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Introduction
The increased risk of nondiabetic chronic kidney disease (CKD) 

in African Americans relative to European Americans had long 
been unexplained.1 In contrast to historic reports suggesting that 
ethnic differences in systemic blood pressures and socioeconomic 
factors were major contributors, it is now believed that the ma-
jority of this ethnic-specific difference relates to biologic variation 
in the apolipoprotein L1 gene (APOL1) on chromosome 22q.2,3 
This breakthrough linked several previously disparate kidney 
diseases—including idiopathic focal segmental glomerulosclero-
sis, HIV-associated collapsing glomerulosclerosis (HIV-associated 
nephropathy), severe lupus nephritis, sickle cell nephropathy, and 
hypertension-attributed nephropathy (a primary kidney disease 
manifesting as focal global glomerulosclerosis with renal inter-
stitial and vascular changes and secondary hypertension)—to a 
single disease spectrum referred to as APOL1-associated nephrop-
athy.4,5 

Several groups have assessed extra-renal effects of APOL1 re-
nal-risk variants on subclinical atherosclerosis (calcified atheroscle-
rotic plaque determined by computed tomography), myocardial 
infarction (MI), stroke, altered lipoprotein particle concentrations, 
and participant survival in large trials and cohort studies. In 
contrast to the consistently observed autosomal recessive APOL1 
associations with nondiabetic CKD (risk genotypes include G1G1, 
G2G2, or G1G2), effects on nonrenal outcomes have been incon-
sistent, and associations have been reported with recessive and 
nonrecessive (additive and dominant) genetic models.6 Besides the 
different cohorts, study designs, and outcomes, APOL1 associa-
tions with kidney disease varied between reports and could have 
impacted findings. This review summarizes published data on the 
nonrenal vascular effects of the APOL1 G1 and G2 renal-risk vari-
ants in the admixed African American population with an empha-
sis on cardiovascular disease (CVD) phenotypes. 

APOL1 and Lipoprotein Particle Concentrations
Given the recent interest in the effects of APOL1 on CVD, it 

is useful to review studies reporting effects on lipid profiles and 
lipoprotein particle concentrations. This is especially relevant be-
cause APOL1 protein travels in the circulation bound to a subset 

of trypanosome lytic factors 1 and 2 lipoprotein particles; it does 
not appear to be bound to typical plasma high-density lipoprotein 
(HDL) particles as has often been reported.7,8 To date, there is no 
evidence of association between APOL1 genotypes and circulating 
APOL1 protein concentrations or components of the standard lipid 
profile, such as low-density lipoprotein (LDL) cholesterol, HDL 
cholesterol, or triglycerides.9-13

A report of more than 2,000 African American participants in 
the REGARDS study detected positive association between APOL1 
renal-risk variants and small HDL cholesterol particle concentra-
tions.14 The effect of this observation on risk for CVD or MI is cur-
rently unknown. APOL1 renal-risk variant effects on macrophage 
cholesterol efflux and other components of the atherosclerotic pro-
cess also require further study. Finally, Bentley et al. reported that 
serum HDL cholesterol relationships with CKD differed in African 
Americans with and without APOL1 renal-risk variants.11,15 The 
impact of this finding on clinical CVD outcomes is under study.

APOL1 and Subclinical Calcified Atherosclerotic Plaque
Calcified plaque in the coronary arteries (CAC), as well as in the 

aorta and carotid arteries, is widely recognized to be a marker of 
subclinical atherosclerosis and is associated with heightened risk 
for CVD events and death.16-18 The higher risk for CVD in individ-
uals with higher CAC is observed in members of all ethnic groups. 
In contrast to European Americans, African Americans have 
markedly lower levels of CAC despite the presence of more severe 
conventional CVD risk factors such as higher blood pressure, LDL 
cholesterol, albuminuria, and blood sugars in populations with 
diabetes.19-22 The population-based Multi-Ethnic Study of Athero-
sclerosis (MESA) and the African American-Diabetes Heart Study 
(AA-DHS) both revealed that African Americans who had higher 
levels of CAC had higher percentages of European ancestry.23,24 
This demonstrates that African ancestry is protective from the 
development of subclinical CVD and CAC, whereas European an-
cestry contributes to risk. This effect is contrary to the APOL1-as-
sociated risk for CKD based on positive selection for trypanolytic 
variants of sub-Saharan African origin. It further demonstrates 
that, in addition to the environment, biologic variation or inherited 
factors contribute to the risks of CVD and CKD. 
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The clinical relevance of lower levels of CAC in African Amer-
icans was evident in studies where both African and European 
Americans had equivalent access to healthcare. In contrast to the 
general population, where African Americans have greater risk 
for CVD than European Americans, African Americans with type 
2 diabetes treated by the Veteran’s Administration and Kaiser Per-
manente had 50% lower rates of MI than European Americans.25,26 
Similar lower rates of MI and improved survival rates are seen 
in African Americans with end-stage kidney disease receiving 
renal replacement therapy through the Centers for Medicare and 
Medicaid Services.27 Therefore, the lower levels of CAC in African 
Americans relative to European Americans have biologic relevance 
once the confounding effects of environmental factors, including 
“differential access to healthcare,” are considered. 

