3 children without illness and 62.4% in a child
who was ill (93). Therefore, it may be appropriate to de-
crease the amount of tracer absorbed in the equation used
to calculate total body stores (80, 92). However, when this
assumption was applied to Zambian children, the distribu-
tion curve of calculated VA reserves (micromoles per gram
of liver) in children with a CRP >5 mg/L was slightly lower
than in those without elevated CRP (Figure 6B). If these
children had reduced dose absorption, liver reserve calcula-
tions should have been artificially elevated. By correcting the
equation for decreased tracer absorption in children with
asymptomatic inflammation, the distribution curve shifted
them to even lower calculated reserves (Figure 6B). None
of the children enrolled had a fever or serious illness because
these were exclusion criteria (80).

A common infection in some African countries is ma-
laria. VA-deficient mice were made resistant to malaria by
administering VA (94). In vitro, 9-cis-RA increased the
phagocytosis of Plasmodium falciparum–parasitized erythro-
cytes, increased parasite clearance, and reduced proinflam-
matory cytokine responses (95). The association between
malaria in humans and VA status is, to our knowledge,
not known. In Zambian children from 4 villages, total
body VA reserves were highest in the village that did not
have asymptomatic malaria (96). This observation might
imply that asymptomatic malaria does not affect RID test
accuracy. If the other villages have a greater prevalence of
malaria, which might result in a lower absorption of the
tracer dose, then total body stores would be calculated to
be lower in the village that did not have malaria, but this
was not observed.

The specific activity of radioactive retinol to plasma retinol
was affected by administering LPS or recombinant human

IL-6 to rats (31) (Figure 4). Not only were SR concentrations
reduced by;47 and;65% (31), respectively, but the change
in serum specific activity suggested the heavier isotope was se-
questered in the liver. The specific activity resolved quickly af-
ter the cessation of the inflammatory agents. Therefore, RID
tests may be influenced during times of active infection. Best
practice is not to enroll children who have an active fever in
VA surveys or studies because the illness may affect dose ab-
sorption, retention, and the specific activity difference be-
tween serum and the liver.

Epidemiologic studies related to carotenoid
metabolism and inflammation
Interrelation of carotenoids, inflammation, and oxidative
stress. Carotenoid metabolism is altered during inflamma-
tion, and carotenoid status can in return influence inflamma-
tion and oxidative stress. Several epidemiologic studies,
including meta-analyses, have suggested that a high dietary
intake of carotenoids and elevated plasma concentrations
are correlated with a decreased risk of cardiovascular diseases
(97), type 2 diabetes mellitus (98), and certain types of
cancer (99, 100), often by #30%, including all-cause
mortality (101). These findings were originally attributed to
antioxidant effects because isolated carotenoids are effective
free-radical scavengers in vitro (102). Some of these
associations may have been misinterpreted; i.e., low carotenoid
concentrations may have resulted from the diseases rather
than contributory factors.

However, several large-scale supplementation trials that in-
corporated carotenoids were unable to confirm health benefits,
including the a-Tocopherol b-Carotene Cancer Prevention
trial (103) and b-Carotene and Retinol Efficacy Trial (104).
In fact, increased mortality occurred from lung cancer in
smokers at daily doses of 20 mg (with 50 mg a-tocopherol)
and 30 mg b-carotene (with 25,000 IU VA). Likewise, meta-
analyses suggested increased all-cause mortality for subjects
taking b-carotene supplements (105, 106). The comparative
or combined treatment of 25,000 IU VA, however, has not
been evaluated to our knowledge. It has been hypothesized
that higher carotenoid doses may act as prooxidants in
smokers’ lungs, especially when administered in isolated
form. Two long-term b-carotene supplementation trials
in China did not report adverse effects; however, this
may be explained by coexisting poor VA status caused
by low intakes (107).

Because of limited carotenoid bioavailability [;10–40%
(108)] and low achievable plasma concentrations (;2mmol/L),
the direct antioxidant effects may not fully account for the at-
tributed carotenoid-related health effects. Instead, other mech-
anisms, such as the alteration of intracellular-signaling
cascades and/or gene expression, may be more important.
Carotenoids interact with several transduction cascades, re-
ducing NF-kB and stimulating Nrf2 translocation (5). Ca-
rotenoids can block signal transduction at various stages
by binding to cysteine residues (Michael adduct reaction)
of nucleophilic proteins, depending on their cellular concen-
tration and the general inflammatory state. For example,
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carotenoids have been reported to bind to the kinase respon-
sible for the phosphorylation of the inhibitory protein of
NF-kB, consequently blocking the ubiquitylation and disso-
ciation of the inhibitor from the NF-kB complex and pre-
venting the translocation of the free NF-kB subunits to the
nucleus (109). Similarly, for Nrf2, carotenoids can bind to
Nrf2 and/or its Kelch-like ECH-associated protein 1 inhibitor,
promoting the dissociation from Nrf2, which then translo-
cates and activates gene expression (110). However, as out-
lined in the next section, the effects are generally found to
depend on the concentration, cell type investigated, cell in-
flammatory state, and type of carotenoid or carotenoid
metabolite.

