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Linkage analysis is used routinely to map genes for human diseases
and conditions. However, the existing linkage-analysis methods
require that the diseases or conditions either be dichotomized or
measured by a quantitative trait, such as blood pressure for
hypertension. In the latter case, normality is generally assumed for
the trait. However, many diseases and conditions, such as cancer
and mental and behavioral conditions, are rated on ordinal scales.
The objective of this study was to establish a framework to conduct
linkage analysis for ordinal traits. We propose a latent-variable,
proportional-odds logistic model that relates inheritance patterns
to the distribution of the ordinal trait. We use the likelihood-ratio
test for testing evidence of linkage. By means of simulation studies,
we find that the power of our proposed model is substantially
higher than that of the binary-trait-based linkage analysis and that
our test statistic is robust with regard to certain parameter mis-
specifications. By using our proposed method, we performed a
genome scan of the hoarding phenotype in a data set with 53
nuclear families, which were collected by the Tourette Syndrome
Association International Consortium for Genetics (TSAICG). Stan-
dard linkage scans using hoarding as a dichotomous trait were also
performed by using GENEHUNTER and ALLEGRO. Both GENEHUNTER and
ALLEGRO failed to reveal any marker significantly linked to the binary
hoarding phenotypes. However, our method identified three
markers at 4q34-35 (P � 0.0009), 5q35.2-35.3 (P � 0.0001), and
17q25 (P � 0.0005) that manifest significant allele sharing.

L inkage analysis has been very useful for mapping disease
genes, such as the breast cancer gene BRCA1 (1, 2). Statis-

tical methods for linkage analysis are well established for both
quantitative and binary traits (3–9). However, methods for
linkage analysis have not been established for ordinal traits,
although many human conditions (e.g., cancer) are rated on
discrete, ordinal scales. Studies have suggested genetic herita-
bilities for some ordinal traits (10–13). Ordinal traits are typi-
cally first dichotomized into binary traits, and then analyzed by
standard linkage-analysis programs such as GENEHUNTER (8)
and ALLEGRO (14).

We propose a statistical method for linkage analysis of general
pedigree data with ordinal traits and demonstrate the gain of
power when the ordinal, rather than dichotomized, traits are
directly used. Other researchers (15) have also observed loss of
power for linkage analysis due to the dichotomization of tri-
chotomous phenotypes.

It is widely recognized that demographic and environmental
factors, together with genetic mechanisms, are important determi-
nants in most complex diseases. Thus, our model was developed to
accommodate selected demographic and environmental factors.

Methods
Methods for linkage analysis include two main steps (8). The first
step is to infer information about the inheritance pattern of a
pedigree by means of the so-called inheritance vector. This is a
unified step, regardless of the properties of a trait; hence, we
adopt the same method as used in ref. 8. In the second step, the
linkage of a marker to a disease locus is established if the
inheritance pattern of the marker is associated with the trait
because, in the absence of linkage, the inheritance pattern is
expected to be independent of the trait. This second step

obviously depends on the distribution of the trait, and it is the
main focus of this article.

Inheritance Vector and Its Distribution. Briefly, we present the
necessary notation and steps for deriving the distribution of
inheritance vector (16). Given a pedigree, a founder refers to a
subject whose parents are not included in the pedigree. In a
nuclear family with two parents (founders) and n siblings
(nonfounders), the inheritance pattern at a marker location t is
described completely by an inheritance vector v(t) � (v1, v2, v3,
v4, . . . , v2n�1, v2n)�, whose elements describe the outcomes of
the paternal and maternal meioses transmitted to the n siblings.
Specifically, v2j�1 � 1 or 2, according to whether the grandpa-
ternal or grandmaternal allele is transmitted in the paternal
meiosis to the jth sibling. v2j carries the similar information for
the corresponding maternal meiosis, namely, v2j � 3 or 4,
according to whether the grandpaternal or grandmaternal allele
was transmitted in the maternal meiosis to the jth sibling. For
example, if v(t) � (1, 4, 1, 3)�, the first child received the father’s
paternally derived allele and the mother’s maternally derived
allele, and the second child received the father’s paternally
derived allele and the mother’s paternally derived allele.

