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We developed a quantitative methodology, digital analysis of
chromatin structure (DACS), for high-throughput, automated map-
ping of DNase I-hypersensitive sites and associated cis-regulatory
sequences in the human and other complex genomes. We used
19�20-bp genomic DNA tags to localize individual DNase I cutting
events in nuclear chromatin and produced �257,000 tags from
erythroid cells. Tags were mapped to the human genome, and a
quantitative algorithm was applied to discriminate statistically
significant clusters of independent DNase I cutting events. We
show that such clusters identify both known regulatory sequences
and previously unrecognized functional elements across the ge-
nome. We used in silico simulation to demonstrate that DACS is
capable of efficient and accurate localization of the majority of
DNase I-hypersensitive sites in the human genome without requir-
ing an independent validation step. A unique feature of DACS is
that it permits unbiased evaluation of the chromatin state of
regulatory sequences from widely separated genomic loci. We
found surprisingly large differences in the accessibility of distant
regulatory sequences, suggesting the existence of a hierarchy of
nuclear organization that escapes detection by conventional chro-
matin assays.

cis-regulatory elements � DNase I-hypersensitive sites � gene regulation

Comprehensive delineation of functional noncoding se-
quences in complex genomes is a major goal of modern

biology. The activation and function of regulatory sequences is
linked to focal alterations in chromatin structure (1, 2), which
may be detected experimentally through hypersensitivity to
DNase I in the context of nuclear chromatin. DNase I-hyper-
sensitive sites (HSs) are the sine qua non of classical cis-
regulatory elements, including promoters, enhancers, silencers,
insulators, and locus control regions (3–9). Systematic mapping
of DNase I HSs across the genome should therefore yield a
comprehensive library of cis-regulatory elements, but is intrac-
table with conventional approaches.

The feasibility of cloning DNase I HSs has recently been
demonstrated by using both direct vector-assisted end cloning
(10) and a subtractive enrichment approach (11). The former
method is limited to quiescent cells and therefore cannot be used
in the context of well-studied and widely used cell lines or other
proliferating tissues. Moreover, neither method is well suited to
efficient recovery of DNase I HSs on a genomewide scale
because of the 1:1 mapping between cloning events and se-
quences; both require large amounts of sequencing and, criti-
cally, an independent molecular validation step for each candi-
date clone.

The application of tag-based or ‘‘digital’’ methodologies has
revolutionized the study of transcriptome biology (12–14), en-
abling both the generation of genomewide data sets and insight
into the tremendous dynamic range of gene expression.

Genomewide localization of DNase I HSs and associated
cis-regulatory sequences requires development of a high-
throughput approach that (i) can efficiently map millions of

individual DNase I cutting events, (ii) can be applied to any cell
type, and (iii) is self-validating (i.e., it can be applied to auto-
matically map HSs at a high confidence level without requiring
a subsequent, independent molecular validation step).

Here we describe an approach that combines molecular and
computational methods to achieve these aims. We used 19�
20-bp genomic DNA tags to localize individual DNase I cutting
events in nuclear chromatin and discovered DNase I HSs by
identifying statistically significant tag clustering events by using
a quantitative algorithm. This method, digital analysis of chro-
matin structure (DACS), provides the framework for genome-
wide localization of DNase I HSs and associated cis-regulatory
sequences in an efficient, quantitative, and automated fashion,
opening the door for systematic exposition of the regulatory
genome.

Methods
Cell Culture and DNase I Digestion. We cultured K562 (ATCC) cells
in RPMI medium 1640 (Invitrogen) supplemented with 10%
FBS to a target density of 5 � 105 cells per ml. We performed
DNase I (Roche Applied Sciences, Indianapolis) digestions
(0.5–2 units per ml) according to the protocol described in ref.
15 and purified DNA by using the Puregene system (Gentra
Systems).

