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Abstract

Readmission following discharge from an initial hospitalization is a key marker of quality of 

health care in the United States. For the most part, readmission has been studied among patients 

with ‘acute’ health conditions, such as pneumonia and heart failure, with analyses based on a 

logistic-Normal generalized linear mixed model (Normand et al., 1997). Naïve application of this 

model to the study of readmission among patients with ‘advanced’ health conditions such as 

pancreatic cancer, however, is problematic because it ignores death as a competing risk. A more 

appropriate analysis is to imbed such a study within the semi-competing risks framework. To our 

knowledge, however, no comprehensive statistical methods have been developed for cluster-

correlated semi-competing risks data. To resolve this gap in the literature we propose a novel 

hierarchical modeling framework for the analysis of cluster-correlated semi-competing risks data 

that permits parametric or non-parametric specifications for a range of components giving analysts 

substantial flexibility as they consider their own analyses. Estimation and inference is performed 

within the Bayesian paradigm since it facilitates the straightforward characterization of (posterior) 

uncertainty for all model parameters, including hospital-specific random effects. Model 

comparison and choice is performed via the deviance information criterion and the log-pseudo 

marginal likelihood statistic, both of which are based on a partially marginalized likelihood. An 

efficient computational scheme, based on the Metropolis-Hastings-Green algorithm, is developed 

and had been implemented in the SemiCompRisks R package. A comprehensive simulation study 

shows that the proposed framework performs very well in a range of data scenarios, and 

outperforms competitor analysis strategies. The proposed framework is motivated by and 

illustrated with an on-going study of the risk of readmission among Medicare beneficiaries 
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diagnosed with pancreatic cancer. Using data on n=5,298 patients at J=112 hospitals in the six 

New England states between 2000–2009, key scientific questions we consider include the role of 

patient-level risk factors on the risk of readmission and the extent of variation in risk across 

hospitals not explained by differences in patient case-mix.
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1 Introduction

Cancer of the pancreas is one of the most deadly. In 2013, an estimated 38,460 individuals 

died from pancreatic cancer in the United States making it the fourth most prevalent cause of 

cancer death (American Cancer Society, 2013). Unfortunately, since there are no effective 

screening tests for pancreatic cancer, most patients are diagnosed at a late stage of the 

disease, specifically once it has metastasized to other parts of the body. As a result, survival 

is poor with 1-year and 5-year mortality rates are of 75% and 94%, respectively (Shin and 

Canto, 2012). In practice, since prognosis is poor and mortality rates high, the treatment and 

management of patients diagnosed with pancreatic cancer generally focuses on palliative 

care aimed at enhancing quality of end-of-life care (PLoS Medicine Editors, 2012). Such 

care is expensive, however, with patients diagnosed with pancreatic cancer accruing an 

estimated $165,000 in health care costs in their last year of life (Mariotto et al., 2011).

Despite the huge costs, there are currently no comprehensive national efforts to monitor 

quality of end-of-life care for pancreatic cancer nor for any of a broad range of other 

‘advanced’ health conditions for which the management of disease focuses on palliative 

care. Outside the context of these conditions, however, there is substantial interest in 

understanding variation in quality of health care. The recent literature, in particular, has 

focused on readmission as a key marker of quality of care, in part because it is expensive but 

also because it is thought of as an often-preventable event (Vest et al., 2010; Warren et al., 

2011; Brooks et al., 2014; Stitzenberg et al., 2015). In addition, as the nation’s largest payer 

of health care costs in the United States, the Centers for Medicare and Medicaid Services 

(CMS) uses hospital-specific readmission rates as a central component in two programs: the 

Hospital Inpatient Quality Reporting Program, which requires hospitals to annually report, 

among other measures, readmission rates for pneumonia, heart failure and myocardial 

infarction in order to receive a full update to their reimbursement payments (CMS, 2013a); 

and, the Readmission Reduction Program, which requires CMS to reduce payments to 

hospitals with excess readmissions (CMS, 2013b).

Across all of these efforts, investigations of readmission in the literature have invariably used 

a logistic-Normal generalized linear mixed model (LN-GLMM) to analyze patients clustered 

within hospitals (Normand et al., 1997; Ash et al., 2012). While reasonable for health 

conditions with effective treatment options and low mortality, direct application of this 

model to investigate variation in risk of readmission following a diagnosis of pancreatic 

cancer is inappropriate because of the strong force of mortality. Consider, for example, 
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n=5,298 Medicare beneficiaries diagnosed with pancreatic cancer at J=112 hospitals in six 

New England states between 2000–2009 and suppose interest lies in understanding 

determinants of readmission 90 days post-discharge. While additional detail is given below, 

we note at the outset that 1,257 patients (24%) died within 30 days of discharge without 

experiencing a readmission event; furthermore, 1,912 patients (36%) died within 90 days of 

discharge without experiencing a readmission event. Naïve application of a standard LN-

GLMM to these data ignores the fact that a substantial portion of the patients are not at risk 

to experience the event of ‘readmission by 90 days’ for much of the timeframe. Such an 

analysis may lead to bias and, if incorporated into existing CMS programs, could have a 

major impact on how hospitals are penalized for poor quality of care.

In the statistics literature, data that arise from studies in which primary scientific interest lies 

with some non-terminal event (e.g. readmission) whose observation is subject to a terminal 
event (e.g. death) are referred to as semi-competing risks data (Fine et al., 2001). Broadly, 

published methods for the analysis of semi-competing risks data can be classified into three 

groups: methods that specify dependence between the non-terminal and terminal events via a 

copula (Fine et al., 2001; Peng and Fine, 2007; Hsieh et al., 2008); methods based on multi-

state models that induce dependence via a shared patient-specific frailty (Kneib and 

Hennerfeind, 2008; Xu et al., 2010; Zeng et al., 2012; Han et al., 2014; Zhang et al., 2014; 

Lee et al., 2015); and, methods based on principal stratification (Zhang and Rubin, 2003; 

Egleston et al., 2007; Tchetgen Tchetgen, 2014). Common to all of these methods, however, 

is that their development has focused exclusively on settings where individual study units are 

independent. As such, the methods are not design to address scientific questions that arise 

naturally in the context of cluster-correlated data (Diggle et al., 2002; Fitzmaurice et al., 

2012). In the context of readmission following a diagnosis of pancreatic cancer, such 

questions include: (i) the investigation of between- and within-hospital risks factors for 

readmission while acknowledging death as a competing force, (ii) characterizing and 

quantifying between-hospital variation in risk of the terminal event not explained by 

differences in patient case-mix, and (iii) estimating, and quantifying uncertainty for, 

hospital-specific effects, as well as ranking. Furthermore, it is well-known that if one is to 

perform valid inference all potential sources of correlation must be accounted for in the 

analysis.

To our knowledge, while the literature on the related competing risks problem has 

considered methods for cluster-correlated data settings (Katsahian et al., 2006; Chen et al., 

2008; Gorfine and Hsu, 2011; Zhou et al., 2012; Gorfine et al., 2014), only one paper on the 

analysis of cluster-correlated semi-competing risks data has been published. Specifically, 

Liquet et al. (2012) recently proposed a multi-state model that incorporated a hospital-

specific random effect to account for cluster-correlation. Estimation and inference was 

performed within the frequentist paradigm, based on an integrated likelihood that 

marginalizes over the random effect, implemented in the frailtypack R package 

(Rondeau et al., 2012). For our purposes, however, their approach is limited in a number of 

important ways. First, the analyses presented in Liquet et al. (2012) permit either a patient-

specific frailty to account for dependence between T1 and T2 or a hospital-specific random 

effect to account for cluster-correlation but not both simultaneously. Second, the proposed 
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specification assumed that the hospital-specific random effect for the non-terminal event is 

independent of the hospital-specific random effect for the terminal event, precluding a 

potentially important form of dependence. Third, towards understanding variation in risk of 

readmission, the hospital-specific random effects are themselves key parameters of scientific 

interest and not nuisance parameters to be marginalized over. Finally, evaluation of the 

integrated likelihood requires the specification of a parametric distribution for the hospital-

specific random effects. While estimation and inference for regression parameters is 

generally robust to misspecification of random effects distributions in GLMMs, 

misspecification is known to adversely impact the shape of the estimated distribution of the 

random effects themselves (McCulloch et al., 2011; McCulloch and Neuhaus, 2011; 

Neuhaus and McCulloch, 2011). This is particularly important in quality of health care 

studies where identifying a hospital as being in the tail of the distribution can have a 

substantial impact on their evaluation.

Towards overcoming these limitations, we develop a novel, comprehensive hierarchical 

multi-state modeling framework for cluster-correlated semi-competing risks data. A key 

feature of the framework, and its implementation, is that it permits either parametric or non-

parametric specifications for a range of model components, including baseline hazard 

functions and distributions for hospital-specific random effects. This gives analysts 

substantial flexibility as they consider their own analyses. Estimation and inference is 

performed within the Bayesian paradigm which facilities the straightforward quantification 

of uncertainty for all model parameters, including hospital-specific random effects and 

variance components. The remainder of this paper paper is organized as follows. Section 2 

introduces an on-going study of readmission among patients diagnosed with pancreatic 

cancer, and provides a description of the available Medicare data. Section 3 describes the 

proposed framework, including specification of prior distributions; Section 4 provides a brief 

overview of an efficient computational algorithm for obtaining samples from the joint 

posterior, its implementation and methods for comparing goodness-of-fit across model 

specifications. Section 5 presents a comprehensive simulation study investigating the 

performance of the proposed framework, including a comparison with the methods of Liquet 

et al. (2012). Section 6 reports on a detailed analysis of the motiving pancreatic cancer 

study; sensitivity analyses regarding the specification of certain model parameters are 

reported in Section 7. Finally Section 8 concludes the paper with a discussion. Where 

appropriate, detailed derivations and additional results are provided in an online 

Supplementary Materials document.

