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Abstract

We present a method to estimate a multivariate Gaussian distribution of diffusion tensor features in 

a set of brain regions based on a small sample of healthy individuals, and use this distribution to 

identify imaging abnormalities in subjects with mild traumatic brain injury. The multivariate 

model receives apriori knowledge in the form of a neighborhood graph imposed on the precision 

matrix, which models brain region interactions, and an additional L1 sparsity constraint. The 

model is then estimated using the graphical LASSO algorithm and the Mahalanobis distance of 

healthy and TBI subjects to the distribution mean is used to evaluate the discriminatory power of 

the model. Our experiments show that the addition of the apriori neighborhood graph results in 

significant improvements in classification performance compared to a model which does not take 

into account the brain region interactions or one which uses a fully connected prior graph. In 

addition, we describe a method, using our model, to detect the regions that contribute the most to 

the overall abnormality of the DTI profile of a subject’s brain.
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1. Introduction

Abnormalities of Diffusion Tensor Imaging (DTI) data in neuroimaging studies are 

traditionally detected at the population level by directly comparing regions of interest across 

patients and healthy controls, and verifying whether distributions are statistically different in 

these regions. The assumption behind these types of analyses is that conditions in patients 

have homogeneous spatial patterns of abnormalities. However, in diseases such as traumatic 

brain injury (TBI) or multiple sclerosis, a common spatial pattern of injury is unlikely to 

occur, violating the main hypothesis of standard population studies.

With an estimated 10 million people world-wide affected annually by a TBI, the burden that 

this condition imposes on society makes it a considerable public health problem (Hyder et 

al., 2007; Feigin et al., 2013; Marion et al., 2011). Importantly, a significant percentage (10–

15%) of individuals diagnosed with mild TBI experience persistent post-concussive 

symptoms (PPCS), which may lead to long-term disabilities (Bigler, 2008). Symptoms range 

from physical, such as headache; cognitive, such as difficulty concentrating; and emotional/

behavioral, such as irritability and impulsivity. In the majority of these chronic cases, there is 

no radiological evidence of injury from conventional magnetic resonance imaging (MRI) or 

computed tomography (CT), and little is known about the pathophysiology underlying the 

injury. Thus establishing radiological evidence of brain injury is a critical first step towards 

the proper diagnosis and monitoring of TBI, and may lead to establishing neuroimaging 

biomarkers to help predict recovery versus PPCS and to assess better the impact of therapies 

on the injured brain.

Recent methods for injury detection in mild TBI patients have been developed by estimating 

a model of ”healthy” DTI features and testing whether brain regions have outside-of-normal-

range values for a particular subject’s brain (see Mayer et al. (2014) for a nice overview). 

Typically, each region is modeled by the mean and standard deviation of the DTI feature of 

interest over all healthy individuals, and individual TBI subject’s data are z-transformed 

using these healthy population parameters. Finally regions with a z-score above a given 

threshold (typically 2 standard deviations) are flagged as abnormal, and statistics such as the 

number of abnormal regions or the average z-score over the brain are compared between 

TBI and controls. Methods mostly differ from each other based on how the mean and 

standard deviation are estimated, and how bias is avoided when testing normal controls that 

have been used to estimate the ”healthy” model parameters (Ge et al., 2005; Kim et al., 

2013; Bouix et al., 2013). Most methods study one DTI feature at a time (except for Hellyer 

et al. (2013), which uses four DTI features in a multivariate setting), but none of the current 

techniques model the inter-dependence of DTI features between neighboring brain regions. 

Another interesting result from our previous work, suggest that DTI changes are observable 

in gray matter regions in these patients (potentially related to glial scaring), and thus one 

should study the full brain as opposed to only white matter in this population (Bouix et al., 

2013).

In this paper, we extend the multiple univariate setting of Bouix et al. (2013) to a high 

dimensional Gaussian multivariate model which accounts for inter-region interactions. One 

of the main challenge we need to overcome is a relatively small number of healthy subjects 
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(in the order of 50) compared to the number of parameters to estimate (in the order of 

10,000). Our method thus relies on the estimation of a sparse representation of the region co-

dependencies as modeled by a precision matrix.