For a more complex pedigree with f founders and n nonfounders,
we can index the alleles of the f founders as (1, 2), (3, 4), (5, 6), . . . ,
(2 f � 1, 2 f). Then, we can define the inheritance vector for the n
nonfounders similarly. The inheritance vector completely specifies
which of the 2 f distinct founders’ alleles are inherited by every
nonfounder. There are a total of 22n possible inheritance vectors,
which can be grouped into 22n–f distinct configurations.

For clarity, we will use nuclear families with two founders below.
The inheritance distribution is the conditional probability distribu-
tion over the possible inheritance vectors that conform the alleles
observed at the marker locus t, which we denote by p{v(t) � w} for
all inheritance vectors w � V; here, V is the set of all possible
inheritance vectors. In the absence of any genotypic information, all
inheritance vectors are equally likely according to Mendel’s first
law, and the probability distribution is uniform (denoted as punif).
As genotypic information is enhanced, the probability distribution
becomes concentrated in certain inheritance vectors. In any case,
available standard software can be used to derive the inheritance
distribution for genotyped pedigrees. We used GENEHUNTER in our
computation.

A Latent-Variable Model (LVM) in Linkage Analysis. To infer whether
the inheritance pattern at a given marker is associated with an
ordinal trait, we propose a latent-variable, proportional-odds
logistic model, which is a further development of the LVM for
segregation analysis (13, 17).

We consider a trait Y taking an ordinal value from 0, 1, . . . ,
K(K � 1). Let x be a p-vector of covariates that is also available for
every study subject. For the ith family, we assume there exist two
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types of latent random variables, U1
i and U2

i , which represent (i) the
common genetic or environmental factors in a family that are not
observed through the covariates and (ii) the genetic susceptibility of
the family founders and nonfounders, respectively. The genetic
susceptibility due to a particular gene is accommodated through the
inheritance vector in the pedigree as follows.

Let U2,1
i , . . . ,U2,2f

i be the genetic susceptibility of the f founders.
In a simple pedigree with two founders, we have four latent
variables in which U2,1

i and U2,2
i represent the genetic susceptibility

associated with the two parental alleles at marker location t.
Likewise, U2,3

i and U2,4
i represent the genetic susceptibility associ-

ated with the two maternal alleles at t. The genetic susceptibility is
reflected through the inheritance vector v. That is, for the jth
nonfounder in the ith family, his/her latent variables are U2,v2 j�1

i and
U2,v2 j

i . If we consider the additive susceptibility due to the gene
linked to locus t, then for the jth sibling, U2,v2 j�1

i � U2,v2 j

i for j � 1,
2, . . . , n, reflects the genetic susceptibility due to part of the
genomes on the two chromosomes transmitted from the parents.
For example, in a five-member pedigree with two parents and three
offspring, if the inheritance vector of the three offspring is (1, 3, 1,
4, 2, 3), then their latent variables U2 values are (U2,1, U2,3), (U2,1,
U2,4), and (U2,2, U2,3).

For the latent variables introduced above, we assume that
P(U1

i � 1) � 1 � P(U1
i � 0) � �1, where �1 is an unknown

parameter. Also, for a founder, P(U2
i � 1) � 1 � P(U2

i � 0) �
�2, where �2 is an unknown parameter. This Bernoulli possibility
basically assumes that there exists a single major susceptibility
locus with alleles, A and a, at marker location t and that the
frequency of allele A is �2. Furthermore, all U1

i values and the
U2

i values of the founders are assumed to be distributed inde-
pendently and identically across families.