2 Risk of Readmission Among Patients Diagnosed with Pancreatic Cancer

As mentioned in the Introduction, readmission is a key marker of quality-of-care (Ash et al., 

2012; CMS, 2013a,b). To-date, however, studies of readmission have focused on health 

conditions that have relatively good prognosis and/or low mortality including heart failure, 

myocardial infarction and pneumonia (Krumholz et al., 1997, 2011; Joynt et al., 2011; 

Epstein et al., 2011). Beyond these conditions, however, little is known about variation in 

risk of readmission for patients diagnosed with terminal conditions such as pancreatic 

cancer. We are therefore currently engaged in a collaboration investigating readmission 

among Medicare enrollees diagnosed with pancreatic cancer. The overarching goals of the 
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study are to improve end-of-life quality of care for these patients by first understanding 

patient-level risk factors associated with readmission and second understanding variation in 

risk at the level of the hospital (i.e. that not explained by differences in patient case-mix). 

Towards this we identified all n=5,298 Medicare enrollees who were diagnosed with 

pancreatic cancer during a hospitalization at one of J=112 hospitals in the six New England 

states (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont) 

between 2000–2009. Information on the initial hospitalization and diagnosis, patient 

characteristics and co-morbid conditions, discharge destinflation and subsequent 

readmissions is obtained from the Medicare Fee-For-Service inpatient claims file (Part A). 

Specific covariates of interest include sex (0/1 = male/female), age, race (0/1 = white/non-

white), the patients Charlson/Deyo comorbidity score (Sharabiani et al., 2012), information 

on entry route for the initial admission (0/1 = from the ER/transfer from some other facility), 

whether or not the patient underwent a pancreatic cancer-specific procedure (resection, 

bypass, or stent), the length of hospitalization and the discharge destinflation. For the latter, 

patients could have been discharged to their home, their home with care, a hospice, an 

intermediate care or skilled nursing facility (ICF/SNF) or some other facility (e.g. a 

rehabilitation facility or to inpatient care). Table 1 provides a summary of observed 

distributions for these covariates.

Also provided in Table 1 is a summary of the observed outcome information at 30 and 90 

days post-discharge. Specifically, each patient is classified into one of four groups: (1) they 

experienced a readmission event and were subsequently observed to die; (2) they 

experienced a readmission event but were censored prior to death; (3) they were observed to 

die without having experienced a readmission event; and, (4) they were censored prior to 

experiencing either a readmission or death event. The administrative censoring at 30 and 90 

days is driven by a several important factors. First, scientific and health policy interest 

regarding readmission has generally focused on a patient’s experience in the immediate 

months following discharge (CMS, 2013a). The primary rationale for this is that post-

discharge management for patients diagnosed with pancreatic cancer generally focuses on 

palliative care, with a specific emphasis on pain management. As patients and their health 

care providers coordinate this care, the early phases are particularly important for long-term 

success and are therefore of key interest. A second consideration is that readmission events 

that occur soon after a patient is discharged are more likely to be directly related to their 

diagnosis and subsequent care. Readmission events that occur a long time after diagnosis are 

less likely to be directly related to the quality of care they receive in the immediate aftermath 

of the diagnosis and, arguably, should not count against a hospitals performance.

A central feature of the Medicare data is that the n=5,298 patients are clustered within J=112 

hospitals; cluster sizes vary from 10–420 with a median of 30 patients. The inherent 

clustering of patients within hospitals is important from both a statistical and a scientific 

perspective: valid inference requires acknowledging potential correlation among patients and 

understanding between-hospital variation in readmission rates is a key scientific goal. 

Towards the latter, Figure 1 provides a barplot of the hospital-specific distributions of the 

four outcome groups based on censoring at 90 days. While there are many ways in which the 

J=112 hospitals could be ordered, Figure 1 orders them according to the total percentage of 

patients readmitted within 90 days (i.e. with or without a subsequent death event). From the 
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figure we see that there is substantial variation in observed readmission rates across 

hospitals, with the lowest being 5.6% and the highest being 64.3%. Moving beyond these 

raw adjusted rates would need to first account for case-mix differences across the hospitals, 

second account for death as a competing risk and third account for the cluster-correlation.

3 A Bayesian Framework for Cluster-Correlated Semi-competing Risks Data

3.1 Model specification

Viewing ‘discharge’, ‘readmission’ and ‘death’ as three states, the underlying data 

generating mechanism that gave rise to these data can be represented by a multi-state model, 

specifically an illness-death model (Andersen et al., 1993; Putter et al., 2007; Xu et al., 

2010). In the context of our motivating New England Medicare application, individuals may 

undergo one or more of three transitions between the three states: (i) discharge to 

readmission; (ii) discharge to death; and (iii) readmission to death. Letting T1 denote the 

time to non-terminal event and T2 the time to the terminal event, the illness-death model is 

characterized by three hazard functions that govern the rates at which patients transitions 

between the states: a cause-specific hazard for readmission, h1(t1); a cause-specific hazard 

for death, h2(t2); a hazard for death conditional on a time for readmission, h3(t2|t1). 

Specifically, we define

(1)

(2)

(3)

In practice, analyses based on the illness-death model characterized by (1)–(3) proceeds by 

placing structure on these functions, specifically as a function of covariates and frailties/

random effects. Towards this, let Tji1 and Tji2 denote the time to the non-terminal event and 

time to the terminal event for the ith patient in the jth cluster, respectively, for i = 1, …, nj and 

j = 1, …, J. Furthermore, let Xjig be a vector of time-invariant covariates for the ith patient in 

the jth cluster that will be considered in the model for the gth transition, g=1,2,3. Consider 

the following general modeling specification:

(4)
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(5)

(6)

where γji is a shared patient-specific frailty, Vj = (Vj1, Vj2, Vj3) is a vector of cluster-specific 

random effects, each specific to one of the three possible transitions, and βg is a transition-

specific vector of fixed-effect log-hazard ratio regression parameters. As described by Xu et 

al. (2010), model (6) is often simplified in practice by either assuming that h03(tji2|tji1) = 

h03(tji2) or that h03(tji2|tji1) = h03(tji2 − tji1). Given the former specification, the model is 

referred to as being Markov in the sense that the hazard for death given readmission does not 

depend on the actual time of readmission; under the latter specification, the model is referred 

to as semi-Markov. For simplicity we focus the exposition in this section on Markov models 

although note that the methods and computational algorithms have also been developed and 

implemented for the semi-Markov model; the analyses in Sections 6 and 7 also consider 

both models.

3.2 The observed data likelihood

To complete the notation developed so far, let Cji denote the right censoring time for the ith 

patient in the jth cluster. Furthermore, let Yji1 = min(Tji1, Tji2, Cji), Δji1 = 1 if Yji1 = Tji1 (i.e. 

a readmission event is observed) and 0 otherwise, Yji2 = min(Tji2, Cji) and, Δji2 = 1 if Yji2 = 

Tji2 (i.e. a death event is observed) and 0 otherwise. Finally, let ji = {yji1, δji1, yji2, δji2} 

denote the observed outcome data for the ith patient in the jth cluster and H0g(·) the 

cumulative baseline hazard function corresponding to h0g(·). Let γ⃗ and V⃗ denote the 

collections of the γji and Vj, respectively. Following Putter et al. (2007), for a given 

specification of (4)–(6), the observed data likelihood as a function of the unknown 

parameters Φ = {β1, β2, β3, h01, h02, h03, γ⃗, V⃗}, is given by:

(7)

where  and r(tji1, tji2) = [H01(tji1)ηji1 + H02(tji1)ηji2 + {H03(tji2) − 

H03(tji1)}ηji3].

In the remainder of this section, we complete the specification of the Bayesian model by 

providing detail on a range of possible choices for specification of the baseline hazard 

functions in (4)–(6), the population distribution for the hospital-specific random effects and, 
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finally, prior distributions. To facilitate the exposition, Table 2 provides a summary of four 

possible specifications of the model along with the hyperparameters that require 

specification by the analyst.