Although not as thoroughly studied in diffusion MRI, sparse representation of inter-region 

interactions is the subject of much research in fMRI. Extracted networks capture higher 

order dependencies among variables, and therefore are effective in exploring local 

interactions of brain regions (Friston, 2011). Unfortunately, the estimation of these 

functional connectivities from subject to subject can be difficult to do robustly and recent 

research has focused on imposing a prior to the sparse representation. One such example is 

the work of Zhu et al. (2013), which uses structurally-weighted least absolute shrinkage and 

selection operator (LASSO) regression, and models the directional functional interactions of 

resting state fMRI data based on structural connectivity constraints encoded by 358 cortical 

landmarks derived from DTI data (Zhu et al., 2012).

Our work is similar in spirit, with some key differences. Here, we use DTI to evaluate subtle 

tissue changes in TBI patients by detection of outliers compared to a model of normal brain 

derived from 145 brain regions of 34 healthy subjects. A feature vector containing fractional 

anisotropy (FA) measures over 145 brain regions represents each subject. We model the 

distribution of these features in the healthy subjects as a multi-dimensional Gaussian 

distribution as represented by a precision matrix. Our method relies on the theorem that 

conditional independence of two variables given others is equivalent to setting the 

corresponding precision matrix entity to zero (Lauritzen, 1996). We leverage this theorem by 

imposing a brain neighborhood prior graph on the structure of the precision matrix, reducing 

the number of parameters to estimate by favoring interactions of proximal regions and 

ignoring the interactions of regions which are far away from each other.1 The multi-

dimensional Gaussian model is further regularized by an L1 sparsity constraint and 

estimated using the graphical LASSO (Friedman et al., 2008).

2. Gaussian graphical models

Let x = [X1, X2, .., Xd] be a d-dimensional random vector so that it has a multivariate 

Gaussian distribution x ~  (µ, Σ), with d-dimensional mean vector µ, and a d × d 
covariance matrix Σ. In a Gaussian graphical model, an unweighted undirected graph with 

adjacency matrix G, can be used to represent the conditional dependence structure between 

the individual variables Xi. More specifically, the edge structure of G can be imposed onto 

the inverse covariance matrix, also known as the precision matrix, Σ−1 ≡ Θ = {θij}, and 

conditional independence between Xi and Xj can be expressed as a zero in the corresponding 

location in Θ:

(1)

1Note that a sparse precision matrix does not imply a sparse covariance matrix; therefore distant brain regions are not assumed to be 
independent with this constraint – only conditionally independent as shown in Eq. (1).
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The proof can be found in Lauritzen (1996).

One key benefit of this representation is that one can use a priori information to impose a 

conditional independence structure to the model. This is particularly useful in scenarios 

where a high dimensional Θ needs to be estimated with only a few samples, and expert 

knowledge about the data set can help guide sparse model learning. By using a graph G 
which sets many of the precision matrix elements to zero before the estimation process, we 

can greatly reduce the number of parameters of the model, and thereby increase the 

robustness of the optimization.

In addition, we assume global sparsity of the model, and thus add an L1 penalty term to 

further regularize the model. Following Banerjee et al. (2008), let X be the n × d data matrix 

representing n observations, S be the d × d sample covariance matrix, and G the a priori 

graph, the maximum a-posteriori (MAP) estimate of Θ given X and G is:

(2)

where ρ is a scalar controlling the L1 norm penalty weight.

The optimization method uses the graphical LASSO algorithm (Friedman et al., 2008), 

which can elegantly incorporate G into the optimization process.

In the following section, we describe how this graphical model with the addition of an a 

priori graph can be applied to the problem of estimating a multivariate Gaussian distribution 

of DTI features in healthy subjects and use this model to detect brain injuries in subjects 

with mild TBI.

3. Application to injury detection in TBI

Our driving hypothesis for using graphical models is that brain regions next to each other 

have similar, or at least highly related, DTI signal in healthy subjects. We thus model these 

interactions by only considering edges connecting proximal regions in the graph imposed on 

the precision matrix. If a TBI subject has a region with abnormal signal, having modeled the 

healthy region-to-region interaction will help us increase our sensitivity to classifying a TBI 

brain as abnormal, compared to looking at each region independently.