In vitro studies and mechanistic insights. Multiple in vitro
studies with carotenoids, their oxidation products, or their
metabolites have exposed cells or tissues to high concentra-
tions, such as Caco-2 intestinal cells, immune cells, the liver,
adipose, and the retina. Despite limitations, such as studying
isolated cells, using high concentrations, solubilization in
organic solvents, lack of stability of carotenoids, and short-
term exposures, these studies interrogated mechanistic
effects without ethical restrictions (111). Several studies that
used a wide range of cell models have suggested both anti-
inflammatory and antioxidant effects (5). For example,
lycopene at physiologic concentrations resulted in reduced
TNF-a activity in inflammation-stimulated human mammary
cancer and osteoblast cell lines. Interestingly, this effect was
stronger for lycopene hydrophilic degradation products (after
UV radiation) and its derivatives (109). In another trial,
aldehyde derivatives with a carbon chain length of 12 and
those having a methyl group with 3 carbon atoms from
the terminal aldehyde had the strongest effects on Nrf2
translocation in the human breast and prostate cancer cells
(112). In fact, studies have proposed that b-carotene oxygenase
1 and 2 cleavage products are better candidates for binding
to cysteine residues of both NF-kB and Nrf2 because of
their higher solubility in the cytosol and electrophilicity
(109, 112).

To overcome the limitations of excluding digestive pro-
cesses and studying isolated carotenoids, Caco-2 cells
and a Caco-2:HT-29THP-1 triple culture (90:10 ratio
coculture plus THP-1 cells in the basolateral compartment)
were exposed to the digesta of plum and cabbage varieties
rich in carotenoids and polyphenols. IL-6 and IL-8 release
was partly reduced and was related to decreased NF-kB
and Nrf2 expression and translocation (113). However, the
digesta of foods low in carotenoids and polyphenols showed
similar results, suggesting other bioactive compounds as
causal agents.

Many carotenoids escape absorption in the small intes-
tine, and processes regarding carotenoid metabolism and
degradation in the colon have been overlooked (114, 115).
In vitro studies have suggested that carotenoids are only
partly recovered in the colonic fraction (10–50%) (116,
117). From other phytochemical studies with polyphenols,
it is evident that microbiota can promote molecular ring

fission, deglycosylation, hydrolysis, deglucuronidation, and
demethylation reactions (115). No data to our knowledge
are available for carotenoids. It may be speculated that poten-
tial polar degradation products could be produced, which
may be bioactive.

Short-term animal and human intervention trials. Sev-
eral animal studies have confirmed the positive effects of ca-
rotenoids on inflammation markers (5). Interestingly, the
bioactivity of polar degradation products has recently been
studied. In a rat study with lutein-derived products
created by UV irradiation, degradation products more
strongly ameliorated NO, malondialdeyhde, prostaglandin
E2, TNF-a, and IL-6 than lutein itself (118). Contrarily,
supraphysiologic RA doses (1–10 mmol/L) were associated
with prooxidative effects (119) compared with lower doses
(<1 mmol/L) (5), emphasizing the importance of exposure
concentration. Other carotenoid metabolites, such as
apo10-lycopenoic acid, were stronger activators of RA
receptor (RAR) and retinoid X receptor in animal trials
than lycopene (120, 121), suggesting VA-like behavior (122).
In addition, apo10-lycopenoid acid upregulated sirtuin 1
enzymatic activity in ob/ob mice, preventing fatty liver
formation (123). In liver cells, several b-carotene cleavage
products (b-apo149-carotenal, b-apo149-carotenoic acid, and
b-apo13-carotenone) competed with RA binding to RAR,
highlighting their involvement in cell growth and differentiation
(124). Whether the metabolism of these apocarotenoids
is in turn influenced by inflammation is to our knowledge
currently unknown.