3.3 Baseline hazard functions

Within the frequentist paradigm estimation and inference for time-to-event models is often 

based on a partial likelihood which conditions on risk sets, removing the need for analysts to 

specify baseline hazard functions. In the Bayesian paradigm, however, one is required to 

specify these functions. Here, we consider two strategies. The first assumes that the 

underlying transition times follow Weibull(αw,g, κw,g) distributions, parameterized so that 

h0g(t) = αw,gκw,gtαw,g − 1. While such a parametric specification is appealing due to its 

computational simplicity, especially in small-sample settings, the Weibull is somewhat 

restrictive in that the corresponding hazard function is strictly monotone. As an alternative, 

we consider a non-parametric specification based on taking each of the log-baseline hazard 

functions to be a flexible mixture of piecewise constant functions (McKeague and 

Tighiouart, 2000). Briefly, let sg,max denote the maximum observed time for transition g and 

partition (0, sg,max] into Kg + 1 intervals: sg = {sg,0, sg,1, …, sg,Kg + 1}, with sg,0 ≡ 0 and 

sg,Kg + 1 ≡ sg,max. Given the partition (Kg, sg), we assume

(8)

where λg,k is the (constant) height of the log-baseline hazard function on the interval 

(sg,k − 1, sg,k]. We refer to this specification as a piecewise exponential model (PEM) for the 

baseline hazard function. Note, while numerous options are available for specifying these 

functions (e.g. Ibrahim et al., 2001), a key benefit of this structure is that it balances 

flexibility and computational convenience, since the integrals in the likelihood (specifically 

for the cumulative hazard functions) are replaced with summations (Lee et al., 2015).

3.4 Hospital-specific random effects

As with specification of the baseline hazard functions, we consider two options for the 

specification of the population distribution for the J hospital-specific vectors of random 

effects. First, motivated by the current standard for analyses of readmission (i.e. a LN-

GLMM), we consider a specification in which the Vj arise as i.i.d draws from a mean-zero 

multivariate Normal distribution with variance-covariance matrix ΣV. The diagonal elements 

of the 3×3 matrix ΣV characterize variation across hospitals in risk for readmission, death 

and death following readmission, respectively, that is not explained by covariates included in 

the linear predictors. Crucially, that each random effect has its own variance component 

allows the characterization of differential variation across hospitals for each of the three 

transitions. In addition, the off-diagonals of ΣV permit covariation between the three random 

effects across the hospitals giving researchers the ability to characterize, for example, 

whether or not hospitals with high mortality rates tend to have low readmission rates.
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While conceptually simple and computationally convenient, the Normal distribution it is 

often criticized as being a strong assumption. As an alternative we consider the use of a so-

called Bayesian nonparametric specification for the population distribution of Vj, 

specifically a Dirichlet process mixture of multivariate Normal distributions (DPM-MVN) 

(Ferguson, 1973; Bush and MacEachern, 1996; Walker and Mallick, 1997). One 

representation of this model is as follows:

(9)

where μj, Σj are the cluster-specific latent mean and variance of Vj, which are taken to be 

draws from some (unknown) distribution G to which a Dirichlet process prior is assigned. 

Finally the Dirichlet process is indexed by G0, the so-called centering distribution, and τ, the 

so-called precision parameter.

3.5 Hyperparameters and prior distributions

The proposed Bayesian framework is completed with the specification of prior distributions 

for unknown parameters introduced in Sections 3.1–3.4.

3.5.1 Stage one parameters—For each of the transition-specific regression parameters, 

βg for g=1,2,3, a non-informative at prior on the real line is adopted. For the shared patient-

specific frailties, γji, we assume that they arise from a Gamma(θ−1, θ−1) distribution, 

parameterized so that E[γji] = 1 and V [γji] = θ. In the absence of prior knowledge on the 

frailty variance component, a Gamma(aθ, bθ) hyperprior for the precision θ−1 is adopted.

3.5.2 Baseline hazard functions—For the parametric Weibull baseline hazard 

functions, since the hyperparameters have support on (0, ∞), we complete the specification 

of this model by adopting gamma prior distributions for both; that is, we take αw,g ~ 

Gamma(aα,g, bα,g) and κw,g ~ Gamma(aκ,g, bκ,g), g=1,2,3.

To complete the non-parametric PEM model specification, we specify that the Kg + 1 

heights arise from a multivariate Normal distribution. Specifically, letting λg = (λg,1, …, 

λg,Kg, λg,Kg + 1) denote the transition-specific heights, we assume that 

, where μλg is the overall mean,  is a common variance 

component for the Kg + 1 elements and Σλg is a correlation matrix. To induce a priori 
smoothness in the baseline hazard functions we view the components of λg in terms of a 

one-dimensional spatial problem, so that adjacent intervals can ‘borrow’ information from 

each other. To do this we specify Σλg via a Gaussian intrinsic conditional autoregression 

(ICAR)(Besag and Kooperberg, 1995). Additional technical details regarding the 
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corresponding MVN-ICAR are provided in Supplementary Materials A. Finally, we specify 

a series of hyperpriors for the additional parameters introduced in the MVN-ICAR. In 

particular, we adopt a at prior on the real line for μλg and a conjugate Gamma(aσ,g, bσ,g) 

distribution for the precision . For the ICAR specification, we avoid reliance on a fixed 

partition of the time scales by permitting the partition (Kg, sg) to vary and be updated via a 

reversible jump MCMC scheme (Green, 1995). Towards this we first adopt a Poisson(αKg) 

prior for the number of splits in the partition, Kg. Conditional on the number of splits, we 

take the locations to be a priori distributed as the even-numbered order statistics:

(10)

Jointly, these choices form a time-homogeneous Poisson process prior for the partition (Kg, 

sg) so that a posteriori, after mixing over partitions as they arise in the MCMC scheme, the 

value of λg(t) in any given small interval of time is characterized as a smooth exponentiated 

mixture of piecewise constant functions (Arjas and Gasbarra, 1994; McKeague and 

Tighiouart, 2000; Haneuse et al., 2008).

3.5.3 Hospital-specific random effects—For the parametric specification of a single 

MVN3(0, ΣV) distribution, we adopt a conjugate inverse-Wishart(Ψυ, ρυ) prior for the 

variance-covariance matrix ΣV. Completion of the non-parametric DPM-MVN model 

requires specification of prior choices for the centering distribution and the precision 

parameter. Here we take G0 to be a multivariate Normal/inverse-Wishart (NIW) distribution 

for which the probability density function can be expressed as the product:

where fD(·|θD) is the density function for a distribution D indexed by θD. This choice is 

appealing in that one can exploit prior-posterior conjugacy in the MCMC scheme (Neal, 

2000). Finally, we treat hyperparameter the precision parameter in DPM-MVN specification, 

τ, as unknown and assign a Gamma(aτ, bτ) hyperprior (Escobar and West, 1995).

4 Posterior Inference and Model Comparison

4.1 Markov Chain Monte Carlo

To perform estimation and inference for each of the models in Table 2 we use a random scan 

Gibbs sampling algorithm to generate samples from their joint posterior distributions. In the 

corresponding Markov chain Monte Carlo (MCMC) scheme, parameters are updated by 

either exploiting conjugacies inherent to the model structure or using a Metropolis-Hastings 

step. For models that adopt a PEM specification for the baseline hazard functions, updating 

the partition (Kg, s) requires a change in the dimension of the parameter space and a 

Metropolis-Hastings-Green step is used (Green, 1995). A detailed description of proposed 

computational scheme is given in Supplementary Materials B; as mentioned in Section 3.1, 
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the computation scheme has been developed for both the Markov and semi-Markov models 

for h03(·).

Finally, we note that the algorithms are implemented in the SemiCompRisks package for R 

(R Development Core Team, 2014). Given the complexity of the proposed models, and the 

numerous updates in the MCMC scheme, C has been used as the primary computational 

engine to ensure that analyses can be conducted within a reasonable timeframe.

4.2 Model comparison

In practice, analysts have to balance model complexity with the realities of sample size and 

availability of information. While each of models in Table 2 has its own merit and utility, it 

may be of interest to directly compare their goodness of fit to the observed data. To this end, 

we consider two model assessment metrics: the deviance information criterion (DIC; 

Spiegelhalter et al., 2002), and the log-pseudo marginal likelihood statistic (LPML; Geisser 

and Eddy, 1979; Gelfand and Mallick, 1995). Although DIC is often the default choice for 

model comparison in the Bayesian paradigm, its use in the context of complex hierarchical 

models requires care (Celeux et al., 2006). Specifically for models that condition on latent 

parameters, such as the patient-specific γji in models (4)–(6), DIC computed on the basis of 

a likelihood that is marginalized with respect to these parameters performs more reliably as a 

metric for comparison than DIC computed on the basis of a likelihood that conditions on 

them (Millar, 2009). For our purposes, since the Vj random effects are of intrinsic scientific 

interest, we propose to evaluate DIC and LPML on the basis of a partially marginalized 

likelihood, one that integrates solely over the distribution of the patient-specific frailties:

(11)

where Φ* = {β1, β2, β3, h01, h02, h03, θ, V⃗}, ℒ( ji|·) is given by expression (7) and f(·; θ) is 

the density of a Gamma(θ−1, θ−1) distribution (see Section 3.5.1).

Given expression (11), we therefore compute DIC as:

(12)

where  is the (marginal) deviance and  is the posterior 

mean of Φ*. The penalty term, pD, is given by , where D̅(Φ*) is the 

posterior mean of D(Φ*). Note, a model with smaller DIC indicates a better fit of the model 

for the data.