Creation of DACS Libraries. We developed a tagging method for
identifying individual DNase I cut sites in nuclear chromatin.
Fig. 1 shows a schematic of the protocol, further illustrated in
Fig. 6, which is published as supporting information on the PNAS
web site. Additional detailed protocol information, including
sequences of all oligonucleotides, is provided in the Supporting
Text, which is published as supporting information on the PNAS
web site. After digestion of isolated nuclei with DNase I under
hypersensitive treatment conditions, DNase-cut ends were re-
paired and ligated to a biotinylated linker adaptor containing
dual restriction sites for a type IIs restriction endonuclease
(MmeI) and a four-cutter enzyme (MluI), oriented such that the
direction of cleavage of MmeI is toward the genomic DNA
ligand. After linker ligation, the preparation was digested to
completion with MmeI, which released the linker plus 19–20 bp
of genomic DNA sequence (owing to a common 1-bp wobble in
the MmeI indirect cut site). Linker�genomic DNA tag fragments
were then isolated and purified over streptavidin-coated mag-
netic particles (Dynal, Great Neck, NY). A second linker adaptor
containing a BsiWI site was ligated to the exposed genomic DNA
end of each fragment bound to the beads. By using primers
complementary to each of the linker sequences, the genomic
DNA tags were PCR-amplified in situ while attached to the
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beads. The products of this amplification were collected and
separated by electrophoresis through a 10% polyacrylamide gel,
purified, and minimally reamplified. The second linker adaptor
was released after BsiWI digestion, and the tags were recaptured
on streptavidin-coated beads. Tags were cleaved from the beads
by digestion with MluI. After purification, tags were ligated to
form high-molecular-weight concatemers and size-selected over
a 1.5% agarose gel. Fragments �500 bp in length were isolated
and cloned into pGEM5z (Promega) in preparation for sequenc-
ing. Further detailed protocol information is provided in the
Supporting Text.

DNA Sequencing. All DNA sequencing reactions were carried out
on MegaBace 4000 384-capillary sequencers (Amersham Bio-
sciences) by using energy transfer chemistry. Sequences were
analyzed with PHRED, and only those with high-quality base calls
were subjected to further analysis.

Mapping of Tags to the Genome. Mapping of short sequence tags
to the human genome is inefficient using conventional tools such
as BLAT (16) and BLAST (17). For example, BLAT employs an
index of nonoverlapping 11-mers and is unable to map sequences
smaller than 22 bp. To circumvent these inefficiencies, we used
a positional index of all 16-mers (including overlaps and reverse
complements) in the human genome (M.H., unpublished work).
We then used a multistep procedure to localize tags. First, all
tags were examined for an initial exact match within the 16-mer
database. Once an initial match was made, the program at-
tempted to extend the match to the full length of the query tag
sequence vs. the reference genome. If the initial 16-mer index
search did not produce an exact match, subsequent searches of
the tag were run and the number of exact subsequent matches
to the reference genome, if any, was reported. This process

enables 1- to 2-bp mismatch recognition, which is sufficient to
account for sequencing errors and genomic variants.

Primer Selection. We designed primers to amplify �250-bp
genomic segments spanning candidate HS sequences by using
PRIMER3 (18).

Analysis of DNase I Hypersensitivity by Hypersensitivity Quantitative
PCR (HSqPCR). We used a real-time quantitative PCR-based
method to quantify DNase I hypersensitivity in K562 cells as
described in refs. 11 and 19.

Conventional DNase I Hypersensitivity Assays. Conventional DNase
I hypersensitivity studies were performed by using the indirect
end-label technique (20) according to a standard protocol
described in ref. 21.

Microarray Expression Analysis. Gene expression analysis was per-
formed on a Human 1A Oligo Microarray (Agilent, Palo Alto,
CA). Total RNA was isolated from 5 � 107 K562 cells with an
RNeasy total RNA isolation kit (Qiagen, Valencia, CA).

