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The analysis of human whole-genome sequencing data presents
significant computational challenges. The sheer size of datasets
places an enormous burden on computational, disk array, and
network resources. Here, we present an integrated computational
package, PEMapper/PECaller, that was designed specifically to min-
imize the burden on networks and disk arrays, create output files
that are minimal in size, and run in a highly computationally efficient
way, with the single goal of enabling whole-genome sequencing at
scale. In addition to improved computational efficiency, we imple-
ment a statistical framework that allows for a base by base error
model, allowing this package to perform as well or better than the
widely used Genome Analysis Toolkit (GATK) in all key measures of
performance on human whole-genome sequences.
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hole-genome sequencing (WGS) using short reads on the
[llumina platform is an increasingly cost-effective approach
for identifying genetic variation, with growing potential for both
research and clinical applications (1-4). A critical challenge is in
the development of efficient algorithms capable of rapidly and
accurately identifying variable sites from among the enormous
collection of sequence reads (5). Given the large size of eukaryotic
genomes, even modest false-positive or -negative error rates can act
as barriers to the success of genetic studies and would inhibit the
utility of such studies for both research and clinical applications.
The de facto standard methodology for mapping and calling
variants is the so-called Burrows—Wheeler aligner (BWA)/Genome
Analysis Toolkit (GATK) best practices pipeline (6), which was
devised and validated for whole-exome experiments and has greatly
facilitated whole-exome studies for identification of disease-causing
variants (7-9). Although this pipeline can be used successfully at
whole-genome scales, there are barriers to its use, particularly as
the number of samples increases. BWA (10), Bowtie (11), and most
other commonly used read mapping software packages are
designed to run in low-memory footprints [i.e., less than 8 or 16
gigabytes (GB) random-access memory (RAM)]. Because whole-
genome datasets are large (necessarily greater than 100 GB
uncompressed for 30x coverage), these read mappers must con-
tinuously read and write large quantities of data to and from the
disk. Sorting reads, in particular, is highly disk input/output (I/O)-
intensive. Although a high-performance disk array can provide the
needed I/O performance for a single instance of BWA/GATK
processing (6), no disk array can possibly accommodate the I/O
performance required to run multiple GATK instances simulta-
neously on parallel processors. Moreover, even if the disk array
itself could meet the demand, the network/fiber interconnects be-
tween the array and the computational nodes quickly become
saturated. Simply put, although BWA/GATK best practices do an
excellent job in a nonclustered environment, the “network cost” in
a clustered environment significantly limits its performance for
large WGS datasets.

www.pnas.org/cgi/doi/10.1073/pnas.1618065114

GATK best practices have additional limitations. First, output
files can be quite large. Binary sequence alignment/map (BAM)
files, required to store sequence alignment data, are almost always
larger than the initial fastq files of nucleotide sequences, and
Haplotype Caller (HC) output can be nearly one-half the size of
the BAM files. Thus, total storage requirements to run the pipeline
can approach 300 GB compressed per sample for WGS data.
Second, variant calling begins with individual samples (not col-
lections of samples; i.e., joint calling), and as a result, the distinc-
tion between sites called as homozygous reference genotypes and
those called as missing (insufficient evidence to make a call) is not
always maintained. Third, the GATK best practices joint geno-
typing caller, required to generate the highest-quality genotype
calls, does not scale well to whole-genome data. As currently
implemented, the joint caller simply will not run on whole-genome
size files in sample collections larger than 10-20 human genomes,
even on computers with 512 GB RAM. Crashing with more than
20 samples seriously limits the utility of GATK for large-scale
sequencing. Finally, the entire GATK best practices pipeline relies
on and uses enormous quantities of “previous knowledge” about
the position and frequency of SNPs and indels (insertion/deletion
variants). Using known positions of variants is both a strength, in
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that it leverages outside knowledge to improve performance, and a
weakness, in the sense that it makes its application to nonhuman
systems difficult and may also create biases in variant calling.

Here, we describe two software programs intended to overcome the
limitations of GATK best practices called PEMapper and PECaller.
PEMapper solves the inherent limitations of the BWA/GATK pipe-
line by performing all of the necessary read sorting, storing, and
mapping procedures in RAM. Human genome indices are preloaded,
and final output is written only once (never reloaded, resorted, etc.).
These technical changes lead to substantial performance gains as
detailed below. PEMapper requires a large RAM allocation (typically
nearly 200 GB for the sequence of a whole human genome) but in
exchange, does not overburden the network or disk subsystems.
Modern computational clusters, such as those found at many uni-
versities or available from cloud providers [i.e., Amazon Web Services
(AWS)], are well-equipped to run many simultaneous instances of
PEMapper in parallel to expedite experiments. Additionally, output
from PEMapper/PECaller comes in much smaller files, decreasing the
long-term storage requirements for WGS data (Table 1).