3.1. Subjects and data acquisition

In this work, we used the data described in Bouix et al. (2013). There are n = 34 healthy 

subjects, p = 11 TBI patients who reported symptoms (see Table 1 for details), such as 

headaches, emotional dysregulation and memory impairments at the time of data collection, 

as well as m = 11 normal controls demographically matched to TBIs. The normal controls 

are separated from healthy subjects for validation purposes. Subjects underwent MRI 
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scanning, including a high resolution diffusion tensor imaging scan and a high resolution 

structural T1 weighted scan. Each T1 image was segmented using the FreeSurfer software 

(Fischl et al., 2002), resulting in 176 gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF) sections. CSF sections and sections smaller than 300 mm3 were 

excluded from the analysis, as these smaller regions led to unstable estimation of mean/std 

of the DTI measures and many failed to pass normality tests. The remaining 145 sections (83 

in GM and 62 in WM) were registered onto the diffusion space using a non-linear 

diffeomorphic registration algorithm (Avants et al., 2011). The average FA was computed in 

each region for each subject. The outcome of the image processing procedure is a feature 

vector of the average FA in d = 145 brain structures in each subject. More details about data 

acquisition and processing can be found in Bouix et al. (2013). In addition, the same 

procedure was applied for the other standard DTI measures: mean diffusivity (MD), radial 

diffusivity (RD), and axial diffusity (AD).

3.2. a priori graph

Given this data set, we will have to estimate a 145 × 145 precision matrix based on 34 

observations. In order to reduce the number of parameters to estimate, we chose to design a 

simple graph that will only consider the relationship between neighboring regions in the 

brain. Two regions were considered to be neighbors if they were connected in a template 

FreeSurfer segmentation using 26-connectivity. Our motivation for choosing this graph for 

TBI stems from the knowledge that nearby regions in healthy subjects will tend to have 

similar tissue properties and thus similar DTI signal (note that we are not considering tensor 

orientation).We have made the choice of connecting neighboring GM and WM regions with 

an edge as there is increasing evidence that the tissue and geometric properties of proximal 

GM/WM regions are stongly related (Miyata et al., 2009; Koch et al., 2013; Liu et al., 2014; 

Savadjiev et al., 2014). Furthermore, the graph is only a guide for the precision matrix 

estimation process. If the data does not support the existence of a (conditional) relationship 

between two variables, the corresponding entry in the precision matrix will converge to zero 

even if it was linked by an edge in the prior graph.

The neighborhood network G is illustrated in Figure 1. Each brain structure is represented as 

a node in the graph, and conditional dependence is only considered between regions 

connected by an edge, whereas all other relationships are ignored. Bold lines in Figure 1(b) 

show the subgraph associated with region 1. The adjacency matrix corresponding to the 

complete neighborhood graph is shown in Figure 1(c). One can observe a large number of 

parameters that will be set to 0 in Θ. Note that the conditional independence of two non-

neighboring regions imposed by this graph does not enforce unconditional independence; 

pairs of regions that are not immediate neighbors are allowed to have correlations.

3.3. Identifying an abnormal brain

Let X be the n × d matrix representing the set of d features in n healthy subjects, Y the m × d 
matrix capturing the observations in m normal controls, and Z the p × d matrix representing 

the set of p TBI patients. Normal controls are healthy subjects matched to patients 

demographically, and are separated from the healthy training set X for validation purposes.
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The overall design is to generate a model (µX, ΘX) based on the healthy subject data X and 

test whether a TBI subject i is abnormal by measuring the Mahanobis distance of its feature 

vector zi to the model:

(3)

As the Mahalanobis distance follows a χ2 distribution, a threshold for an abnormal brain 

based on this distance can be theoretically derived (e.g., above the 95th percentile of the 

expected Mahalanobis distances). However, in our work, we test the discriminatory power of 

our model by computing the Mahalanobis distances of TBI subjects (Z) and matched 

controls (Y) and evaluate its classification performance using Receiver Operating 

Characteristic (ROC) curve analysis.

3.4. Identifying individual abnormal regions

The method we have presented thus far has the ability to identify whether a subject’s 

imaging profile is overall abnormal. The natural next step is to identify which regions are 

most affected in this subject and thus provide some information that could potentially be 

linked to the pathophysiology of the brain injury, or help targeting therapies to particular 

brain areas. Given k regions, we propose a greedy forward sorting approach to identify these 

abnormal regions as follows. Let Rs be the ordered set of sorted regions from most normal to 

most abnormal, Ru = {1, .., k} be the set of all regions, and dR be the Mahalanobis distance 

computed by only taking into account the regions in subset R ⊂ Ru. We build Rs by 

incrementally adding the region ri ∈ Ru \ Rs, which minimizes dRi, where Ri = Rs ∪ {ri}. 