Conditional on all of the latent variables, denoted by Ui, and
inheritance vectors vi, within the ith family, the traits of all non-
founders are independent and follow the following distribution:

logit�P�Y j
i � k �Ui,vi�� � xj

i� � �k � U1
i �1 � U2�j�

i �2,

k � 0,1, . . . , K 	 1, [1]

where U2(j)
i � U2,v2 j�1

i � U2,v2 j

i , and � is a p vector of parameters,
reflecting the covariate effects on the trait. The �k variables are
the trait-level-dependent intercepts, and they reflect the differ-
ences between cumulative probabilities P(Y j

i � k). We must have
�0 � �1 � � � � � �K, so that the category probabilities P(Y j

i �
k) are nonnegative (18). � � (�1, �2)� indicates the familial and
genetic contributions to the trait. Without the latent variables (or
� � 0), model 1 is the commonly used proportional-odds logistic
model for an ordinal response (18). In this article, individuals in
category 0 are ‘‘most severely affected,’’ individuals in category
K are ‘‘unaffected,’’ and individuals in other categories are
between unaffected and most severely affected. Thus, we expect
�2 	 0.

Parameter Estimates. Suppose that there are n families and ni
siblings in the ith family. If both the trait and the latent variables
were observable, given a particular inheritance vector v, the
complete log-likelihood function, li(�, �, �, � � U, v), would be
equal to the following:

U1
i log��1� � �1 	 U1

i � log�1 	 �1�

� �
j�1

4


U2j
i log��2� � �1 	 U2j

i � log�1 	 �2��

� �
j�1

ni �
k�0

K


I�Yj
i � k� log�
kj

i 	 
k�1, j
i �� , [2]

where I(�) is the indicator function, and


kj
i �

exp�xj
i� � �k � U1

i �1 � U2�j�
i �2�

1 � exp�xj
i� � �k � U1

i �1 � U2�j�
i �2�

for k � 0,1, . . . , K 	 1, 
�1, j
i � 0, 
Kj

i � 1.

The EM algorithm (19) is used to find the maximum-likelihood
estimation (MLE) in a similar way to Zhang et al. (13). In
general, the inheritance vector v involves uncertainty at a marker
location. As usual (8), we can take the expectation of the
likelihood Li over the inheritance distribution inferred from the
genotyped data, namely, �v�V Li(�, �, �, � � v)pcomp(v), where
pcomp(v) is the inheritance distribution consistent with the
marker information and V is the set of 22n–f equivalent classes of
inheritance vectors. Then, after the integration over the distri-
butions of the latent variables, the likelihood becomes the
following:

L*
i ��, �, �, �� � E�1�2� �

v�V

pcomp�v�Li�
� �

v�V


pcomp�v�E�1�2
Li� . [3]

After obtaining the MLEs of the parameters, we can estimate
the covariance matrix of the MLEs by using an existing method
(20, 21).

Logarithm of Odds (lod) Score Calculation. The likelihood-ratio
statistic is used commonly in linkage analysis. The null hypothesis
is that a disease gene is not in linkage with locus t. The alternative
hypothesis is that locus t is linked to the disease gene. The likelihood
ratio of LR � p(Y � v(t))��w�V p(y � w)punif(w), where p(Y � v(t)) is
the probability of the observed ordinal trait Y conditional on v(t),
V is the set of 22n–f equivalent classes of inheritance vectors, and
punif(w) is the uniform distribution over V (i.e., the distribution in
the absence of linkage). The lod score, defined as the decimal
log-likelihood ratio, is commonly used (22).

In the LVM, p(Y � v(t)) is a function of parameters � � (�,
�, �1, �1) and (�2, �2). In the absence of linkage, �2 � 0 in model
1. Therefore, for a given �2,

LR��2� �

max
�, �2

�
i

L*
i �� , �2, �2�

max
�

�
i

L*
i �� , �2 � �2 � 0�

, [4]

and the lod score at locus t for a given �2 becomes lod(�2) �
log10LR(�2).