Results
Overview of Digital Analysis of Chromatin Structure. DACS is a
hybrid molecular–computational methodology comprising two
discrete phases: (i) production of a genomic DNA tag library
encompassing individual DNase I-hypersensitive cut sites in
nuclear chromatin and (ii) computational analysis of genomic
tag distributions to identify statistically significant clusters and
derive the underlying HS sequence. A schematic of the process
of creating DACS tag libraries from DNase I-treated nuclear
chromatin is provided in Fig. 1 and illustrated in Fig. 6. DACS
tag libraries provide base-pair resolution of DNase I cutting
events and are therefore highly complex compared with RNA-
derived libraries. DACS also differs fundamentally from previ-
ously described genomic DNA tag-based methods (13, 22, 23)
used to study gene expression or copy number in which tags are
generated relative to restriction enzyme sites, and subsequent
tag localization in the genome relies explicitly on prior knowl-
edge of the restriction site ‘‘scaffold.’’

Application of DACS to K562 Erythroid Cells. Using the method
outlined in Fig. 1, we obtained 257,443 tags from K562 cells. Of
these, 237,688 (92.3%) were distinct within the tag population,
of which 235,523 (99.1%) could be mapped to the current build
of the human genome (Table 1). The number of tags that could
be assigned to unique genomic locations was 157,744 (65.1%),
and only such tags were used in subsequent analyses. There were
2,290 unmappable tags that were more G�C-rich than the
genome as a whole, compatible with derivation from difficult-
to-sequence regions such as centromeres. There were 28,215 tags
(11.9% of distinct, 13.64% of total) that mapped to 10 or more
locations (Table 1). This class encompasses classical repetitive
elements, which were thus markedly depleted relative to the
genome as a whole, where they account for �40% of the
landscape. Although redundant tags may theoretically result
from independent DNase I cutting events at identical bases on
different alleles, this phenomenon is expected to be rare. Ob-
served tag redundancy is primarily a consequence of PCR
amplification, although �94% of tags mapping �7 times to the
genome were unique within the tag pool (Table 1), indicating
amplification did not compromise overall complexity.

Identification of Statistically Significant Tag Clusters. A priori, DACS
libraries are expected to contain three types of tags: (i) tags that
derive specifically from HSs, (ii) tags that derive from cutting
within DNase-sensitive (although not hypersensitive) domains,
and (iii) random tags derived either from nonspecific DNase I

Fig. 1. Schematic of DACS library creation. See Methods and Supporting Text
for description and Fig. 6 for additional illustration.
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cutting or from random fragmentation of genomic DNA occa-
sioned during purification.

To localize DNase I HSs, we developed a two-phase quanti-
tative algorithm to identify statistically significant tag clusters.
The algorithm first considers windows of increasing size (100-bp
increments) around each DACS tag and identifies cases in which
the number of observed tags has exceeded the expected uniform
distribution at a threshold of P � 0.001 (see Supporting Text).
Next, the algorithm corrects the calculated significance for
regions of the genome that have received higher numbers of cuts
(e.g., extended open chromatin domains).

DNase I HSs typically comprise a core site-forming domain
�150–250 bp in size, over which regulatory factor–DNA inter-
actions take place (7, 24); however, the consequent chromatin
disruption may give rise to a hypersensitive domain up to several
hundred base pairs long including flanking sequences (21, 24).
Furthermore, HSs are frequently clustered. As a first approxi-
mation of the average size of HS regions over which tag
clustering should be evident, we therefore selected a window size
of 1,250 bp (250 � 500 bp). Using this window size, we identified
5,750 statistically significant clusters in the first phase of clus-
tering and 3,714 clusters in the second phase after adjusting for
regional differences in tag density. The residual refined set
comprised 3,492 two-member clusters (2-clusters), 188 3-clus-
ters, 28 4-clusters, and 10 5-clusters. Further analysis revealed
that the algorithm detected no statistically significant 2-clusters
where the distance between tags was �650 bp. Higher-order
cluster classes were all significant within the full 1,250-bp
window. Growth in tag clusters as a function of mapped tags is
shown in Fig. 7, which is published as supporting information on
the PNAS web site.