The LPML statistic is computed as , the sum of the logarithms of the 

patient-specific conditional predictive ordinate (CPO) (Geisser, 1993), each defined as:
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(13)

where (−ji) denotes the data with the observation from the ith patient in the jth cluster 

removed. Intuitively, the CPOji is the posterior probability of the observed outcome for ith 

patient in the jth cluster, i.e. (yji1, δji1, yji2, δji2), on the basis of a model fit to a dataset that 

excludes that particular patient. Thus, large values of CPOji attribute high posterior 

probability to the observed data and, therefore, indicate a better fit. Although a closed form 

expression for CPOji is not available for our proposed models, following Shao and Ibrahim 

(2000) we approximate CPOji via a Monte Carlo estimator:

(14)

where {Φ*(q); q = 1, 2, …, Q} are MCMC samples drawn from the (marginal) joint posterior 

distribution of Φ*.

5 Simulation Studies

The performance of the proposed models is investigated through a series of simulation 

studies. The overarching goals of the simulation studies are to investigate the small sample 

operating characteristics of the models summarized in Table 2 under a variety of scenarios as 

well as to compare their performance with the methods of Liquet et al. (2012).

5.1 Set-up and data generation

Towards developing a comprehensive understanding of the performance of the proposed 

methods we consider six data scenarios that vary in terms of the true underlying baseline 

hazard distributions, the true distribution of the cluster-specific random effects and the true 

extent of variation in the patient-specific frailties. Table 3 provides a summary. In scenarios 

1–5, the baseline hazard functions are set to correspond to the hazard of a Weibull 

distribution so that the event rates in the simulated data are similar to those in the observed 

Medicare data when the outcomes are administratively censored at t=90; specifically, we set 

(αw,1, κw,1)=(0.8, 0.05), (αw,2, κw,2)=(1.1, 0.01), and (αw,3, κw,3)=(0.9, 0.01). To evaluate 

the performance of the model when the baseline hazard functions do not correspond to a 

Weibull, scenario 6 takes them to be piecewise linear functions: h0g(t) = {(kg−bg)t/
40+bg}I(t≤40) + {(3kg−bg)/2−(kg−bg)t/80}I(t>40), with b1=0.1, b2=0.05, b3=0.15, and 

k1=k2=k3=0.0005 specified so that the true baseline hazard functions are not monotone 

increasing or decreasing functions like a Weibull.

With regard to the ‘true’ distribution of the cluster-specific random effects, scenarios 1, 2, 4 

and 6 consider a multivariate Normal distribution in which the components are independent. 

Scenario 3 expands on this by considering the impact of covariation across the Vj, while 
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Scenario 5 examines the performance of the models when the true distribution is a mixture 

of two multivariate Normal distributions.

Finally, with regard to the ‘true’ variance of the patient-specific frailties, scenarios 1, 3, 5 

and 6 consider a base value of θ=0.5. This value was chosen as a compromise across the 

posterior medians from the fits of the four models in Table 2 to the Medicare data (see Table 

9 below). Scenario 2 considers the impact of greater variation in the patient-specific frailties, 

while Scenario 4 corresponds to a misspecification of the proposed model with the ‘true’ θ 
set to 0.

For each of the six scenarios we generated R=500 simulated datasets under the semi-Markov 

illness-death model described in Section 3.1. Across all simulated datasets, we set the 

number of clusters and cluster-specific sample sizes to be those observed in the Medicare 

data. Furthermore, we specified that each of the three transition-specific hazard functions 

depended on three covariates: Xjig,1 and Xjig,2 both Normal(0, 1) random variables and Xjig,3 

a Bernoulli(0.5) random variable. The regression coefficients are set to β1=β2=(0.5, 0.8, 

−0.5) and β3=(1.0, 1.0, −1.0), so that the covariate effects on the risk of the terminal event 

depend on whether or not the non-terminal event has occurred. Finally, we note that the 

function used to simulate the semi-competing risks data is available in the SemiCompRisks 

package.

5.2 Analyses

For each of the R=500 datasets under each of the six scenarios we fit each of the four models 

in Table 2. For the proposed models in which the baseline hazard function was specified via 

a Weibull distribution, we set (aα,g, bα,g) = (0.5, 0.01) and (aκ,g, bκ,g) = (0.5, 0.05) for the 

transition-specific shape and rate parameters. For models in which a non-parametric PEM 

specification was adopted for the baseline hazard function, we set the prior Poisson rate on 

the number of intervals to be αg = 10. For the precision parameter in the MVN-ICAR 

specification, we set (aσ,g, bσ,g) = (0.7, 0.7) so that the induced prior for  had a median of 

1.72 and 95% central mass between 0.23 and 156.

For the variance component associated with the patient-specific frailties, we set (aθ, bθ) = 

(0.7, 0.7); that is the same prior was used for the precision θ−1 for the γji frailties as the 

precision component in the MVN-ICAR specification for the PEM model. For the hospital-

specific random effects variance components, given a MVN specification, we set (Ψυ, ρυ) = 

(I3, 5) so that the induced prior on ΣV has a prior mean given by the 3×3 identity matrix. The 

same prior was adopted for the variance-covariance matrix of the centering distribution of 

the DPM-MVN specification, G0; that is, we set (Ψ0, ρ0) = (I3, 5). Finally, for the precision 

parameter in the DPM-MVN specification we set (aτ, bτ) = (1.5, 0.0125) so that a priori τ 
had a mode of 40 and standard deviation of 98. Given the prior specifications, two 

independent chains were run for a total of six million scans each; the Gelman-Rubin 

potential scale reduction (PSR) statistic (Gelman et al., 2013) was used to assess 

convergence, specifically requiring the PSR to be less than 1.05 for all model parameters.

In addition to the models in Table 2, we analyzed each simulated dataset using the methods 

of Liquet et al. (2012). Specifically, we considered the ‘shared frailty’ (SF) model 
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implemented in the frailtypack package for R (Rondeau et al., 2012) and summarized 

using notation consistent with that adopted in this manuscript in Supplementary Materials 

Section C. Briefly, this model adopts a Cox-type regression structure for each transition-

specific hazard, as we do in expressions (4)–(6). For the baseline hazard functions, two 

options are available: one that corresponds to a Weibull distribution and another where each 

hg(·) is specified via a flexible penalized smoothing spline. To distinguish these models, we 

refer to them as the Weibull-SF and Spline-SF models, respectively. In contrast to the 

specification in (4)–(6), the SF model introduces a cluster-specific frailties as a 

multiplicative factors for each transition-specific hazard. Two options are available for the 

distribution of these factors across the clusters; either they arise from three independent 

gamma distributions or they arise from three independent log-Normal distributions. For 

either option, estimation and inference is performed within the frequentist paradigm 

specifically based on an integrated likelihood that marginalizes out the cluster-specific 

frailties; estimation of the latter is performed via empirical Bayes. In this paper, we present 

the results from the SF models that adopt independent gamma distributions for cluster-

specific frailties while we provide those from the SF models with independent log-Normal 

frailties in Supplementary Materials D. Finally, we note that in contrast to the specification 

in expressions (4)–(6), the SF model does not account for within-patient correlation. That is 

there is no quantity that corresponds to the patient-specific γji terms in the proposed models.

5.3 Results

5.3.1 Baseline survivor functions—Figure 2 presents the mean estimated transition-

specific baseline survival functions under scenarios 1, 4 and 6 across the six models. Under 

scenarios 1 and 4, for which the baseline hazard functions are Weibull, all four of the 

proposed models estimate the three baseline survivor functions very well. In contrast the two 

SF models only perform well in scenario 4 for which θ=0. This is to be expected since, as 

described in detail in Supplementary Materials Section C, the SF model does not include 

patient-specific frailties; effectively, it assumes that θ=0 even when it is not. In scenario 6, 

for which the baseline hazard functions are not Weibull, the proposed PEM-MVN and PEM-

DPM specifications capture the true shape of the baseline survivor functions well; all four of 

the models that assume the baseline hazard function to be a Weibull, however, are unable to 

capture the shape.

5.3.2 Regression parameters and θ—Focusing on scenarios 1–3, each corresponding 

to a ‘true’ Weibull-MVN model, Table 4 indicates that all four of the proposed models in 

Table 2 perform very well in terms of estimation and inference for β1 and θ. Across the 

board, we find that percent bias is no larger than 3.2% and the estimated coverage 

probabilities are all close to the nominal 0.95. In contrast, both the Weibull-SF and Spline-

SF models yield point estimates of β1 that are significantly biased and, as such, have poor 

coverage probabilities. The poor performance of the SF models is likely tied to the fact that 

they do not account for within-patient correlation; hence θ is not estimated by these models. 

The results for these models, however, is dramatically improved under scenario 4 for which 

the true value of θ is zero (i.e. the scenario they explicitly accommodate). Interestingly, the 

four proposed models each exhibit a small amount of bias under this scenario (up to 

approximately 5%). In addition the coverage probabilities for β11 and β12 are poor, 
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particularly for the two models that adopt a PEM specification for the baseline hazard 

function. In scenario 5, we again see that all four of the proposed models perform well. 

Finally, under scenario 6 we see that the PEM-MVN and PEM-DPM models perform very 

well in terms of bias and coverage. In contrast, the Weibull-MVN and Weibull-DPM models 

perform poorly, particularly with respect to estimation of θ, illustrating the potential danger 

of adopting a parametric Weibull baseline hazard function when the truth is not a Weibull.