Based on asymptotic theory involving nonstandard conditions,
the distribution of the standard likelihood-ratio statistic in our
model may be complicated (13). One reason for the complication
is that �2 is not identifiable when �2 � 0. In fact, this is the case
for many statistical models in genetic studies. To test the
presence of linkage, we follow the discussions in ref. 13 and
consider the penalized log likelihood PLR(�2) � log LR(�2) �
� log[4�2(1 � �2)]. Under standard regularity conditions (13,
23), the maximum penalized log-likelihood-ratio statistic
2 max�2

PLR(�2) follows (1�2)0
2 � (1�2)1

2 (0
2  0). Thus,

when �2 is not specified, 2 max�2
PLR(�2) is used to determine the

significance level, and the penalized lod (plod) score, defined as
plod � max�2

PLR(�2)�log(10), will be reported for model 1.
However, for a given �2, we use lod(�2), which is a function of �2.
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Simulation Studies
To demonstrate the promise of our model in mapping genes for
ordinal traits, we report a series of simulations that are designed
to examine three specific aims. First, in addition to our theo-
retical understanding of the asymptotic distribution of the plod
score, we demonstrate numerically how the distribution appears
under the null hypothesis. Second, as a critical incentive for the
use of ordinal traits, we present evidence for gain of power of
detecting linkage when there is a linked disease gene. The
comparison is made with the use of GENEHUNTER and ALLEGRO,
in which an individual’s disease status is represented by a binary
trait. Last, our model depends on a number of assumptions. It
is important to scrutinize the robustness of our estimates when
the model is misspecified.

Distribution of Likelihood-Ratio Statistic Under the Null Hypothesis.
For each data set, we generated 200 five-member pedigrees with
two founders and three offspring in each pedigree. One covari-
ate, x1, was generated from independent uniform (0, 1) distri-
bution among all family members. Without loss of generality, we
suppose that the response, Y, takes values from three ordinal
levels 0, 1, and 2. In the absence of latent variable U1, Y was
simulated from an ordinal logistic model with the two logit links
being �1 �0.9x1 (for Y � 0) and �0.9x1 (for Y � 1).

For each founder in a pedigree, 20 highly polymorphic mark-
ers with 10 equally likely alleles (24), spaced 5 cM apart, were
generated on one chromosome. Recombination fractions were
converted to map distances without interference, and there was
no linkage disequilibrium among markers (25). After the geno-
types were generated for the founders, the genotypes of non-
founders were generated subsequently based on the recombina-
tion fractions.

The simulation was replicated 30,000 times (30,000 data sets).
At a fixed marker locus, the empirical P values from plod scores
are 0.5018, 0.1971, 0.1027, 0.0536, 0.0129, and 0.0016 when the
asymptotic values are 0.5, 0.2, 0.1, 0.05, 0.01, and 0.001, respec-
tively. Given the size of our simulation replications, the nominal
and empirical P values are numerically within reasonable ranges
of each other.

We also examined the number of false-positive errors when
the significant linkage was declared at plod scores of 	2 and 	3
by using our model. When we focused on a specific locus, there
were 60 of 30,000 data sets (P � 0.002) with plod scores of 	2,
and four with plod scores of 	3 (P � 0.0001). We used
Bonferroni correction to project locus-specific P values to a
chromosome or the genome. For example, a plod score of 3
corresponds to �0.05 genomewide significance level for a typical

genotypic data set of 370 microsatellite markers, as used in
Application on Obsessive–Compulsive Disorder (OCD). The
method given in ref. 26 could be used to explore a better
approach.

Power Comparison. For the power comparison, the data sets were
simulated similarly to those in the previous experiment. How-
ever, a locus between the 10th and 11th markers was set to be the
disease locus, and the disease-causing allele was set at frequency
0.3. For the comparison purpose with GENEHUNTER and ALLE-
GRO, we do not consider any covariates in this simulation. In
addition, the parameters involved in the logit link functions were
set at �1 � 0, �2 � 2, �0 � �2, and �1 � �1. These parameters
were unknown in the linkage analysis and were estimated from
the data.