This process is repeated until all regions have been sorted from most normal to most 

abnormal. The procedure is detailed in Alg. 1

Algorithm 1

Sorting regions from most normal to most abnormal

1: Ru = {1, .., k}

2: Rs = ()

3: for i: 1 to k do

4: ri = arg minj∈Ru\Rs (dRs∪{j})

5: Rs = Rs ∪ {ri}

6: end for

7: return Rs

The output of this algorithm is an ordering of regions along with k Mahalanobis distances, 

dRi of the corresponding subsets of sorted regions. The last step consists of comparing the 

subject’s sorted Dis with the theoretical distribution of the Mahalanobis distance (the χ2 

distribution with i degrees of freedom) and finding the first region after which the subject’s 

sorted distances exceed the 95th percentile of the χ2 distribution. Let Fχ2 (D, l) be the 

cumulative distribution function of the χ2 distribution with l degrees of freedom and k̂ = arg 

maxk (Fχ2 (Dk, k) < 0.95). Thanks to our sorting process, the regions that are not in the 
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subset of size k̂ will generate increasingly unlikely Mahalanobis distances and can be 

flagged as abnormal. This thresholding procedure is illustrated in Figure 2.

4. Experiments

In order to evaluate the performance of the prior neighborhood graph approach, we tested 

three different graph structures as follows:

1. The neighborhood prior graph as described in Section 3.2, with an L1 sparsity 

constraint.

2. A node-only graph with all off-diagonal elements set to zero in the precision 

matrix.

3. A fully connected graph evaluating all off-diagonal terms with an L1 sparsity 

constraint.

We tested the robustness of each model by performing a cross validation procedure as 

follows. Using a leave-one-out strategy, we generated n − 1 models (µi, Θ̃
i) from X|i, the set 

of healthy subjects X without the i-th element. For each model (µi, Θĩ), we then calculate 

dM,X|i for all TBI subjects in Z and for all control subjects in Y. In addition, we repeated this 

procedure for a range of regularization parameter ρ (from 10−2 to 10) to evaluate the impact 

of this parameter on performance. Thus, for each ρ we had n sets of “TBI vs. Controls” 

Mahalanobis distances and were able to compute confidence intervals of various 

classification performance measures (in our case the area under the receiver operating 

characteristic curve – AUC).

As described earlier, the maximization of the posterior distribution in (2), iteratively 

minimizes certain edges of the graph in two ways: 1) Data driven, where natural interaction 

of variables among all samples estimate the edges in the graph or precision matrix elements; 

2) Prior model driven, where a predefined graph is imposed to the model which sets certain 

edges to zero, without iterative learning.

In the following experiments, the performance of the node only graph (diagonal precision 

matrix) is evaluated to illustrate the importance of multivariate vs. univariate analyses. 

Graphical LASSO is clearly not needed in this diagonal precision matrix design.

4.1. Node-only versus neighborhood versus fully-connected graphs

In Figure 3, all three graph types are examined. In addition, the evaluation is performed for 

different ρ values to observe the impact of this regularization parameter on the classifier 

performance.

Figure 3(a) compares the 90% confidence intervals (CI) of the AUC(ρ) functions of 34 

cross-validation instances across graph types. The confidence intervals are computed using 

the functional box plot method (Sun and Genton, 2011), and the envelope of the 90% central 

region is shown in Figure 3. One can observe that both the neighborhood and the full graph 

clearly outperform the node-only model. In le these two graphs have comparable average 

Shaker et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance over all cross-validation, the neighborhood graph has a tighter 90% confidence 

interval.

The advantage of the prior graph over a fully-connected graph is even clearer when 

considering the Bayesian information criterion (BIC), as given by

(4)

where p(X|Θ̂) is the maximized value of the likelihood function, j is the number of 

parameters estimated, and n is the number of training samples. In our case, j represents the 

number of non-zero values in the estimated precision matrix Θ̂. BIC is a criterion for model 

selection among a finite set of models, and balances the goodness of fit (p(X|Θ̂)) with a 

penalty term for the number of model parameters. This criterion penalizes models which 

increase their likelihood by overfitting the data. Using BIC as a model selection criteria, the 

prior graph model is preferred due to its lower BIC. Figure 3(c) compares the number of 

parameters estimated (model order) for the two multivariate models. In Figure 3(d), one can 

observe that the neighborhood graph always has a higher AUC than the full graph for the 

same model complexity.