While Table 4 explores estimation and the (valid) quantification of uncertainty, Table 5 

examines the relative merits of the various analysis approaches in terms of efficiency. 

Specifically, we computed the average relative width of 95% credible/confidence intervals 

for β1 and θ under each analysis with the Weibull-MVN model taken as a common referent. 

Comparing the Weibull-DPM to the Weibull-MVN as well as the results between the PEM-

MVN and PEM-DPM we see that there is no loss of efficiency for any of the regression 

parameters, and minimal loss for θ, if one adopts the flexible DPM specification for the 

cluster-specific random effects, even if the true distribution is a MVN. Under all five 

scenarios for which the true baseline hazard functions were Weibull hazard functions, the 

two models that adopt a PEM specification have somewhat wider credible intervals 

particularly for θ. However, as expected, the 95% credible intervals for the two PEM models 

under scenario 6 are somewhat tighter indicating improved efficiency when the true baseline 

hazard functions are not Weibull hazard functions. Finally, across all scenarios, the estimated 

95% confidence intervals for the two SF models are substantially tighter than those for any 

of the proposed analyses, although this must be balanced with the high bias shown in Table 

4.

5.3.3 Cluster-specific random effects—Finally, Table 6 investigates the relative 

performance of the various analyses with respect to estimation of the cluster-specific random 

effects. Specifically, we calculated the mean squared error of prediction (MSEP) given by:

(15)

where Vrjg is the cluster-specific random effect for the jth cluster in the transition g for the rth 

simulated data set, r=1,…,R. For each of the four proposed models, V̂
rjg was taken as the 

corresponding posterior median. For the two SF models, V̂
rjg was taken as a the log of the 

empirical Bayes estimates of the transition/cluster-specific frailties (see Supplementary 

Materials C for details). We note, however, that for some of the simulated datasets, the 

empirical Bayes estimates returned by the current implemented in the frailtypack 

package were zero. Since taking the log of these estimates would yield V̂
rjg = −∞, we 

calculated MSEP over the random effects for which the empirical Bayes estimate was non-

zero; to place these values in context, Table 6 also reports the percentage of instances where 

a frailty was estimated to be zero.

From Table 6 we see that under scenarios 1–4, for which the true model is a Weibull-MVN 

model, the Weibull-MVN analysis generally performs the best. Comparing the Weibull-

MVN and PEM-MVN results across these scenarios, we see that over-specification of the 
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baseline hazard functions (i.e. adoption of the more flexible PEM specification) does not 

meaningfully impact MSEP. In addition, comparing the Weibull-MVN and Weibull-DPM 

results we see that over-specification of the random effects structure (i.e. adoption of the 

more flexible DPM specification) does not adversely affect MSEP either. When the true 

distribution of the random effects is not a multivariate Normal distribution, however, as in 

scenario 5, both the Weibull-DPM and PEM-DPM models outperform their MVN 

counterparts, illustrating the potential benefit of the more flexible DPM specification. 

Furthermore, when the true baseline hazard functions do not correspond to a Weibull 

distribution, the MSEP for the two PEM models are, as expected, smaller than the 

corresponding values for the two Weibull models, illustrating the potential benefit of the 

more flexible PEM specification. Finally, we find that the empirical Bayes estimates of the 

cluster-specific random effects from the SF models perform relatively poorly when 

compared to the corresponding estimates from the proposed methods. For example, the 

Spline-SF model yields approximately 14% to 55% higher MSEP than our proposed PEM-

MVN model across the six scenarios.

6 Analysis of Medicare Data

6.1 Analysis details and prior specifications

Returning to the motivating application of readmissions following a diagnosis of pancreatic 

cancer, we fit each of the four models summarized in Table 2 to the Medicare data under 

both the Markov and semi-Markov assumption for h3(·) (see Section 3.1). Based on the 

rationale provided in Section 2, we administratively censored observation time at 90 day. 

Given the results from the simulation studies, specifically with respect to estimation of the 

cluster-specific random effects, we decided not to fit the shared frailty models of Liquet et 

al. (2012). We did, however, perform an analysis based on a LN-GLMM model since this 

model is the current standard for analyzing variation in the risk of readmission and we 

believed it would be instructive to examine the potential impact of ignoring death as a 

competing force. Towards this, let  be a binary indicator of whether or not the ith 

patient in the jth hospital readmitted within 90 days of discharge. Note, if a patient died prior 

to readmission within 90 days their outcome was set to . The LN-GLMM is then given 

by:

(16)

where  is a hospital-specific random effect for readmission taken to be Normally 

distributed with mean zero and a constant variance, . To complete the Bayesian 

specification of this model, we adopted a Gamma(0.7, 0.7) prior for the precision . For 

the four proposed models, the hyperparameters outlined in Table 2 are specified as in 

Section 5.2

Throughout the analyses, to ensure the baseline hazard functions in the proposed models and 

the (overall) intercept in the LN-GLMM retained reasonable interpretations, age was 
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standardized so that ‘zero’ corresponded to age 77 years and a one-unit increment 

corresponded to a 10-year contrast. Furthermore, length of stay during the initial 

hospitalization was also standardized so that ‘zero’ corresponded to 10 days and a one-unit 

increment corresponded to a 7-day contrast.

6.2 MCMC

Towards obtaining summaries of the joint posterior distributions we ran 3 independent 

chains of the proposed MCMC scheme, each for a total of 6 million scans. Convergence was 

evaluated by inspection of trace plots as well as calculation of the PSR statistic; an MCMC 

scheme was determined to have converged if the PSR statistic was less than 1.05 for all 

parameters in the model (see Supplementary Materials E). Although the hierarchical models 

are complex and include a large number of parameters, the proposed algorithm achieved an 

overall acceptance rate of 35% across the various Metropolis-Hastings and Metropolis-

Hastings-Green steps. To provide a sense of computational time, the most complex of our 

proposed models (i.e. the PEM-DPM model), the implementation in our R package is able to 

generate 1 million scans in 30 minutes on a 2.5 GHz Intel Core i7 MacBook Pro; for the 

least complex of the models (i.e. the Weibull-MVN model), the implementation is able to 

generate 1 million scans in 10 minutes on the same machine.

6.3 Results

6.3.1 Overall model fit—Table 7 provides DIC and LPML for the eight model fits. For 

the DIC measure, a general rule of thumb for model comparison is to consider differences of 

less than 2 to be negligible, differences between 2 and 6 to indicative of positive support for 

the model with the lower value and differences greater than 6 to be strong support in value of 

the model with the lower value (Spiegelhalter et al., 2002; Millar, 2009). For LPML, one can 

compute the so-called pseudo Bayes factor (PBF) for two models by exponentiating 

difference in their LPML values (Hanson, 2006). While the conventional Bayes factor (Kass 

and Raftery, 1995) tends to find which model explains the observed data best, predictive 

methods such as PBF attempt to find which model gives the best predictions for future 

observations when the same process as the original data is used to generate the observations 

(Kadane and Lazar, 2004)

Based on pairwise comparisons of the values in Table 7 we draw a number of conclusions. 

First, each of the models in which a semi-Markov specification is made for h03(·) has a 

substantially better fit to the data than the corresponding model in which a Markov 

assumption is made for h03(·); differences in DIC and the PBF range between 20.6–37.8 and 

the order of 105–109, respectively. Second, both DIC and LPML indicate that models for 

which a PEM specification was adopted for the baseline hazard functions have substantially 

better fit to the data than models for which a Weibull hazard function was adopted; 

differences in DIC and the PBF range between 567.3–589.6 and the order of 10125–10129, 

respectively. Finally, although DIC indicates a somewhat better fit for models that adopt a 

DPM for the random effects distribution compared to a MVN specification, the LPML 

values are less convincing in this regard; differences in DIC and the PBF range between 2.4–

10.7 and 1.5–8.2, respectively.
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6.3.2 Baseline survival functions—Since hazard functions are notoriously difficult to 

interpret, Figure 3 provides estimates of the corresponding baseline survival functions. 

Specifically, they provide pointwise time-specific posterior medians for S0g(·) for a 77-year 

old white female patient who had a Charlson/Deyo comorbidity score of 0 or 1, whose initial 

hospitalization lasted 10 days and during which they had no pancreatic cancer-related 

procedures, and were eventually discharged to their own home. In panels (a)–(c) results are 

presented for models for which a Markov assumption was adopted for h03(·); panels (d)–(f) 

present results for models for which a semi-Markov assumption was adopted.

From panels (a) and (d) we see that all eight models indicate similar risk of readmission 

within the first 30 days. After 30 days, however, models with a parametric Weibull 

specification for the baseline hazard functions indicate substantially higher overall risk for 

readmission. Note, most of the observed readmission events occur relatively soon after 

discharge with a median of 18 days and 75% of observed events occurring within 40 days. 

As such, the posterior mass is being assigned to values of the two Weibull hyperparameters, 

(αg, κg), that fit the early time periods well to the detriment of fitting late periods relatively 

poorly. From panels (b) and (e) a similar phenomenon is observed for the baseline survival 

function for death without readmission for which the median event time is 20 days and, 

again, approximately 75% of observed events occurring within 40 days. In contrast, since 

the distribution of time to death following readmission is more spread out (median=43 days, 

IQR=40 days) the estimated baseline survival functions under the Weibull and PEM are 

more similar (see panels (c) and (f)).