We conducted linkage analysis with 100 replications by using
our method, GENEHUNTER, and ALLEGRO. For GENEHUNTER and
ALLEGRO, the trait was dichotomized as Y � 0 or Y � 1. We also
considered Y � 1 versus Y � 2, and the results were consistent
and, hence, not shown. Table 1 contrasts the results from the
LVM and the nonparametric linkage (NPL) score method in
GENEHUNTER and the nonparametric method (Zlr) in ALLEGRO.
Under the null hypothesis, the NPL score (8) follows a normal
distribution asymptotically and, thus, can be transformed into
lod score units according to the formula: NPL2�(2*log(10)) �
lod. To provide numerical support to this asymptotic property,
Ulgen et al. (27) carried out a simulation study of 2,400 repli-
cations of 100 nuclear families and verified that the observed
distribution of (2ln10)lod fit well with (1�2)0

2 � (1�2)1
2 under

the null hypothesis. Thus, plod from our model for ordinal traits
and the transformed lod score from NPL from the other
software for binary traits have the same asymptotic distribution.
Consequently, our plod and the NPL from GENEHUNTER could
be viewed as counterparts of each other under the null hypoth-
esis. This observation is useful to ensure the validity of the power
comparison, because the type I error rates for different methods
must be similar.

We also compared the lod scores from the LVM with the
parametric method in GENEHUNTER by specifying the disease
allele frequency to be the ‘‘true’’ frequency of 0.3. We used the
simulated model to specify the penetrances as (0.12, 0.50, 0.88),
which were based on the true parameters and, hence, expected
to be in favor of GENEHUNTER.

In Table 2, we used allele frequencies of 0.2 and 0.5 to examine
the impact of misspecifying the allele frequency. It is evident
from this table that these misspecifications have little effect on
power. Therefore, the LVM is very robust in terms of power with

Table 1. Power comparison

Score Method

Marker

1–3 4–6 7–9 10–11 12–14 15–17 18–20

plod 	2* LVM 54 62 74 85 80 61 57
lod 	2* GH 0 0 0 0 0 0 0
lod 	2* AL 1 0 4 5 6 2 0
plod 	3* LVM 26 31 52 66 57 34 25
lod 	3* GH 0 0 0 0 0 0 0
lod 	3* AL 0 0 1 1 1 0 0
lod 	2† LVM 49 51 66 80 74 50 47
lod 	2† GH 0 0 5 19 12 0 2
lod 	3† LVM 16 25 41 56 47 25 20
lod 	3† GH 0 0 1 0 0 0 0

Frequencies at which linkage is detected in the 100 data sets by the LVM, GENEHUNTER (GH), and ALLEGRO (AL) are
shown.
*Nonparametric lod scores converted from NPL in GENEHUNTER and Zlr from ALLEGRO.
†Parametric lod scores calculated by using �2 � 0.3 for LVM and GH.
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respect to misspecification of the allele frequency, which is the
only parameter to be specified after model 1 is assumed.

Application on Obsessive–Compulsive Disorder (OCD)
Background. OCD is a potentially disabling condition affecting
nearly 5 million people in the United States (28). Patients with
OCD become obsessed with unwanted worries or unpleasant
images, such as persistent fears that harm may come to a loved
one, an unreasonable concern with becoming contaminated, or
an excessive need to do things correctly. OCD occurs in a
spectrum from mild to severe, and if severe and untreated, it can
destroy a person’s capacity to function at work, at school, or in
the home (29).

The causes of OCD have yet to be established. However,
growing evidence shows that biological factors are likely to
contribute to the disorder. Evidence for a genetic component in
OCD comes from twin studies, family genetics studies, and
segregation analyses (30).

Hoarding, as a major factor in OCD, affects 2.4 million
Americans. In adults, hoarding has been defined as the gathering
of articles without clear, conscious motivation or control (31).
Many studies have been done on hoarding, but its etiology is not
understood. Only a few studies have focused specifically on the
role that genetic factors play in the transmission and expression
of hoarding symptoms. One such study was undertaken by
Leckman et al. (32) as part of the TSAICG. They found evidence
in support of a recessive mode of transmission for the hoarding
symptom dimension in families with two affected siblings with
Gilles de la Tourette syndrome (GTS) (32). Zhang et al. (33)
performed linkage study of hoarding in the sibling pairs in the
same study sample that we used here. They found strong
evidence of linkage to three different regions by using a numer-

ical factor scale from two hoarding items as a quantitative trait.
The goal of the present study is to conduct and compare genome
scans by treating hoarding symptoms as either an ordinal or
dichotomous trait.