Enrichment at Genomic Landmarks Associated with Functional Ele-
ments. We observed marked enrichment of both tags and clusters
around transcriptional start sites (TSSs), CpG islands, and
evolutionarily conserved noncoding sequences (Fig. 2A and Fig.
8, which is published as supporting information on the PNAS
web site).

DACS clusters displayed substantially greater enrichment
around TSSs (Fig. 2B) and CpG islands (data not shown) than

did tags alone, compatible with overall enrichment for HSs in
these regions. Less marked enrichment was observed over
conserved noncoding sequences (Fig. 8). DACS clusters were
also preferentially enriched around expressed vs. nonexpressed
genes, although the difference was not marked (Fig. 8).

We also determined the proportion of clusters of a given size
(i.e., tag number) that fell within �2 kb of a TSS. This investi-
gation revealed a marked and steady increase as a function of
cluster size (Fig. 3A), suggesting a corresponding enrichment in
functional elements in higher-density clusters.

DACS Clusters Identify both Known Regulatory Sequences and Previ-
ously Unrecognized Functional Elements. Examples of unbiased
identification by DACS clusters of both known and previously
unrecognized functional elements are shown in Fig. 4. Examples
of known cis-regulatory elements identified included the pro-
moter of the erythroid-specific transcription factor NF-E2 gene
(chr12), the major 3� enhancer of the hematopoietic-specific
stem cell leukemia gene (SCL or TAL1) on chr1 (25), and the p53
promoter complex (chr17) (26) (Fig. 4 A–C). Examples of

Table 1. Mapping DACS tags to the human genome

Matches in
genome No. of tags

% of
total

No. of
distinct

tags
%

redundant

0 2,290 0.89 2,165 5.46
1 163,849 63.64 154,744 5.56
2 27,370 10.63 25,580 6.54
3 10,828 4.21 10,189 5.90
4 5,961 2.32 5,612 5.85
5 3,876 1.51 3,606 6.97
6 2,847 1.11 2,676 6.01
7 2,205 0.86 2,011 8.80
8 1,664 0.65 1,544 7.21
9 1,438 0.56 1,346 6.40

�10 35,115 13.64 28,215 19.65

Of 257,443 tags, 255,153 (99.1%) could be mapped to the current human
genome build (National Center for Biotechnology Information build 34�UCSC
HG16). Tags are classified according to how many times each matches within
the genome. Tags matching �10 times are grouped in the bottom row. ‘‘No.
of distinct tags’’ refers to tags occurring at least once within each tag sub-
population. ‘‘% redundant’’ refers to the percentage of total tags occurring
two or more times within each tag subpopulation (most readily explained as
a consequence of PCR amplification during tag preparation). Only nonredun-
dant tags within the singly matching subpopulation were considered in the
analyses.

Fig. 2. Enrichment of DACS tags and clusters in genomic regions associated
with regulation. y axes: average number of individual DACS tags or statistically
significant tag clusters per 100-bp bin. x axes: normalized distance (kb) relative
to genomic landmark. (A) Distribution of 154,744 distinct, uniquely mapping
tags relative to TSSs (orange) and 3� ends of �18,000 RefSeq genes (green). (B)
Statistically significant tag clusters (green; n � 3,492) show markedly greater
enrichment relative to TSSs vs. individual tags (orange).
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previously unrecognized elements are shown in Fig. 4 D–F.
Interestingly, one of these elements lies within a highly con-
served sequence block on chr2 located �100 kb from any known
gene; however, an adjacent block of equal size and conservation
is not an HS. Selected elements identified by DACS and
confirmed with HSqPCR were further validated with conven-
tional hypersensitivity assays, demonstrating the correspondence
between DACS-identified elements and classical DNase I HSs
(Fig. 3 B and C).

Cluster Centroids Localize HS Core Sequences. In principle, the
spatial distribution of tags around an HS should permit local-
ization of the HS core domain where hypersensitivity is maximal.
In practice, however, the precision is limited by the number of
tags available for analysis in any given region.