4.2. Neighborhood versus random prior graphs

To check the importance of expert knowledge in model selection, 1000 random graphs were 

generated so that they have the same number of edges as the prior graph but at uniformly 

random locations. Figure 4 compares the AUC and BIC of the neighborhood graph to the 

75%, 85% and 95% central regions of the randomly generated graphs. The neighborhood 

graph has an AUC that is higher than the 95% central region of random graphs. Similarly the 

BIC is almost always lower for the neighborhood graph than it is for random graphs. This 

result illustrates that the better performance of the neighborhood prior is not due to 

overfitting, but because of the selection of an appropriate graphical model. The percentile of 

the prior graph performance at various ρ compared to the random graphs distribution is 

shown in Table (2).

4.3. Selecting the optimal penalty parameter ρ

While the above analyses provide valuable information on the quality of the different models 

under different regularization by the parameter ρ, one does need to select a single optimal ρ̂ 

value to estimate the final model. In order to find this optimum, the Mahalanobis distance of 

each training point to the model mean estimated with the remaining training points is 

calculated. The optimum ρ minimizes the leave-one-out sum of squared distances, which is 

ρ̂ = 0.3 for the prior graph an ρ̂ = 0.38 for the full graph, as shown in Figure 5. Table 3 

compares the performance of the three models at optimum values of ρ. Once again, the 

neighborhood prior graph model outperforms both the node-only and full graph priors. Note 

that the performance of the node-only graph does not depend on the value of ρ. In order to 

put our results in context with traditional ”z-score” approaches (White et al., 2009; Lipton et 

al., 2012; Bouix et al., 2013; Mayer et al., 2014), we also performed the computation of the 

AUC of the mean absolute z-score over all regions as a potential measure to distinguish 
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patients from controls. Z-scores were computed with respect to the mean and standard 

deviation of FA in each region over X, the training set of healthy subjects. As expected, this 

method does not perform as well as the multivariate models.

4.4. Investigating other DTI measures

The z-score analysis of Bouix et al. (2013) only found statistically significant differences for 

FA. Nevertheless, we further tested, using our multivariate method, the other most common 

DTI measures: Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD). 

For all experiments, we used the prior graph and the same regularization parameter ρ̂ = 0.3. 

As in the previous work, only FA reached significance, although we hypothesize that AD 

could reach significance given a larger sample size (see Table 4). Consequently, all 

subsequent analyses focused solely on FA.

4.5. Correlations with behavioral measures

Similarly to Bouix et al. (2013), we performed Spearman correlations between the 

Mahalanobis distance and behavioral measures in BI subjects. The results presented in Table 

5 are very similar to our previous work, with ”Digit Symbol”, a measure of processing 

speed, the only behavioral test significantly correlated with imaging (rho=−0.62, p=0.04), 

although reported p-values are uncorrected for multiple comparisons. The Bonferroni 

corrected significance threshold is 0.004 Nevertheless, our sample of 11 TBI subjects is 

quite small, and we expect better correlations with a larger number of subjects. Confidence 

intervals on rho is calculated according to the formula presented in Ruscio (2008).

4.6. Individual abnormal regions identification

In this section, we present the results of the detection of individual abnormal regions as 

described in section 3.4. Each subfigure in Figure 6 shows a k × l matrix. The k rows 

represent the regions and the l columns the individual subjects. The intensity associated with 

each region in each figure corresponds to its respective amount of ”abnormality”. We define 

this abnormality ai as the following differential

where Di is the Mahalanobis distance of the sorted subset of size i and D̃
i is 95% threshold 

of the χ2 distribution, i.e., Fχ2 (D̃
i,i) = 0.95.

We also present the equivalent figures for standard z-score analyses in Figure 7. In this 

figure, we present regions with an absolute z-score greater than 2 as well as those greater 

than 3.58, the threshold corresponsing to a Bonferroni correction for the number of regions.

One can observe that both the neighborhood and full graph display similar patterns of 

detections, whereas the node-only graph displays many false positives. The z-score method 

show similar results to the node only graph at |z| > 2 and a subset of the multivariate 

techniques at |z| > 3.58.
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5. Discussion

Graphical models are a powerful and flexible technique to impose a structure on a 

multivariate Gaussian model, which has allowed us to constrain the estimation of a model of 

DTI signal based on a small data set of healthy subjects. We chose to constrain a LASSO 

estimation procedure of a precision matrix, by imposing a conditional independence 
structure on our model (Lauritzen, 1996). Note the emphasis on conditional independence, 

i.e., the lack of an edge in our prior graph does not forbid covariance between two variables, 

but assumes that for two variables X & Y, knowing X offers no additional information about 

Y given what we already know from the other variables in the model. Therefore, the 

independence structure imposed by the graph is quite flexible and allows for the examination 

of many relationships including those of regions that are very far apart.