Contrary to long-term supplementation trials, several
short- and midterm intervention trials with whole foods, es-
pecially tomato products rich in lycopene, have suggested
health benefits for generally healthy and overweight people,
as measured by favorable changes in markers of inflamma-
tion (IL-6, IL-8, TNF-a, IL-1b, CRP, NF-kB) and oxidative
stress (e.g., improved superoxide dismutase, glutathione
peroxidase, catalase, heme oxygenase 1, Nrf2) (Figure 1)
(5). For example, in a randomized controlled trial, consuming
a tomato beverage (16 mg carotenoids/d) for 26 d reduced
plasma TNF-a concentrations in healthy subjects by 34%
(125). Most studies that used carotenoid-rich foods, however,
have shown limited effects in healthy subjects (125–127). Sup-
plementation trials on subjects with chronic inflammation
have been more promising. For instance, lycopene (70 mg/wk
for 12 wk) improved the inflammation marker serum amy-
loid A in middle-aged overweight subjects by ;30% (128),
but the study was not placebo-controlled. In a placebo-
controlled study, lutein (20 mg/d dissolved in oil as a gelatin
capsule) taken for 3 mo by early arthritis patients improved
plasma IL-6 (defined as carotid intima media thickness
as >750 mm for individuals aged <59 y or >850 mm for those
aged >60 y) (129) and monocyte-chemoattractant protein
1 compared with a placebo by 2150 and 2100 pg/mL, re-
spectively. Several studies have highlighted rather high in-
terindividual differences regarding carotenoid absorption,
degradation, metabolism, and excretion partly because of
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genetic differences in several single-nucleotide polymor-
phisms on lutein (130), lycopene (131), and b-carotene
absorption (3, 132), which may partly explain variable in-
tervention responses.

Vitamin A, carotenoids, and inflammation in
pregnancy and infancy
Dietary carotenoids and retinoids play important roles in innate
and acquired immunity during pregnancy and development.
In particular, VA deficiency, which affects ;190 million chil-
dren worldwide, increases the likelihood of early-childhood
mortality because of common infections (133, 134). In VA-
deficient or -insufficient states, the increased susceptibility to
immune-mediated and inflammatory disorders is related to
impaired responses to infection, impaired epithelial barrier
function (6, 135), and immunologic defects. Responses to mu-
cosal pathogens are impaired when VA stores are low partly be-
cause VA metabolites promote the functional maturation of
innate immune cells (6, 63, 136, 137).

VA and cellular immunity during development. VA-
deficient animals exhibit abnormalities in the blood and
splenic lymphocyte numbers. T- and occasionally B-cell
populations are reduced, and myeloid lineage cells, especially
granulocytes, tend to increase (138, 139). Granulocyte
stimulation likely results from the insufficient RA-mediated
inhibition of granulocyte-macrophage colony-stimulating
factor (140), which is reversible with RA administration
(139). RA signaling plays a critical role in the development
of B cells, the major cell mediators of humoral immunity.
VA and RA regulate B-cell maturation and differentiation
at multiple combinatorial levels that control and often
potentiate antibody production. VA deficiency reduces the
number of fetal B-cell progenitors, whereas a pan-RAR
antagonist, LE540, inhibits both fetal and adult B-cell
lymphopoiesis in vitro (141). Although physiologic con-
centrations of RA inhibit the proliferation of normal
B-cell progenitors (142), they apparently influence multiple
stages of B-cell lymphopoiesis and accelerate the generation
of CD19+/IgM+ B cells (143). These results suggest that RA
helps to sustain the microenvironment for B-cell development
and maintain a functional B-cell pool essential for the
response to antigens (137).

CD4+/CD8+ T cells differentiate in the thymus. In hu-
mans, thymic development starts before birth and ceases
during puberty with thymic involution (144). As previously
mentioned, VA deficiency is accompanied by immune defi-
ciency and susceptibility to a wide range of infectious dis-
eases (145, 146). In addition, marked atrophy of the
thymus and spleen is observed in VA-deficient animals (147).
A pertinent observation in developmental immunity is that
RA-synthesizing enzyme activity peaks at the same time as
RAR responsiveness, a time during which thymic cellularity
is highest and T-cell selection is most pronounced (148). Di-
rect data on the effects of carotenoids on thymic selection
remain unavailable to our knowledge.