We hypothesized that, for limiting numbers of tags, the cluster
centroid would predict the location of the underlying HS core.
On this assumption, the predictive value of the cluster as a whole
is determined by two factors: (i) the probability that an HS is
contained somewhere within the cluster domain (i.e., that it is a
true positive cluster) and (ii) that the HS can be definitively
positioned within the cluster bounds on the basis of the tag
pattern alone. The latter factor is strictly a function of the density
of tags within the cluster window. Both factors are, in turn, a

Fig. 3. Genomic localization of 257,443 DACS tags. (A and B) Predictive
potential of clusters for HSs increases exponentially. (A) Percentage of cluster
centroids within �2 kb of an annotated RefSeq TSS as a function of cluster size
(size � 1 denotes individual tags). (B) Percentage of cluster centroids that
coincide precisely with DNase I HSs as a function of cluster size. The ability to
correctly predict the location of the HS increases exponentially as a function
of cluster size. (C and D) Previously unrecognized elements identified by DACS
clusters correspond with classical DNase I HSs. Conventional DNase I hyper-
sensitivity assays were performed to examine previously unrecognized ele-
ments identified by DACS. (C) Conventional hypersensitivity assay of the
DACS-identified HS in an internal intron of LRBA (see Fig. 4E). (D) The HS
element�DACS cluster shown in Fig. 4F (parental bands: 11.1-kb EcoN1 and
6-kb HindIII fragments, respectively).

Fig. 4. DACS tag clusters identify known and previously unrecognized
functional elements. Tag positions (orange and yellow vertical arrows) are
shown relative to chromosomal position, known genes (blue), CpG islands
(green), and human–mouse conservation (brown). Statistically significant tag
clusters are identified with orange arrows and horizontal brackets. (A–C)
Examples of known regulatory elements identified de novo by DACS: pro-
moter of erythroid-specific transcription factor NF-E2 gene (chr12) (A); TAL1�
SCL 3� enhancer (chr1) (26) (B); p53 promoter complex (chr17) (27) (C). Note
that the computed cluster centroid (*) falls between two HSs (thick arrows).
(D–G) Examples of previously unrecognized elements identified by DACS:
element within intron of N-acetylgalactosaminyltransferase gene (GALNT1;
chr18) (D); intronic element within lipopolysaccharide-responsive�beige-like
anchor protein (LRBA; chr4) (E); cluster over CpG island 12 kb upstream of gene
of unknown function on chr3 (F); cluster over highly conserved sequence block
on chr2 located �100 kb from any known gene (G). Repeated tagging of
specific functional elements in advance of others suggests a discrete hierarchy
of nuclear chromatin organization that escapes detection with conventional
assays.
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function of the compactness of the cluster, namely, the genomic
distance over which the tags are distributed.

To determine the approximate percentage of individual tags
(vs. clusters) that overlapped a DNase I HS, we randomly
selected 36 tags and assayed them for hypersensitivity in K562
cells by using HSqPCR. Of these, two (5.55%) coincided pre-
cisely with an HS. We then tested the centroids of 36 randomly
selected clusters comprising two tags, of which three (8.3%)
coincided with an HS. To test the correspondence between
cluster centroids and HSs, we randomly selected 50% of each
pool of clusters containing three, four, and five tags. We
identified DNase I HSs at computed centroids of 18�90 (20%)
3-clusters, 5�14 (35.7%) 4-clusters, and 3�5 (60%) 5-clusters
(Table 2, which is published as supporting information on the
PNAS web site). These numbers reflect an exponential increase
in the predictive value of clusters as a function of tag content
(Fig. 3B). We also tested one 6-cluster and one 7-cluster, both of
which were HSs. Because the 111 clusters tested were widely
distributed across the genome, the results confirm a substantial
global enrichment for DNase I HSs within DACS clusters.