6.3.3 Regression parameters—Posterior summaries for the vector of hazard ratio (HR) 

parameters for readmission, exp(β1), are presented in Table 8. For brevity, based in part on 

the conclusions drawn from Table 7, results are only presented for models for which a semi-

Markov specification was adopted for h03(·); additional results, particularly for exp(β2) and 

exp(β3) are provided in Supplementary Materials E. In addition, posterior summaries for the 

vector of odds ratio (OR) parameters, exp(β*) from model (16), are also presented.

Recognizing that the interpretation of the HR and OR parameters differ (due to the different 

set of frailties/random effects that are conditioned upon), the results in Table 8 indicate that 

the LN-GLMM qualitatively identifies a different set of risk factors for readmission than the 

results based on the proposed framework. For instance, while there is evidence of lower risk 

for readmission among females diagnosed with pancreatic cancer under the semi-competing 

risks approach (e.g. HR 0.80; 95% CI 0.70, 0.90 in Weibull-MVN), one cannot draw the 

same conclusion based on the LN-GLMM (OR 0.91; 95% CI 0.80, 1.03). In addition, under 

the LN-GLMM model there is no evidence of a relationship between source of entry to the 

initial hospitalization (OR 0.99; 95% CI 0.86, 1.14) while under each of the semi-competing 

risks analysis models there is evidence that patients who enter the initial hospitalization via 

some route other than the emergency room are at higher risk of readmission (e.g. HR 1.12; 

95% CI 1.00, 1.28). Conflicting results are also found with respect to discharge destinflation. 

In particular, under the LN-GLMM model patients who are discharged to home with care, a 

hospice, a ICF/SNF or some ‘other’ facility (e.g. a rehabilitation center) have statistically 

significant lower estimates odds of readmission than patients discharged to their home 

without care. In contrast, results from the semi-competing risks analyses fail to indicate 
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differences between patients discharged to home without care and those discharged to home 

with care (e.g. HR 0.90; 95% CI 0.79, 1.02) or to some other facility. Furthermore, while 

patients discharged to either a hospice or ICF/SNF have significantly lower odds of 

readmission, the estimated effects are substantially attenuated (e.g. compare OR=0.06 under 

the LN-GLMM to HR=0.27 under the PEM-MVN model). Finally, consistent with the 

assessment of model fit in Table 7, Table 8 indicates that for estimation and inference for 

regression parameters differs somewhat between models based on a Weibull baseline hazard 

specification and models based on a PEM specification. Comparing the Weibull-MVN 

model to the PEM-MVN model, for example, estimates for gender, Charlson/Deyo score and 

whether or not the patient underwent a procedure during the hospitalization are all 

attenuated; in contrast estimates for discharge location are generally strengthened under the 

PEM-MVN model, in some cases achieving statistical significance.

6.3.4 Variance components—Table 9 provides posterior summaries for the standard 

deviation of the patient-specific frailty distribution, , as well as components of the 

variance-covariance matrix for the hospital-specific V = (V1, V2, V3) from models in which 

a semi-Markov specification was adopted for h03(·). For the latter, the summaries are directly 

with respect to the components of ΣV under a MVN specification; under the two DPM 

specifications, posterior summaries are reported for the marginal total variance-covariance 

matrix obtained by applying the law of total cumulance: 

, where  (Ohlssen et al., 2007). 

From the Table we see that the components of variation (particularly the standard deviation 

components) are generally smaller in magnitude for models in which a PEM specification 

for the baseline hazard functions was adopted. For example, under the Weibull-MVN model 

the posterior median of  is 1.03, whereas the corresponding posterior median under the 

PEM-MVN model is 0.61. This is likely due to the γji patient-specific frailties not only 

representing patient-level heterogeneity but also accounting, in part, for misspecification of 

the Weibull model when the underlying baseline hazard functions are not Weibull. 

Qualitatively, across all four model specifications, we find that there is less variation across 

hospitals in the random effects specific to readmission compared to the random effects for 

mortality (either prior to or post-readmission); compare the posterior summaries for SD(Vj1) 

to those of SD(Vj2) and SD(Vj2). Furthermore, while there is no evidence of correlation 

between hospital-specific random effects for readmission and corresponding random effects 

for mortality, there is some evidence of a positive correlation between hospital-specific 

random effects for mortality pre- and post-readmission, although the 95% CIs each cover 0.

6.3.5 Hospital-specific random effects—As noted, a key advantage of embedding the 

analysis of cluster-correlated semi-competing risks data in the Bayesian framework is the 

relatively straightforward nature of obtaining posterior summaries for the hospital-specific 

random effects themselves. Figure 4 provides posterior medians and 95% CIs for V1j, j = 1, 

…, 112, based on the four models in which a semi-Markov specification is adopted for 

h03(·). Note, across the four panels, the ordering of the hospitals is based on the magnitude 

of the posterior median under the Weibull-MVN model. Comparing the panels we see that 

posterior uncertainty for the V1j is generally greater under models that adopt a DPM for the 
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hospital-specific V compared to those that adopt a MVN specification. This may not be 

surprising given the additional complexity of the DPM specification, although we do find 

that the more ‘complex’ PEM specification for the baseline hazard functions yields lower 

posterior uncertainty than the Weibull specification.

6.3.6 Hospital-specific ranks—In addition to examining the absolute values of the 

hospital-specific V1j, we also considered their rank ordering. Figure 5 compares the ranks of 

the J=112 hospitals according to the posterior median of V1j under the PEM-MVN model 

with a semi-Markov specification for h03(·) to the corresponding ranks based on four other 

models: (a) LN-GLMM; (b) Weibull-MVN with a semi-Markov specification for h03(·); (c) 

PEM-DPM with a semi-Markov specification for h03(·); and, (d) PEM-MVN model with a 

Markov specification for h03(·). In each panel, the grey horizontal and vertical lines mark the 

‘top 10’ hospitals (i.e. ranks 1–10) and ‘bottom 10’ hospitals (i.e. ranks 103–112).

From panel (a) we see that the correspondence between the ranks under a semi-Markov 

PEM-MVN model and those under a LN-GLMM it is far from exact. Crucially, from the 

lower-left portion of the panel, three hospitals that would have been ranked in the top 10 

under the semi-Markov PEM-MVN model are ranked outside the top 10 under the LN-

GLMM (specifically, those marked with a ✳). Correspondingly there are three hospitals 

(marked with a ▲) who are indicated as being in the top 10 under the LN-GLMM while the 

semi-competing risks analysis under the semi-Markov PEM-MVN would have ranked them 

outside the 10 top. Furthermore, from the top-right portion of the panel, three hospitals 

ranked in the bottom 10 under the semi-Markov PEM-MVN model are ranked above the 

bottom 10 under the LN-GLMM model (i.e. those marked with a ▲).

From panels (b)–(d) we find that there is greater correspondence in the ranks of the 112 

hospitals across the models within the proposed hierarchical framework. Comparing the 

ranks under the semi-Markov PEM-MVN specification to the semi-Markov Weibull-MVN 

specification in panel (b) we see that twos hospital that would have been ranked in the top 10 

is now outside the top 10; there is also one hospital that is ranked in the bottom 10 under the 

semi-Markov PEM-MVN specification but outside the bottom 10 when a more restrictive 

Weibull model is used for the baseline hazard functions. Panels (c) and (d) are qualitatively 

similar in that the same two hospitals switch ranks at the lower end and the same two switch 

at the upper end; more generally, consistent with the conclusions we draw from Table 7, 

there is very close correspondence in the ranks across the three models represented in these 

two panels.

7 Sensitivity Analyses

As outlined in Section 3.5 and Table 2, the proposed Bayesian framework requires the 

specification of a number of hyperparameters. In practice comprehensive sensitivity analyses 

should be conducted to examine the extent to which conclusions are robust with respect to 

this specification, especially across key targets of estimation and inference. Here we focus 

our attention on the choice of hyperparameters for the prior distribution of ΣV, the variance-

covariance matrix of underlying population distributions for hospital-specific random 

effects, and their influence on estimation/inference for the random effects as well as τ, the 
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precision parameter in the DPM specification of the baseline hazard function. Towards this, 

we conducted sensitivity analyses based on the semi-Markov PEM-MVN and PEM-DPM 

models, specifying a range of values for (Ψυ, ρυ) and (Ψ0, ρ0) such that Ψυ=Ψ0=Ψ*(ρ* − 

4)I3 and ρυ=ρ0=ρ*, where,ψ*=0.01, 0.1, 1, 10 and ρ*=5, 10, 50, 100. Note, these 

specifications correspond to a prior distribution for ΣV with a mean of ψ*I3 and a variance 

of diagonal elements of 2ψ*2/(ρ* − 6).