We applied this method to detect whether subjects who experienced a TBI had an abnormal 

DTI scan, by measuring the Mahalanobis distance of their data to the model. We tested three 

different graph structures, a node-only graph, a fully connected graph, and a neighborhood 

graph, which only connects regions that are next to each other in the brain. The ability of 

each method to accurately detect an abnormal brain was tested by classifying TBI vs NC 

subjects using their Mahalanobis distance to the model under study and computing the 

corresponding AUC.

Our results demonstrate that multivariate approaches (full and neighborhood graph) clearly 

outperform the univariate approaches, inluding standard z-score analyses (White et al., 2009; 

Lipton et al., 2012; Bouix et al., 2013; Mayer et al., 2014). While both full and 

neighborhood graph show similar AUCs, the neighborhood graph leads to a better model 

when taking into account model complexity, i.e., the number of non-zero elements in the 

precision matrix. Furthermore, our cross-validation experiments show that although the 

sample size is small, the results are quite robust as the 90% central region width of the AUC 

is less than 0.05 for the neighborhood graph. Moreover, the neighborhood model always 

outperforms randomly generated graph with the same number of edges, indicating that the 

“expert” knowledge embedded in the graph is indeed a valuable prior to constrain the 

estimation of the model.

Importantly, the flexibility of graphical models can allow us to test a number of prior graphs, 

including network-based graph generated from diffusion MRI and/or functional MRI 

network analyses (Yoldemir et al., 2015; Vergara et al., 2016). This is certainly a topic we 

plan to investigate in future work. Another possible extension is the study of DTI (or more 

generally diffusion MRI) measures in combination, by using a nested precision matrix 

design, although larger sample sizes would be needed for such complex models. We are 

particularly interested in diffusion MRI measures related to neuroinflammation such as free 

water, as it may be a marker for subjects experiencing chronic symptoms (Pasternak et al., 

2014; Planetta et al., 2016)

We have also shown that our multivariate analysis can detect individual regions with 

abnormal data. In fact, our results show fewer false positives in NCs and more regions 

detected in mTBIs compared to classical independent z-score analyses. Nevertheless, this 
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aspect of our work was exploratory and further development inspired by factor analysis 

techniques should be investigated.

Finally, we tested the connection between imaging data and symptomatology, but 

unfortunately were not able to find strong relationships between behavioral measures and 

DTI beyond a single measure (Digit Symbol, a measure of processing speed). We believe the 

main reason is the small sample size, but also the fact that we have only looked at the overall 

Mahalanobis distance (a global imaging measure). With more data, one could investigate 

connections between symptoms and subsets of regions corresponding to known networks 

associated with a particular brain function ((e.g., Han et al. (2016)), which we think will lead 

to stronger relationships between imaging and behavioral measures.

Acknowledgments

This work was supported in part by a CIMIT Soldier in Medicine Award; NSF grants CCF 1442728, IIS-1149570, 
and IIS-1118061; NIH grants R01 NS078337 and RO1HL089856; DoD grants W81XWH-08-2-0159; and a 
Veterans Administration Merit Review Award.

References

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ants 
similarity metric performance in brain image registration. NeuroImage. 2011; 54:2033–2044. 
[PubMed: 20851191] 

Banerjee O, El Ghaoui L, d’Aspremont A. Model selection through sparse maximum likelihood 
estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research. 
2008; 9:485–516.

Bigler ED. Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. J Int 
Neuropsychol Soc. 2008; 14:1–22. [PubMed: 18078527] 

Bouix S, Pasternak O, Rathi Y, Pelavin PE, Zafonte R, Shenton ME. Increased gray matter diffusion 
anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain 
injury. PloS one. 2013; 8:e66205. [PubMed: 23776631] 

Feigin VL, Theadom A, Barker-Collo S, Starkey NJ, McPherson K, Kahan M, Dowell A, Brown P, 
Parag V, Kydd R, Jones K, Jones A, Ameratunga S. BIONIC Study Group. Incidence of traumatic 
brain injury in New Zealand: a population-based study. Lancet Neurol. 2013; 12:53–64. [PubMed: 
23177532] 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, 
Kennedy D, Klaveness S, et al. Whole brain segmentation: automated labeling of neuroanatomical 
structures in the human brain. Neuron. 2002; 33:341–355. [PubMed: 11832223] 

Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. 
Biostatistics. 2008; 9:432–441. [PubMed: 18079126] 

Friston KJ. Functional and effective connectivity: a review. Brain connectivity. 2011; 1:13–36. 
[PubMed: 22432952] 

Ge Y, Law M, Grossman RI. Applications of diffusion tensor mr imaging in multiple sclerosis. Annals 
of the New York Academy of Sciences. 2005; 1064:202–219. [PubMed: 16394158] 

Han K, Chapman SB, Krawczyk DC. Disrupted Intrinsic Connectivity among Default, Dorsal 
Attention, and Frontoparietal Control Networks in Individuals with Chronic Traumatic Brain 
Injury. J Int Neuropsychol Soc. 2016; 22:263–279. [PubMed: 26888622] 

Hellyer PJ, Leech R, Ham TE, Bonnelle V, Sharp DJ. Individual prediction of white matter injury 
following traumatic brain injury. Annals of neurology. 2013; 73:489–499. [PubMed: 23426980] 

Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic 
brain injuries: a global perspective. NeuroRehabilitation. 2007; 22:341–353. [PubMed: 18162698] 

Shaker et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kim N, Branch CA, Kim M, Lipton ML. Whole brain approaches for identification of microstructural 
abnormalities in individual patients: comparison of techniques applied to mild traumatic brain 
injury. PloS one. 2013; 8:e59382. [PubMed: 23555665] 

Koch K, Schultz CC, Wagner G, Schachtzabel C, Reichenbach JR, Sauer H, Schlosser RG. Disrupted 
white matter connectivity is associated with reduced cortical thickness in the cingulate cortex in 
schizophrenia. Cortex. 2013; 49:722–729. [PubMed: 22402338] 

Lauritzen, SL. Graphical models. Oxford University Press; 1996. 

Lipton ML, Kim N, Park YK, Hulkower MB, Gardin TM, Shifteh K, Kim M, Zimmerman ME, Lipton 
RB, Branch CA. Robust detection of traumatic axonal injury in individual mild traumatic brain 
injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. 
Brain imaging and behavior. 2012; 6:329–342. [PubMed: 22684769] 

Liu X, Lai Y, Wang X, Hao C, Chen L, Zhou Z, Yu X, Hong N. A combined DTI and structural MRI 
study in medicated-nave chronic schizophrenia. Magn Reson Imaging. 2014; 32:1–8. [PubMed: 
24161847] 

Marion DW, Curley KC, Schwab K, Hicks RR. the mTBI Diagnostics Wor. Proceedings of the Military 
mTBI Diagnostics Workshop, St. Pete Beach, August 2010. Journal of Neurotrauma. 2011; 
28:517–526. URL: http://www.liebertonline.com/doi/abs/10.1089/neu.2010.1638. [PubMed: 
21265587] 

Mayer AR, Bedrick EJ, Ling JM, Toulouse T, Dodd A. Methods for identifying subject-specific 
abnormalities in neuroimaging data. Human brain mapping. 2014; 35:5457–5470. [PubMed: 
24931496] 

Miyata J, Hirao K, Namiki C, Fujiwara H, Shimizu M, Fukuyama H, Sawamoto N, Hayashi T, Murai 
T. Reduced white matter integrity correlated with cortico-subcortical gray matter deficits in 
schizophrenia. Schizophr. Res. 2009; 111:78–85. [PubMed: 19361957] 

Pasternak O, Koerte IK, Bouix S, Fredman E, Sasaki T, Mayinger M, Helmer KG, Johnson AM, 
Holmes JD, Forwell LA, Skopelja EN, Shenton ME, Echlin PS. Hockey Concussion Education 
Project, Part 2. Microstructural white matter alterations in acutely concussed ice hockey players: a 
longitudinal free-water MRI study. J. Neurosurg. 2014; 120:873–881. [PubMed: 24490785] 

Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, Okun MS, McFarland NR, 
Vaillancourt DE. Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain. 
2016; 139:495–508. [PubMed: 26705348] 

Ruscio J. Constructing confidence intervals for spearmans rank correlation with ordinal data: A 
simulation study comparing analytic and bootstrap methods. Journal of Modern Applied Statistical 
Methods. 2008; 7:7.