Lymphocyte proliferative responses to mitogens are also
retinoid-dependent (149, 150). In pregnant mice, VA and
b-carotene supplementation affected immune cell functions
during ontogenesis (151). Beginning at conception, dams
were provided with a control diet or different retinoid-
and carotenoid-enriched (4500 retinol equivalents/kg) diets.
The percentage and total numbers of splenic mononuclear
cells were determined serially throughout gestation. VA
and b-carotene supplementation variously increased lym-
phocyte numbers in early and midpregnancy and increased
T:B-cell ratios (151). In addition, in mice, maternal VA sup-
plementation via intraperitoneal injections increased serum
IgM and T-helper cell (Th) 2–specific IgG1 concentrations
in the progeny (152). Nevertheless, during the first month
of lactation in a human b-carotene supplementation study
neither lactation nor b-carotene supplementation affected
T-cell proliferation (153).

T-effector cells differentiate into several subtypes and in-
clude Th1 (defense against intracellular bacteria and protozoa),
Th2 (humoral immune stimulators against extracellular para-
sites), Th17 (proinflammatory autoimmunity regulators), and
immunosuppressive T-regulatory cells. In postnatal develop-
ment, VA regulates the Th1:Th2 switch and thereby modifies
immune and inflammatory responses (152, 154).

Investigating carotenoid effects on developmental immu-
nity in animal models has been more challenging because of
pronounced differences in carotenoid absorption, kinetics,
and metabolism between humans and rodents (155). Never-
theless, some investigations have suggested important roles
in T-cell polarization for several presumably nonprovitamin
A carotenoids. One example is fucoxanthin-mediated
T-regulatory induction and Th17 inhibition, which leads to
suppressed inflammation and autoimmunity (156).

Carotenoids and inflammation in pregnancy and fetal
development. The inflammatory response is tightly regulated
during reproduction, embryonic and fetal development, and
postnatal transition into infancy. During implantation in hu-
mans, the expression of proinflammatory cytokines such as
IL-6, IL-15, and TNF-a promotes placental trophoblast inva-
sion into the maternal endometrium, myometrium, and uter-
ine vasculature; this tissue invasion results in the recruitment
and activation of maternal immune cells. However, after the
uteroplacental bed is established during the first trimester,
the normal pregnancy state is characterized by immune quies-
cence, namely a Th2 cytokine profile, and the suppression
of the maternal immunologic rejection of the “foreign”
fetoplacental unit (157). A proinflammatory Th1 cytokine
state is reactivated during parturition (158). In contrast,
preeclampsia (a hypertensive disorder that causes substan-
tial maternal and offspring morbidities and mortality) in-
creases uteroplacental inflammation and the persistence of
proinflammatory Th1 cytokine concentrations compared
with normal pregnancy.

Preeclampsia is a state of both oxidative and inflammatory
stress. Consequently, antioxidant and anti-inflammatory
supplementation has been proposed to prevent or lessen its
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severity (159). Analyses of maternal carotenoid concentra-
tions have suggested inverse relations between plasma lutein,
a- and b-carotene, and lycopene and the risk/severity of pre-
eclampsia and diabetes mellitus (160–164), 2 pregnancy-
related pro-oxidant and proinflammatory conditions. Of
course, these findings might have resulted from the disease,
dietary intake, or both. In support of a salutary role in preg-
nancy, Lorenzoni et al. (165) observed that lutein supplemen-
tation in pregnant women with gestational diabetes reduced
newborn oxidative stress, as measured by blood total hydrox-
yperoxide concentrations.

VA, carotenoids, and inflammation in newborns. Inter-
mittent or sustained systemic inflammation contributes to
the pathogenesis of most disorders associated with prematu-
rity, including brain damage and neurodevelopmental disor-
ders (166, 167). In preterm and term infants, both the
prevention of and therapy for hypoxic-ischemic brain injury
increasingly emphasizes the interference with neurotoxic and
neuroinflammatory cascades, with emphasis on endogenous
neuroprotective mechanisms (168, 169). Both RA (170)
and lutein (171) suppress neuroinflammation mediated
by astrocytes and microglia, 2 cell types important in acute
brain injury that accompanies preterm and term birth
(172). The mechanisms of carotenoid (lutein, astaxanthin)-
mediated neuroprotection include blocking the actions of
NF-kB signaling on microglial and astrocyte activation, neu-
ronal inflammation, inflammatory cytokine and chemokine
release, and neuronal cell death (173).