Table 10 presents the results. First, we focus Case I–IV, where ψ*=1, ρ* = 100, 50, 10, 5 

which correspond to prior distributions of ΣV having a mean of I3 and a standard deviation 

of diagonal elements of 0.15, 0.21, 0.71, 3.16; for Case IV we note that the (induced) prior 

standard deviation was calculated from 100,000 random draws from the prior. From the 

results we see that when the prior distribution is centered around the identity matrix the 

posterior assigns mass to smaller values of SD(Vj1) as one increases the prior variance 

(dictated by decreasing ρ*). This is likely due to the discrepancy between the actual 

variation on the cluster-specific random effects for h1() and the choice the identity matrix, I3, 

as the prior mean for ΣV (since ψ*=1) together with the strength attributed to that choice 

(i.e. the prior variance for ΣV dictated by ρ*). When a prior mean of I3 is chosen for ΣV 

together with a high value of ρ* the overall prior overcomes the information in the data such 

that the posterior for SD(Vj1) is pushed ‘closer’ to 1.0. As ρ* decreases, however, and less 

prior mass is given to ΣV = I3, the likelihood is able to overcome the less informative prior 

so that the posterior is able to move away from the prior mean. Interestingly, based on both 

the DIC and LPML measures, we find that the overall fit of the data across Cases I–IV 

improves as the prior variance increases. We therefore interpret these results collectively as 

indicating that the variation across the (true underlying) Vj1 is meaningful but relatively 

small. Turning to Cases V and VI, we note that the induced prior distributions of ΣV are 

centered around relatively small values, specifically 0.01I3 and 0.1I3, with induced prior 

standard deviations of diagonal elements of 0.07 and 0.22, respectively. From the DIC and 

LPML values, these specifications of (Ψ*, ρ*) further improve the overall fit of the model 

from Case IV, we the posterior summaries for SD(Vj1) again indicating that the variation in 

the Vj1 is relatively small.

While there are clear differences in the posterior summaries for SD(Vj1) across Cases I–VI, 

within each case we see that there is little difference in the corresponding summaries 

between the MVN and DPM specifications; that is the conclusions one draws regarding the 

variation of the true underlying Vj1 are robust to this choice. However we do find that there 

are substantial differences in the average posterior standard deviations for the J cluster-

specific Vj1. In Case II, for example, σ̄
Vj1 is 0.34 under the MVN specification and 0.70 

under the DPM specification. Generally, this ordering is consistent across the six cases, as 

well as with the results presented in Figure 4. When combined with the posterior summaries 

for SD(Vj1), the results suggest that for our application the trade-off of using the more 

flexible DPM specification is somewhat detrimental to the analyses; use of the DPM 

specification rather than the MVN does not serve to change our conclusions regarding the 

variation across the true Vj1 but has, rather, served to increase the posterior uncertainty 

regarding any given specific Vj1.
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Finally, the last column of Table 10 presents the posterior median for τ, the precision 

parameter in the DPM specification. If one interprets the DPM specification as a mixture of 

MVN distributions (see Supplementary Materials Section B), τ dictates, in part, the number 

of mixture components and, hence, the complexity of the overall specification. From the 

results, however, we see that the posterior median of τ, which takes on values in (0, ∞), 

tends towards quite small values and is generally robust to the specification of (Ψ*, ρ*). To 

further investigate the role of τ in our analyses, we conducted a series of additional analyses 

where τ was fixed at values ranging from 0.1 to 100 (i.e. we did not adopt a gamma 

hyperprior as described in Section 3.5.3). Although details are not reported here, we found 

that results of our analyses to be very robust to the specific value of τ, again indicating few 

gains associated with use of the more flexible DPM specification for our application.

8 Discussion

In this paper, we propose a comprehensive, unified Bayesian framework for the analysis of 

cluster-correlated semi-competing risks data. The framework is flexible in that it lets 

researchers take advantage of the numerous benefits afforded by the Bayesian paradigm 

including the natural incorporation of prior information and the straightforward 

quantification of uncertainty for all parameters including hospital-specific random effects. 

The framework is also flexible in that it gives researchers choice in adopting parametric 

and/or semi-parametric specifications for various model components, a key consideration in 

practice when small sample size may require pragmatism during the analysis. To facilitate 

model choice, we have also developed DIC and LMPL measures for model comparison 

within the proposed framework. Finally, computationally efficient algorithms have been 

developed and implemented, and are readily-available in a freely-available R package.

The work in this paper was motivated by an on-going collaboration investigating variation in 

risk of readmission following a diagnosis of pancreatic cancer. Towards this, we applied the 

framework to a sample of 5,298 Medicare enrollees diagnosed with pancreatic cancer at one 

of 112 hospitals between 2000–2009. The results from our analysis indicate a number of 

important determinants of risk of readmission including gender, age, co-morbidity status (as 

measured by the Charlson/Deyo score), whether or not they underwent a procedure during 

the index hospitalization, the length of stay of the index hospitalization and the location to 

which the patients was eventually discharged. The analyses also revealed that there is 

substantially less between-hospital variation in risk of readmission than the risk of death 

(either prior to or post-readmission), after accounting for patient case-mix. To our 

knowledge these are the first reported results of this kind in the literature and we are 

currently expanding our analyses to consider patients across the entire U.S.

More generally, in the clinical and health policy literature, the standard analysis approach for 

investigating risk of readmission is based on a LN-GLMM (Normand et al., 1997; Ash et al., 

2012). In the specific context of our application, compared with results based on the 

proposed framework, such an analysis yields meaningfully different conclusions regarding 

which patient-level characteristics are associated with risk of readmission, the magnitude 

and statistical significance of those associations and the ranks of hospitals. Given the relative 

robustness across models within the proposed framework, the fact that a LN-GLMM yields 
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different conclusions is likely related to the fact that death is completely ignored as a 

competing risk. As a concrete example consider the hospital in Figure 5(a) that is ranked 8th 

under the semi-Markov PEM-MVN model and 26th under the LN-GLMM. Closer 

inspection of the raw data reveals that very few patients diagnosed at this hospital died 

within the 90-day window we consider. At other hospitals, the force of mortality is stronger 

and patients die at higher rates within the 90-day window; that these patients die is 

overlooked by the LN-GLMM which assumes that they remain ‘at risk’ to experience a 

readmission event. Hence their estimated readmission rates are too small in the LN-GLMM 

(since the denominator is erroneously inflated). Unfortunately the hospital ranked 8th under 

the semi-Markov PEM-MVN model suffers from their low mortality rate in the sense that 

they do not benefit from erroneous inflation of the readmission rate denominator, as other 

hospitals do. Hence the change in rank.

As indicated, results across models within the proposed framework were relatively robust in 

our main application. We did find, however, that models which adopted the flexible PEM 

specification for the baseline hazard functions had substantially better fit to the data than 

models that adopted a Weibull specification. While models based on a semi-Markov 

specification for death following readmission generally had better fit to the data than models 

based on a Markov specification we note that this choice does not affect the interpretation of 

the model for readmission (i.e. model (4)) the investigation of which was our primary 

scientific goal. With this in mind, we have not reported on the results for the two models for 

death (i.e. models (5) and (6)) although they are available in the Supplementary Materials E. 

In practice, researchers may be interested in readmission and death jointly in which case the 

choice of specification for h03(·) will become critical from a scientific perspective (Lee et al., 

2015). In our main application, since the data are relatively rich in terms of sample size and 

the event rates, we have taken the PEM-MVN and PEM-DPM models as our primary 

models for comparison of ranks of hospitals and sensitivity analyses. In other less-rich data 

settings, however, analysts may be in a position where structure is needed either in the forms 

of the baseline hazard functions or for the random effects. Finally, we note that in our 

application a MVN specification for the population distribution of the vector of hospital-

specific random effects, Vj, appeared to be adequate. That is, the so-called Bayesian non-

parametric DPM specification did not yield any additional insight into our understanding of 

variation in risk of readmission nor did it change meaningfully the ranking of hospitals. In 

other applications this may, of course, not be the case and the proposed framework gives 

researchers important choice in this regard.

In Section 5, we show that incorrect assumption of the underlying distribution for cluster-

specific random effects or baseline hazard functions result in lower efficiency of the 

incorrect parametric estimators. In addition, the computational efficiency of proposed 

models with non-parametric specification of parameters heavily depends on underlying 

distributions of model parameters. For PEM models, if the underlying hazard function has 

an intricate shape, the model estimates a posterior distribution αg to be centered around a 

larger value, resulting in expensive computation due to more parameters (λg,k’s) to be 

estimated. For DPM models, if data suggest a larger value of τ, the model will introduce 

more latent classes in the mixture, implying more parameters to be estimated.
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Our analysis focuses on readmission 90 days post-discharge. However, we note that the 

computational performance of our proposed approach would not be challenged in the cases 

when an administrative censoring is not imposed. In particular, the proposed PEM model is 

flexible in that it allows the time scale for each of three hazard functions to be different for 

each transition. Following McKeague and Tighiouart (2000) and Haneuse et al. (2008), we 

suggest the last observed event time points be the upper bound in general problems where an 

administrative censoring is not imposed. In our application, however, since most of patients 

diagnosed with pancreatic cancer die within 1-year period, we would expect the estimates of 

baseline hazard functions have a relatively greater uncertainty in the late periods if the 

administrative censoring is not considered. In addition, in the context of our study, patients 

can experience multiple readmission events prior to death. The literature on recurrent event 

semi-competing risks would likely be useful for this setting and thus the development of 

methods that can accommodate recurrent non-terminal events in the cluster-correlated data 

setting is a promising area for future development.