The Study Sample. The study sample was obtained through GTS
patients. Since Gilles de la Tourette noted in 1885 that OCD
symptoms were present in GTS patients, studies have shown
prevalences of obsessive–compulsive symptoms of 11–80%
among individuals with GTS (34). In contrast to the prevalence
of OCD of 1–3% in the general population (35), the elevated
prevalence of obsessive–compulsive symptoms are found in
both clinical samples composed of GTS patients and nonre-
ferred individuals with tics and their relatives in community
samples (36).

All families include at least two siblings with GTS. In the
original ascertainment, families were excluded if both parents
were affected with GTS or if one parent had GTS, chronic tics
(CT), OCD, and�or subclinical OCD and the other parent also
had CT, OCD, and�or subclinical OCD. All diagnoses were
made by use of Diagnostic and Statistical Manual-III-R cri-
teria (37). The final sample included in the genome scan
consisted of 53 families, with a total of 223 individuals. No
information has been collected to perform a justifiable ascer-
tainment adjustment for hoarding, which was a limitation of
this study, as it was for ref. 33.

The significant hoarding symptoms were recorded as
‘‘present’’ when one or both of the hoarding items on the
Yale–Brown Obsessive–Compulsive Scale symptom checklist
were rated as present by clinicians and as ‘‘absent’’ otherwise. In
addition to treating hoarding as a dichotomous outcome, we also
considered it as an ordinal trait; that is, we recorded 2 if both

Table 3. Comparison of results for hoarding from LVM, GENEHUNTER, and ALLEGRO

Marker (location in cM)

P values

Parametric, �2 � 0.3 Nonparametric

LMV GH LMV GH* AL†

4q34-35
DS42431 (163.26) 0.006 0.101 0.001 0.120 0.156
D4S2417 (169.00) 0.005 0.072 0.0009 0.154 0.192
D4S408 (182.13) 0.012 0.063 0.006 0.068 0.091
D4S1652 (195.14) 0.003 0.040 0.004 0.126 0.136

5q35.2-35.3
D5S1471 (172.13) 0.003 0.122 0.001 0.560 0.563
D5S1456 (174.80) 0.002 0.139 0.0003 0.628 0.640
D5SMfd154 (182.89) 0.0006 0.095 0.00006 0.299 0.299
D5S408 (195.49) 0.0002 0.030 0.00001 0.133 0.100

17q25
D17S1301 (99.39) 0.005 0.066 0.0005 0.052 0.024
D17S784 (116.23) 0.002 0.034 0.0006 0.019 0.007

AL, ALLEGRO; GH, GENEHUNTER.
*Based on NPL.
†Based on Zlr.

Table 2. Power comparison under misspecified allele frequencies

Score
Specified allele

frequency

Marker

1–3 4–6 7–9 10–11 12–14 15–17 18–20

lod 	2 0.2 40 42 57 74 71 43 40
lod 	2 0.5 52 58 73 83 78 61 55
lod 	3 0.2 13 21 31 44 37 20 14
lod 	3 0.5 23 30 50 65 57 31 23

Frequencies at which linkage is detected in the 100 data sets are shown.
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items were absent, 1 if only one item was present, and 0 if both
items were present.

The panel of genotyped markers included 370 DNA markers
with an average spacing of 9.1 cM in the male meiotic map on
22 autosomal chromosomes. A detailed description of the mark-
ers and map is given by TSAICG. Zhang et al. (33) presented a
detailed description of the study design and data collection.

Data Analysis. Allele frequencies for the genetic markers were
established by gene counting in genotyped parents. For each
family, the inheritance distribution was estimated by multipoint
analyses in GENEHUNTER (8) and ALLEGRO (14). In the multi-
point analysis, maximum-likelihood scores (38) were computed
for 3,000 different locations relative to the markers (average step
size, �1 cM). As a standard procedure, genotype data were
checked against errors before the linkage analysis.