For the cluster sizes we analyzed, the correspondence between
cluster centroids and HSs is not expected to be perfect. The p53
promoter provides a salient example. The p53 gene contains two
promoters: one located upstream of the first exon and a second
more powerful promoter located within the proximal first intron
(26), over which we detected significant tag clustering (Fig. 4C).
Testing of the computed cluster centroid with HSqPCR, how-
ever, did not initially reveal an HS. To explore this result further,
we tiled contiguous 250-bp amplicons across 1,500 bp encom-
passing the cluster. This tiling revealed the location of two
DNase I HSs that coincided with the two previously described
promoter elements. However, neither of these abutted the
cluster centroid. This further confirmed our prediction that,
given the relatively low density of tags in the cluster, the centroid
only approximated the HS location. As such, we believe that the
predictive values of each cluster size noted previously are likely
to be underestimated, perhaps significantly.

Modeling Genome-Scale Discovery of Functional Elements with DACS.
We sought to determine the number of tags required to map a
given number of DNase I HSs within the human genome with
a prespecified positive predictive value (PPV) threshold (i.e.,
the probability that the cluster centroid accurately predicts the
location of an HS). This probability is a function of (i) the
number of tags mapped, (ii) the proportion of individual tags in
the input tag pool that coincide precisely with HSs (the ‘‘en-
richment’’), and (iii) the relative ‘‘intensity’’ of DNase I HSs.

To quantify the relationship between these variables, we
programmed a simulation to determine the number of HSs that
would be identified by using DACS at a fixed PPV threshold of
90%, as a function of both the tag pool enrichment and the
number of mapped tags. We distributed 50,000 (nonoverlapping)
model HSs against the complete human genome sequence, an
estimate of the number of HSs that may be active in a particular
differentiated cell type. HSs were distributed among noncoding,
nonrepetitive regions. Further confinement of the model HSs
relative to annotated features (e.g., TSSs) was not necessary
because all combinations of nonoverlapping distributions are
mathematically equivalent. In silico DACS tag pools of various
levels of enrichment (5–20%) were then generated and mapped
to the genome in a manner identical to that used to map the
experimental tags. Tags that did not derive directly from model
HSs were distributed quasirandomly, with a slight bias toward
regions in the vicinity (�25 kb) of HSs (to reflect the predicted
general accessibility of chromatin in these locales). Only
uniquely mapping tags were considered. The simulation then (i)
identified statistically significant tag clusters as described above,
(ii) computed the centroids, and (iii) determined the proportion

of cluster centroids for each cluster size (four tags, five tags, six
tags, etc.) that overlapped model DNase I HSs. Finally, it
selected the cluster size for which �90% of the centroids
overlapped true-positive HSs (i.e., the 90% PPV threshold).

Fig. 5 shows, for a given level of enrichment and number of
uniquely mapping tags, the number of DNase I HSs that were
localized with a cumulative false-positive rate of �10%. As
expected, this number grows rapidly as a function of mapped tags
and then levels off as the density of background tags increases.
However, the behavior is not asymptotic, because larger num-
bers of tags will eventually enable identification of most HSs in
the population (data not shown). This simulation demonstrates
the feasibility of quantitative, automated mapping of HSs in the
context of the human genome at a high predictive accuracy
threshold (�90%) and, furthermore, that this objective can be
achieved with only modest levels of enrichment in the primary
tag pool.

Discussion
The development of ‘‘digital’’ or tag-based methodologies to
quantify genomic phenomena, including gene expression (12–
14) and copy numbers (22, 27), has had a major impact on
genome annotation and the analysis of transcriptional regulation
and genome dynamics. We have described a digital methodology
capable of high-throughput, quantitative, and automatic identi-
fication of DNase I HSs and associated cis-regulatory sequences
on a genomic scale. Previously described genomic tag-based
methods rely on restriction-site scaffolds to simplify radically the
genomic mapping process. By contrast, our results demonstrate
the practicality of large-scale mapping of 19�20-bp sequences
from unrestricted genomic locations, providing the potential for
base-pair resolution.