In this paper, we considered a gamma distribution for the within-patient frailty because of its 

computational tractability. When the frailty distribution is mis-specified, the resulting 

estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on 

the discrepancy between the assumed and true frailties distributions. However, Hsu et al. 

(2007) studied the effect of mis-specification of frailty distribution on the marginal 

regression estimates and hazard functions when gamma distribution is assumed. Their 

results show that the biases are generally low, even when the true frailty distribution is 

substantially different from the assumed gamma distribution. Therefore, if the regression 

parameters and hazard function are of primary interest, the gamma frailty model can be a 

reasonable choice in practice. During the review process, one reviewer suggested that we 

examine the potential for non-proportional hazards in the motivating Medicare application. 

Towards this, we developed and implemented an extension of the so-called heteroscedastic 

Weibull model (Hsieh, 2001; Nikulin et al., 2006) to the semi-competing risks context, 

specifically for the semi-Markov Weibull-MVN model. Although details are given in the 

Supplementary Materials E, Briefly, this model permits the shape parameters for each of the 

three Weibull baseline hazard functions to depend upon covariate values. Results from this 

model are also presented in the Supplementary Materials E. Interestingly, a number of 

covariates did exhibit non-proportionality in their impact on the risk of readmission 

including source of entry and whether or not the patient underwent a procedure during their 

hospitalization. Based on this, and general considerations in applied survival analysis, it is 

clear that expanding the scope of the entire proposed framework (i.e. beyond the semi-

Markov Weibull-MVN model) is important. Indeed, it is a key aspect of our on-going work.

Finally, we conclude by emphasizing that the proposed framework significantly improves 

and expands the set of statistical tools researches have to study quality of end-of-life care. 

While our focus has been on pancreatic cancer, the proposed framework is broadly 

applicable to all ‘advanced’ health conditions for which current treatment options are limited 

and the force of mortality is strong. Such studies will be of paramount importance in the 

near-future because many of these conditions, including other cancers as well as 

neurodegenerative conditions such as Alzheimers’ disease, directly affect large segments of 

an increasingly aging population. In addition, although it has not been in the focus of this 
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paper, the proposed framework will also be critical in helping policy-makers understand and 

ultimately control the increasing costs of health care delivery in the U.S. In particular, the 

proposed framework provides CMS appropriate statistical tools with which to expand the 

scope of the Hospital Inpatient Quality Reporting Program and the Readmission Reduction 

Program to include to conditions with strong forces of mortality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hospital-specific distributions of the outcome information for n=5,298 Medicare 

beneficiaries diagnosed with pancreatic cancer at one of J=112 hospitals in the six New 

England states between 2000–2009. Outcomes have been administratively censored at 90 

days and distributions ordered according to the observed percentage of deaths (with and 

without readmission).
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Figure 2. 
Estimated transition-specific baseline survival functions, S0g(·) = exp(−H0g(·)), for each six 

analyses described in Section 5.2 under simulation scenarios 1, 4 and 6.
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Figure 3. 
Estimated transition-specific baseline survival functions, S0g(·) = exp(−H0g(·)), for the eight 

models fit to the New England Medicare data (see Table 7). Panels (a)–(c) are estimates 

based on a Markov specification for h03(·); panels (d)–(f) are estimates based on a semi-

Markov specification. Note the difference in time scale between panels (c) and (d) due the 

differing specifications for h03(·).
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Figure 4. 
Posterior summaries (median and 95% credible interval) for the hospital-specific random 

effects for readmission, V1j, under four models for which a semi-Markov specification for 

h03(·) was adopted. In each panel, the hospitals are ordered according to the posterior 

median under the Weibull-MVN model.
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Figure 5. 
Comparison of ranks of J=112 hospitals in the Medicare data on the basis of the posterior 

median for hospital-specific random effects for readmission, V1j. Panels compare the ranks 

on the basis of one of four models to a referent set of ranks based on a PEM-MVN model 

with a semi-Markov specification for h03(·) (see Section 6.3.6 for details). Hospitals marked 

with a ✳ suffer under the given model compared to the referent under the referent semi-

Markov PEM-MVN model; hospitals marked with a ▲ benefit.
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Table 1

Covariate and outcome information for n=5,298 Medicare beneficiaries diagnosed with pancreatic cancer in 

the six New England states during a hospitalization between 2000–2009. Outcome information is considered 

with administrative censoring applied at 30 and 90 days post–discarge.

n Percent

Covariate information

  Sex Female 3,037 57.3

Male 2,261 42.7

  Age, years 65–69 727 13.7

70–74 1,052 19.9

75–79 1,226 23.1

80–84 1,129 21.3

≥ 85 1,164 20.0

  Race White 4,982 94.0

Non-white 316 6.0

  Charlson/Deyo comorbidity score ≤ 1 4,854 91.6

> 1 444 8.4

  Entry route Emergency room 2,255 42.6

Transfer from another facility 3,043 57.4

  Procedure during hospitalization Yes 1,291 24.4

No 4,007 75.6

  Length of hospitalization, days 1–7 3,170 59.8

8–14 1,465 27.7

≥ 15 663 12.5

  Discharge destination Home 1,823 34.4

Home with care 1,571 29.7

Hospice 419 7.9

SNF/ICF 1,219 23.0

Other facility 266 5.0

Outcome information with administrative censoring at 30 days

  Readmission and death 205 3.9

  Readmission and censored prior to death 853 16.1

  Death without readmission 1,257 23.7

  Censored prior to readmission or death 2,983 56.3

Outcome information with administrative censoring at 90 days

  Readmission and death 608 11.5

  Readmission and censored prior to death 930 17.6

  Death without readmission 1,912 36.1

  Censored prior to readmission or death 1,848 34.9
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Table 2

Summary of four models based on parametric and non-parametric specifications of the baseline hazard 

functions and hospital-specific random effects distributions. Hyperparameters that require specification by the 

analyst are provided in parenthesis. Note, (aθ, bθ), the hyper-parameters for the patient-specific frailty variance 

component, require specification in all of four models.

Hospital-specific random effects, Vj

Baseline hazard functions, h0g (·)
MVN

(Ψυ, ρυ)
DPM†

(Ψ0, ρ0, τ)

Weibull (aα,g, bα,g, aκ,g, bκ,g) Weibull-MVN Weibull-DPM

PEM† (αKg, aσ,g, bσ,g) PEM-MVN PEM-DPM

†
PEM: piecewise exponential model; DPM: Dirichlet process mixture
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Table 3

Summary of six simulation scenarios explored in Section 5.

Scenario Distribution of
baseline hazard functions

Distribution of
cluster-specific random effects, Vj θ

1 Weibull MVN(0, 0.25·I) 0.50

2 Weibull MVN(0, 0.25·I) 1.00

3 Weibull 0.50

4 Weibull MVN(0, 0.25·I) 0.00

5 Weibull 0.5·MVN(0, I)+0.5·MVN(0, 0.01·I) 0.50

6 Piecewise linear MVN(0, 0.25·I) 0.50
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Table 7

DIC and LPML for eight models fit to the New England Medicare data.

DIC LPML

Markov

Weibull-MVN 46184.3 −23101.6

Weibull-DPM 46174.1 −23101.2

PEM-MVN 45609.2 −22812.6

PEM-DPM 45606.8 −22810.7

semi-Markov

Weibull-MVN 46163.7 −23088.8

Weibull-DPM 46153.0 −23086.7

PEM-MVN 45574.1 −22790.9

PEM-DPM 45569.0 −22789.3
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Table 9

Posterior summaries (medians (PM) and 95% credible intervals (CI)) for standard deviations (SD) of the 

underlying population distributions for the patient-specific frailties and hospital-specific random effects. 

Estimates of population correlation components, between hospital-specific random effects, are also provided.

Weibull-MVN
PM (95% CI)

Weibull-DPM
PM (95% CI)

PEM-MVN
PM (95% CI)

PEM-DPM
PM (95% CI)

Patient-specific
frailties

  
1.03 (0.94, 1.12) 1.03 (0.95, 1.12) 0.61 (0.50, 0.71) 0.61 (0.49, 0.71)

Hospital-specific
random effects

  SD(Vj1) 0.26 (0.20, 0.34) 0.27 (0.21, 0.35) 0.25 (0.19, 0.32) 0.25 (0.20, 0.32)

  SD(Vj2) 0.37 (0.28, 0.47) 0.37 (0.28, 0.47) 0.32 (0.25, 0.41) 0.32 (0.25, 0.42)

  SD(Vj3) 0.37 (0.27, 0.50) 0.37 (0.27, 0.50) 0.33 (0.25, 0.44) 0.33 (0.25, 0.45)

  corr(Vj1, Vj2) −0.04 (−0.40, 0.33) −0.04 (−0.40, 0.33) −0.12 (−0.44, 0.23) −0.12 (−0.45, 0.24)

  corr(Vj1, Vj3) 0.06 (−0.32, 0.42) 0.06 (−0.32, 0.43) 0.03 (−0.32, 0.38) 0.03 (−0.33, 0.39)

  corr(Vj2, Vj3) 0.39 (−0.02, 0.67) 0.37 (−0.03, 0.67) 0.28 (−0.12, 0.59) 0.29 (−0.11, 0.59)
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