The status of hoarding was first examined as a binary trait.
Parametric and nonparametric analyses were done with GENE-
HUNTER and ALLEGRO. For parametric analysis, disease allele
frequency was set at 0.3, and the penetrances were set at 0.125,
0.575, and 0.75 (33).

The main results reported here are from the linkage analyses
of the ordinal hoarding trait. The analyses were completed by
using the LVM for the nuclear families. For comparison, we

obtained the likelihood-ratio statistics with an unknown �2 as
well as a fixed value at �2 � 0.3.

Analyses with GENEHUNTER and ALLEGRO did not reveal any
evidence of linkage for this binary trait. However, the results of
the analyses using the ordinal trait revealed linkage to three
regions on three chromosomes (4q, 5q, and 17q). Thus, the
power of detecting linkage was increased by the use of this
ordinal trait in chromosomes 4 and 5. The significances of
plod�lod scores are shown in Table 3. Specifically, in the region
of 4q34–35, the best significance levels are .0009. In the region
of 5q35.2–35.3, the best significance levels are .00001; and in the
region of 17q25, the best significance level is .0005.

Fig. 1 provides graphical comparisons of the parametric and
nonparametric lod scores from GENEHUNTER and ALLEGRO, and
plod�lod scores from the LVM. These values are comparable
with those obtained by Zhang et al. (33) when hoarding was
treated as a continuous variable derived from factor analyses. It
is important to note that although Zhang et al. (33) assumed a
continuous trait, the trait has only three distinct values.

Discussion
We proposed a framework to map candidate genes for an ordinal
trait by using a latent-variable, proportional-odds model. Our
simulation studies clearly support the substantial gain of power
by using an ordinal, as opposed to a dichotomized, trait. One may

Fig. 1. LOD�PLODs produced by LMV, GENEHUNTER, and ALLEGRO on chromosomes 4, 5, and 17.
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wonder whether this gain of power is at the cost of an increased
type I error. Our simulations demonstrate that the locus-specific
type I errors are close to the nominal level for the LVM. Using
a specified allele frequency, our simplified parametric approach
proves to be highly robust in detecting linkage when the specified
frequency is very different from the true one. Because the
severity of many health conditions are recorded on ordinal
scales, our model can be employed successfully to study the
genetic basis of complex traits.

Our model is very basic, and it is still in its infancy. Within our
framework, it is important to investigate issues including ascer-
tainment bias, genetic heterogeneity, inbreeding, and imprint-
ing. Although our simulations demonstrate the great promise of
our model, our experiments are still limited. Further simulation
and theoretical studies of our model are warranted to understand
the properties of our model.

We have used a special set of latent variables, namely,
Bernoulli random variables. Preliminary evidence suggests that
these latent variables work reasonably well even if the underlying
latent variables are continuous (13, 17).

We applied our model to conduct a genome scan of hoarding.
Significant linkage to specific loci on 4q, 5q, and 17q were found.

The 4q site is in proximity to D4S1625, which was identified by
the TSAICG as a region linked to the GTS phenotype. The other
two regions, 5q and 17q, show the strongest evidence for linkage.
Duggirala et al. (39) found strong evidence for linkage of
smoking behavior to a genetic location near D5S1456. Increased
allele sharing at this marker was also in pedigrees with bipolar
subjects in a National Institute of Mental Health collaborative
initiative for genetics of bipolar disorders (40). The region on
17q has been linked to many other diseases, including autoim-
mune diseases (41) and schizophrenia (42).

Overall, our results are consistent with the analysis given in ref.
33. They performed a genomewide scan of the same family data
by treating the hoarding score as a quantitative trait. Normality
is generally assumed for analyzing quantitative traits. In this data
set, the hoarding score used in Zhang et al. (33) came from two
yes–no questions, and the normality is clearly a concern. It is
important that we confirmed the earlier results by the new model
and a more rigorous approach.
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