Comprehensive Genomewide Mapping of DNase I HSs. The power of
DACS for identification of DNase I HSs is determined princi-
pally by the number of tags mapped to the genome, subject to a
given level of enrichment for HSs in the primary tag pool. As
shown in Fig. 5, high levels of primary enrichment are not

Fig. 5. Modeling genome-scale discovery of HSs with DACS. Shown are
results of an in silico simulation of DACS indicating the number of HSs (y axis)
that would be identified at a fixed 90% PPV threshold as a function of the
number of tags (x axis) mapped for a given input tag-population enrichment
for HSs (colored curves; range 2–20%). DACS was simulated against a model
genome in which 50,000 model DNase I HSs were distributed against the
complete human genome sequence. As expected, the number of HSs pre-
dicted with �90% accuracy grows rapidly and then levels off. Larger numbers
of tags will eventually enable identification of most HSs in the population (not
shown).
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required to achieve comprehensive recovery of tens of thousands
of DNase I HSs from across the genome. The cells we used
(K562) in this pilot study were rapidly dividing, and BrdUrd
labeling experiments revealed that �30% of cells in logarithmic-
phase culture were actively undergoing replication (data not
shown). Presumably, this S-phase fraction significantly compro-
mised the observed enrichment (�5%), because DNase I cutting
over chromatin-disassembled S-phase genomes is expected to be
largely nonspecific. K562 cells cannot easily be rendered quies-
cent, nor can they be synchronized, by using conventional
methods. To improve enrichment, DACS may be applied to
nondividing or synchronized cells, or it may be augmented by a
subtractive enrichment step (11).

The precision with which DACS can localize HS core se-
quences is dictated by the correspondence between the tag
pattern within clusters and the actual location of the HS core
sequence. However, placed in perspective, even localizing HSs to
an �1-kb interval would be of considerable value because this
size is in the typical range of sequence elements selected for
engineering into genetic vectors for further functional studies.

It is clear that analysis of several million tags will be required
to produce a comprehensive genomic map of DNase I HSs for
a given tissue. However, this figure is comparable to the
number of ESTs in the dbEST EST database and is only a small
fraction of the number of tag sequences that have been
collectively analyzed by other methods, such as serial analysis
of gene expression (SAGE). DACS tag pools of this size can
be generated readily and economically by using either high-
throughput sequencing of tag concatemers or by means of
direct ‘‘signature’’ sequencing of DACS tags with massively
parallel signature sequencing (MPSS) (28).

Chromatin Organization of Regulatory Sequences: A Quantitative
Perspective. A unique feature of DACS is that it provides an
unbiased view of the relative chromatin accessibility of func-
tional elements located in widely separated genomic loci. We
recovered large numbers of functional elements, including reg-
ulatory elements of erythroid- and hematopoietic-specific genes.
The fact that the NF-E2 promoter and the SCL�TAL1 enhancer,
for example, were repeatedly tagged in advance of other well
described regulatory sequences, such as the �-globin locus
control region, demonstrates how an unbiased approach can
reveal the existence of a discrete hierarchy of chromatin acces-
sibility of specific regulatory sequences. This hierarchy may
reflect local structural features, or, more probably, the localiza-
tion of specific elements in more accessible nuclear compart-
ments. Systematic application of DACS therefore promises to
add a new structural dimension to the analysis of cis-regulatory
sequences and other functional elements and may provide telling
insights into the structural biology of the nucleus.

Digital analysis of chromatin structure will enable system-
atic cataloging of cis-regulatory sequences in a wide spectrum
of normal and diseased tissues and provide quantitative chro-
matin structural information for each element. Comparisons
across tissues will enable classification of tissue-specific, mul-
tilineage, and constitutively active HSs. Analysis of differen-
tiating or developing tissue axes should likewise enable iden-
tification of elements important in commitment to a given
cellular program. Localization of regulatory sequences to
small genomic intervals should considerably impact computa-
tional studies and the search for functional genetic variation,
both of which have been hampered greatly by the vast genomic
background.
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