The Jackson Heart Study (JHS) and AA-DHS measured cal-
cified atherosclerotic plaque with computed tomography in the 
large blood vessels of African Americans and tested for genetic 
association with APOL1 (Table 1). APOL1 renal-risk variants were 
associated with lower levels of calcified atherosclerotic plaque 
in the left main coronary arteries in JHS and with lower levels of 
calcified plaque in multiple vascular beds in AA-DHS, with results 
consistent across studies.28,29 Calcified plaque associations in AA-
DHS were strongest in additive and dominant genetic models, 
whereas JHS reported an association in a recessive model. In the 
JHS, the significant association between CAC and APOL1 per-
sisted when removing participants with CKD, supporting a true 
protective effect of renal-risk variants on subclinical CVD. Despite 
concordance between calcified plaque associations with APOL1 in 
the AA-DHS sample with type-2 diabetes (717 participants with 
measured CAC) and JHS (1,959 participants; number with CAC 
not provided), discordant effects of APOL1 on clinical CVD events 
were observed despite the expected protection from CVD and MI 

in those with lower levels of calcified atherosclerotic plaque in the 
coronary arteries and aorta.

APOL1 Renal-Risk Variants and Cardiovascular Disease
APOL1-Associated Risk for Cardiovascular Disease and 
Incident Myocardial Infarction

Three studies identified an increased risk for CVD or incident 
MI among African Americans with two APOL1 renal-risk vari-
ants (Table 2); however, APOL1 was significantly associated with 
the presence of kidney disease and/or albuminuria in all three 
reports.28,30 Although adjustment for CKD was performed, it re-
mains uncertain whether kidney disease, a powerful risk factor 
for MI, could have confounded results.31 The initial report by Ito 
et al. assessed the JHS and African American participants in the 
Women’s Health Initiative (WHI).28 With the large size of these 
studies and the national representation of the WHI, CVD events 
were adjudicated and expected to be highly accurate. Participants 
with two APOL1 renal-risk variants in both studies had higher 
rates of incident MI, stroke, and surgical or endovascular interven-
tion even after statistical adjustment for CKD. Women’s Health 
Initiative participants did not have computed tomography scans to 
measure CAC or subclinical atherosclerosis. As noted above, JHS 
participants with two APOL1 renal-risk variants had significantly 
lower levels of CAC. Therefore, the paradoxical observation of a 
lower CAC despite higher CVD rates led the authors to speculate 
that novel mechanisms might have contributed to CVD outcomes. 
As stated above, the possibility that CKD was a confounder in this 
surprising finding may not have been fully excluded by statistical 
adjustment. In the Cardiovascular Health Study (CHS), Mukamal 
et al. analyzed incident MI related to APOL1 in African American 
participants with a mean age of 73 years.30 As in JHS and WHI, 
CVD events were adjudicated. Again, the presence of two APOL1 

Phenotype Model Effect Estimate (SE) P-value Study

Coronary artery calcified plaque Recessive Protective -6.04 (NA) 0.019 Jackson Heart28

Carotid artery calcified plaque Dominant Protective -0.42 (0.18) 0.02 AA-DHS29

Coronary artery calcified plaque Additive Protective -0.03 (0.16) 0.08 AA-DHS29

Time to death Additive Protective -0.41 (0.14) 0.005 AA-DHS29

HDL particle concentration Additive ↑ small HDL particles NA 0.004 Renal REGARDS14

Table 1. APOL1 associations with subclinical cardiovascular disease and related phenotypes. 
SE: standard error; APOL1: apolipoprotein L1; AA-DHS: African American-Diabetes Heart Study.

Phenotype Model Effect
OR (95% CI)  
or HR (SE) P-value Study

Incident myocardial infarction, stroke, 
surgical or
endovascular intervention

Recessive Risk 2.17 (1.34-3.48) 9.4 x 10-4 Jackson Heart28

Incident major cardiovascular event Recessive Risk 1.98 (1.17-3.31) 8.4 x 10-3 Women’s Health Initiative28

Incident myocardial infarction Recessive Risk 1.80 (1.10-3.00) 0.02 Cardiovascular Health Study30

Prevalent myocardial infarction, surgical 
or endovascular intervention

Additive None 1.02 (0.82-1.27) 0.86 SPRINT34

Death (all cause) Recessive Risk 1.30 (1.00-1.70) 0.05 Cardiovascular Health Study30