Savadjiev P, Rathi Y, Bouix S, Smith AR, Schultz RT, Verma R, Westin CF. Fusion of white and gray 
matter geometry: a framework for investigating brain development. Med Image Anal. 2014; 
18:1349–1360. [PubMed: 25066750] 

Sun Y, Genton MG. Functional boxplots. Journal of Computational and Graphical Statistics. 2011; 20

Vergara VM, Mayer A, Damaraju E, Kiehl K, Calhoun VD. Detection of Mild Traumatic Brain Injury 
by Machine Learning Classification using Resting State Functional Network Connectivity and 
Fractional Anisotropy. J. Neurotrauma. 2016

White T, Schmidt M, Karatekin C. White matter potholes in earlyonset schizophrenia: a new approach 
to evaluate white matter microstructure using diffusion tensor imaging. Psychiatry Research: 
Neuroimaging. 2009; 174:110–115. [PubMed: 19853414] 

Yoldemir B, Ng B, Abugharbieh R. Coupled Stable Overlapping Replicator Dynamics for Multimodal 
Brain Subnetwork Identification. Inf Process Med Imaging. 2015; 24:770–781. [PubMed: 
26221717] 

Zhu D, Li K, Guo L, Jiang X, Zhang T, Zhang D, Chen H, Deng F, Faraco C, Jin C, et al. Dicccol: 
dense individualized and common connectivity-based cortical landmarks. Cerebral cortex , 
bhs072. 2012

Zhu, D., Li, X., Jiang, X., Chen, H., Shen, D., Liu, T. Information Processing in Medical Imaging. 
Springer; 2013. Exploring high-order functional interactions via structurally-weighted lasso 
models; p. 13-24.

Shaker et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.liebertonline.com/doi/abs/10.1089/neu.2010.1638


Highlights

• We design a subject-specific neuroimaging abnormality detection method for 

mild TBI

• A healthy reference atlas of dMRI data is modeled as a multivariate Gaussian

• The atlas is estimated using the graphical LASSO algorithm with a graph 

prior

• Abnormal dMRI data are detected using the Mahalnobis distance to the model 

mean
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Figure 1. 
Illustration of the prior graph through 10 brain regions. The vector assigned to region 1 in 

the adjacency matrix is [1110110000], emphasizing connections of regions 2, 3, 5, 6 and 

disconnections of regions 4, 7, 8, 9, 10 to region 1. Bold lines in Figure 1(b) show the 

subgraph associated with region 1.
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Figure 2. 
Abnormal Region detection based on the χ2 distribution and our greedy forward sorting of 

regions. The dashed lines correspond to the 95th percentile of the CDF of the χ2 

distribution. Each of the colored curves represent, for each subject, the accumulated 

Mahalanobis distance given by the subsets of sorted regions. Regions added after the point at 

which the subjects Mahalanobis distance curve exceeds the 95% threshold on the CDF of χ2 

distribution are flagged as abnormal.
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Figure 3. 
(a) 90% CIs of the AUC, as a function of the penalty parameter ρ for the prior graph, fully-

connected graph, and node-only graph; (b) 90% CIs of the BIC as a function of the penalty 

parameter ρ for each model; (c) Number of model parameters for a given penalty weight for 

prior and fully-connected graphs; (d) AUC as a function of the number of model parameters 

for the prior and fully-connected graphs. Both models show similar AUC performance, but 

the prior graph has better model complexity and BIC.
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Figure 4. 
Comparison of the neighborhood graph model performance (blue dashed line) with 1000 

random graphs with the same number of edges.
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Figure 5. 
Selection of the optimum penalty parameter for each model based on minimizing leave-one-

out sum of squared Mahalanobis distances to the model mean.
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Figure 6. 
Abnormality maps show which regions are affected in each subject for different graphical 

models. Left: TBI subjects, Right: Normal Controls (NC). Top to Bottom: node-only graph, 

neighborhood graph, full graph.
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Figure 7. 
Abnormality maps based on z-scores for two different thresholds. Top: threshold is |z| > 2, 

Bottom: |z| > 3.58 (Bonferroni correction for the number of regions)
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Table 3

AUC analysis for optimal multivariate models and independent z-scores

Full Graph Prior Graph Node-only Graph mean absolute zscore

AUC 0.83 0.86 0.69 0.65

Sensitivity 0.64 0.73 0.73 0.64

Specificity 0.91 1 0.64 0.64
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Table 4

p-value of Wilcoxon ranksum tests and AUC for the most common DTI metrics.

Measure p AUC

FA 0.016 0.86

MD 0.168 0.68

AD 0.088 0.72

RD 0.265 0.64
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