Human milk contains various carotenoids, of which lutein
is often predominant (174, 175). In term newborns, lutein
supplementation suppresses measures of systemic oxidant
stress (176, 177). In the retinopathy of prematurity, the prin-
cipal cause of blindness in children in industrialized coun-
tries, systemic and localized neuroretinal inflammation
plays a major pathogenic role (178, 179). Carotenoids, partic-
ularly lutein, suppress both systemic inflammation (measured
by CRP) and retinopathy severity in preterm infants (179). It
is important to note that lutein supplementation (or reple-
tion) has similar antioxidant and anti-inflammatory effects
in preterm infant and adult diabetic neovascular retinopathies
(180). In experimental animal models, lutein and astaxanthin
(181) suppress inflammation and improve retinal function in
diabetic retinopathy. Wolfberry (goji; Lycium barbarum), an
Asian fruit traditionally consumed to prevent eye diseases,
is a particularly zeaxanthin-rich dietary source. In diabetic
mice, wolfberry ameliorated retinopathy, suppressed inflam-
mation, and provided retinal protection, effects that were
mimicked by zeaxanthin or lutein in vitro (182).

Xanthophyll carotenoids exert anti-inflammatory and
immunomodulatory activities in several mammalian sys-
tems. Mechanisms may include the inhibition of oxidative
stress, inflammatory mediators, and lipid peroxidation; in-
hibition of proinflammatory NF-kB and MAPK signaling
(Figure 1); blockage of advanced glycation end-product for-
mation; suppression of scavenger receptor expression; sup-
pression of lymphocyte and macrophage activation (183);

and modulation of T-cell polarization, such as increasing
T-regulatory and decreasing Th17 cell expansion (137). Re-
cent data have suggested that xanthophylls are regulators of
macrophage-dependent immune responses. The human die-
tary xanthophyll astaxanthin, which is found in pink-orange
fish and crustaceans, drives IL-10 production in anti-
inflammatory M2macrophages; similarly, lutein and astaxan-
thin support monocyte polarization away from the “killer”
M1 macrophage phenotype to M2 macrophages (LP Ru-
bin, unpublished data, 2014). In the liver inflammatory-
disorder nonalcoholic fatty liver disease, an increasingly
common comorbidity of obesity, dietary xanthophylls (in-
cluding b-cryptoxanthin and astaxanthin) offer important
preventive and treatment strategies. Experimentally, these
carotenoids decrease hepatic inflammatory damage by re-
straining M1 macrophage activation or by driving M2 ac-
tivation (184).

Conclusions
Inflammation affects retinoid and carotenoid metabolism.
The roles of VA and carotenoids as potential modulators
of developmental immunity, the APR, and inflammation,
especially in light of global endemic VA insufficiency and
low carotenoid intakes, warrant further investigation. Infec-
tions decrease VA intake as a result of infection-induced
anorexia and decreased VA absorption from the intestine.
VA may also be lost in substantial amounts in the urine dur-
ing infection. In addition, plasma retinol may be sequestered
in tissues, leading to a reduction in SR concentrations, which
implies that assessing VA status with the use of SR or RBP
during inflammation is problematic. These factors account
for the increased risk of VA deficiency associated with infec-
tion. However, VA requirements are currently not known to
be substantially increased by infections, a phenomenon that
needs further evaluation considering the losses that occur in
urine during acute infections. In addition, retinol mobiliza-
tion from the liver decreases during the APR, perhaps having
adverse effects on VA availability to target tissues, especially
the retina. Furthermore, some biomarkers of VA status are
affected by the APR, and this needs to be considered in
population-based assessments.

Regarding carotenoid health benefits, a discrepancy exists
between epidemiologic studies that have suggested benefits
related to carotenoid intake and tissue concentrations and
controversial results from interventions involving b-carotene.
Nevertheless, in clinical trials and animal models, carotenoid
supplementation (particularly lutein) to young infants re-
duced systemic inflammation, the inflammatory response
in retinopathy of prematurity, and the neuroinflammation
that accompanies hypoxic-ischemic brain injury. In general,
information on carotenoid bioactivity is incomplete, and
questions related to dose response, metabolism, and syner-
gism may explain some findings. Several studies have sug-
gested that carotenoid metabolites are bioactive, including
enzymatic cleavage products (apocarotenals), and act as bet-
ter targets for transcription factors such as NF-kB and Nrf2.
Lower-to-intermediate concentrations may exert positive
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effects on gene expression and antioxidant effects, whereas
higher concentrations act pro-oxidatively. Further nuclear
targets, such as the implication of RAR/retinoid X receptor
and potential VA-like effects, also deserve more attention.
Finally, our knowledge on carotenoid processes in the colon
and interaction with the microbiota is nil. As long as these
aspects remain marginally understood, our comprehension
of the role of carotenoids in chronic diseases and inflamma-
tion will be far from complete.
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