Death (all cause) Additive Protective 0.67 (0.14) 0.005 AA-DHS29

Table 2. APOL1 associations with major cardiovascular events and death. 
OR (95% CI): odds ratio (95% confidence interval); HR (SE): hazard ratio (standard error); APOL1: apolipoprotein L1; SPRINT: Systolic Blood Pressure Interven-
tion Trial; AA-DHS: African American-Diabetes Heart Study; P: probability.
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renal-risk variants was associated with albuminuria (but not es-
timated glomerular filtration rate) and MI; association with CVD 
persisted after adjustment for albuminuria. Therefore, JHS, WHI, 
and CHS all reported positive association between two APOL1 re-
nal-risk variants and adjudicated CVD events or MI and also with 
CKD or albuminuria.28,30 

APOL1-Associated Protection from Death and CVD Events
Consistent findings in JHS, WHI, and CHS provide reassurance 

as to detected associations. However, it is difficult to completely 
exclude the confounding effects of APOL1-associated CKD on 
risk for MI. Although the African American Study of Kidney Dis-
ease and Hypertension (AASK) was not designed or powered to 
demonstrate the risk of MI or death, APOL1 was strongly associat-
ed with renal outcomes (doubling of serum creatinine concentra-
tion or initiation of dialysis),32 yet very few deaths were recorded 
in this population with advanced CKD despite their high risk for 
CVD.33 This suggests that APOL1 might not be associated with a 
markedly heightened risk for CVD. 

In AA-DHS, all participants had type 2 diabetes, and APOL1 
was not associated with diabetic kidney disease. As opposed to 
conclusions drawn from JHS, AA-DHS linked participant survival 
in the Social Security Death Index (SSDI) to genotypes (Table 2). In 
agreement with the APOL1 association with lower levels of calci-
fied atherosclerotic plaque (and lack of confounding by nephropa-
thy association), increasing numbers of APOL1 renal-risk variants 
were associated with longer survival (additive genetic model).29 As 
with adjudicated events in JHS and CHS, results were likely accu-
rate given that outcomes were assessed using the SSDI. Although 
results differed from those in JHS and CHS, AA-DHS evaluated a 
uniformly diabetes-affected cohort at high risk for CVD, and kid-
ney disease phenotypes (albuminuria and eGFR) did not confound 
results. Therefore, there are potential explanations for the different 
directions of association between AA-DHS and the other reports. 

Finally, the Systolic Blood Pressure Intervention Trial (SPRINT) 
enrolled only nondiabetic individuals, many with mild-to-moder-
ate CKD and low level proteinuria (albuminuria below 1,000 mg/
day); recruitment specifically targeted the elderly and those with 
prevalent CVD.34 SPRINT saw weak association between APOL1 
and CKD in 2,571 African American participants but observed no 
evidence of association between APOL1 and prevalent CVD. This 
was despite large numbers of SPRINT participants with CVD. 
However, results were cross-sectional. Longitudinal associations 
will soon be assessed, as SPRINT was halted prematurely due to 
beneficial effects of a lower systolic blood pressure goal on prima-
ry CVD outcomes.

Therapeutic Considerations
As targeted therapies for APOL1-associated nephropathy are 

likely to be developed in the near future, it is critical to elucidate 
whether the CVD effects of APOL1 renal-risk variants increase 
or decrease the risk of cardiac events. Kidney transplantation 
studies suggest that the nephropathy risk from APOL1 renal-risk 
appears principally related to intrinsic gene expression in cells of 
the kidney and not to circulating APOL1 protein.35-37 However, it is 
unknown whether vascular gene expression or circulating proteins 
are involved in the cardiovascular effects of APOL1. Circulating 
APOL1 protein concentration does not appear to be dependent on 
APOL1 renal-risk variant genotypes.7,38 APOL1 messenger RNA 
and protein have been detected in vascular cells, which supports 
the potential for a local vascular effect as with nephropathy risk.39,40 

If APOL1 renal-risk alleles exhibit opposing effects on CVD and 
nephropathy risk, an effect supported by AA-DHS, treatments that 
improve renal outcomes might have the potential to aggravate 
CVD. In contrast, if reports from JHS, WHI, and CHS are correct 
and APOL1 renal-risk alleles increase the risk for CVD independent-
ly from nephropathy, treatments for APOL1-associated kidney 
disease could also improve cardiac outcomes. The conflicting data 
on APOL1 associations with increased cardiovascular events (JHS, 
WHI, and CHS), lower levels of CAC (JHS and AA-DHS), and re-
duced rates of death (AA-DHS) require additional studies to reach a 
consensus. Ideally, future analyses can be performed in populations 
with recent African ancestry where APOL1 is not (or only weakly) 
associated with nephropathy to limit confounding between CKD 
and CVD. This remains a fertile area of research and holds great 
importance for individuals who possess recent African ancestry.

Key Points: 
•	 Apolipoprotein L1 gene (APOL1) renal-risk genotypes 

contribute to approximately 40% of cases of end-stage kidney 
disease in the African American population.

•	 Associations between APOL1 renal-risk variants with 
cardiovascular disease and mortality are less consistent than 
those with nephropathy.

•	 As targeted therapies for APOL1-associated kidney disease 
are developed, additional studies are required to clearly 
elucidate the vascular effects of its renal-risk variants.
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