Unlike PEMapper, with innovations that are strictly in imple-
mentation, PECaller represents an intellectual departure from
several other genotype-calling models (6, 12) First, variant de-
tection occurs simultaneously (joint calling in the initial stage) in all
samples from the same experiment. Joint calling from the outset is
important, because it ensures that the distinction between missing
data (data with insufficient evidence for any genotype) and ho-
mozygous reference data is recognized from the inception. In ad-
dition, it allows the imposition of a population genetics-inspired
prior on the data and the ability to fit sophisticated models of read
error to help distinguish bases with high error rates from those that
actually harbor variants. The population genetics prior accounts for
the fact that most sites are expected to be invariant but conditional
on the site containing a variant; the variant is expected to be in
Hardy-Weinberg equilibrium. Second, another innovation of the
PECaller method involves the underlying statistical model used to
describe the data. Formally, we assume that read depths are drawn
from a Polya-Eggenberger (PE; Dirichlet multinomial) distribu-
tion, not the more conventional multinomial assumption. Using a
PE distribution allows us to model a nucleotide base as having both
a relatively high “error rate” but also, importantly, a large variance
in that rate. Use of the PE distribution helps us reduce false-pos-
itive variant calling, while at the same time, enabling us to call true
heterozygotes, even when the relative fraction of the two alleles is
highly uneven (another common occurrence). The fact that
PEMapper/PECaller does not use any information about “known”
SNPs or indels makes it far better suited for nonhuman systems or
human diseases, such as cancer, with large numbers of de novo
mutations. We show that PEMapper/PECaller, despite not using

Table 1. Data storage requirements for a single sample using
each pipeline

File type GB
GATK
FASTQ files 78.9
BAM file 115
Individual VCF file 53
Combined VCF file (per sample) 0.561
Total ~247.5
PEMapper/PECaller
FASTQ files 78.9
Pileup file 7.8
Mapping files 4
SNP file (per sample) 0.035
Indel file 0.0001
Total ~91
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Fig. 1. Theta across all 97 samples based on the calls from PEMapper/

PECaller, GATK PASS, and GATK Tranche99.9. PEMapper/PECaller and GATK
PASS samples sit between 0.00075 and 0.0009 variants per base as expected.
Tranche99.9 calls are much lower.

any such information, performs as well or better than GATK best
practices in all aspects of variant discovery and calling.

Results

Performance of PEMapper/PECaller. The simplest measure of vari-
ation, named theta (13), counts the number of heterozygotes
called per sample per base. Theta is estimated to be somewhere
between 0.0008 and 0.001 in humans (14, 15). Fig. 1 shows theta
for each of 97 sequenced human genome samples that passed
quality control (QC) (Methods). Most remarkable is the extremely
consistent levels of variation called between samples, with indi-
viduals ranging from 0.0008351 to 0.0008624. The overall variation
levels are consistent with previous estimates.

False-Positive Calling. Our analysis provides ample evidence that this
called variation contains very few false-positive findings (nonvariant
sites called variant in error). Sequence changes from A->G, G->A,
C->T, and T->C are called “transitions.” All other changes are
called “transversions.” There are twice as many transversions pos-
sible as transitions. Many mutational mechanisms favor transitions
over transversions (oxidative deamination, etc.). Selection also
likely favors transitions over transversions (much more likely to be
silent in exons; similar binding for transcription factors; e.g., wobble
binding). However, random genotype calling error likely results in
increased transversions (because there are twice as many ways to
get a transversion as a transition when you make an error). Thus,
real data ought to be enriched for transitions over transversions,
and false data ought to be enriched for transversions. Picking nu-
cleotides at random would give a 0.5:1 transition to transversion
(Ts/Tv) ratio. It is widely believed that the overall Ts/Tv ratio is ~2.0
in humans (genome.sph.umich.edu/wiki/SNP_Call_Set_Properties).
For every sample in this study, the Ts/Tv ratio was between 2.042:1
and 2.051:1 (Fig. 2). Looking at the entire collection of variants, the
ratio was 2.073:1. This overall ratio can be used to estimate the
fraction of false-positive variant calls. If we assume that the “true”
ratio is 2.12:1, a value determined from all variants called by both
PEMapper/PECaller and GATK (see below), and we assume that
false-positive variant calls have a ratio of 0.5:1 (as expected by
chance), then an observed ratio of 2.073:1 implies that, over all 97

Johnston et al.
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samples, ~3% of the variants were false positives. On a per sample
basis, less than 1 in 3,000-5,000 called variants per sample were
false positives. The data quality from PEMapper/PECaller com-
pares favorably with that of other next-generation sequencing
(NGS) analytical tools (16).

Exonic Variation. In general, there ought to be far less variation in
exons than in the genome as a whole. In these samples, we saw theta
in exons to be between 0.0004284 and 0.0004550 per sample (Fig. 3)
(i.e., slightly more than one-half its value for the genome as a
whole). We also found a much higher Ts/Tv ratio (2.963:1-3.130:1)
(Fig. 4), consistent with selection for transitions in exons. Of the
variants in exons, one expects approximately one-half to be “silent”
(making no change to the amino acid sequence) and one-half to be
replacement (changing the amino acid sequence). The average si-
lent to replacement ratio (17) per sample was 1.101:1, with a range
from 1.074:1 to 1.127:1 (Fig. 5). On average, there were ~20,000
variants in the CCDS-defined (Consensus Coding Sequence
Project; https:/www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi)
exome of each individual. Over the entire collection of sites, 44.54%
of all exonic variants were silent. This number is very similar to
published estimates from 100x whole-exome sequencing (18). Of
note, Tennessen et al. (18) restricted themselves to ~16,000 well-
covered genes, where here, we use the whole-CCDS exome.

Calling Rare Variation. Naively, we might imagine most false posi-
tives to be in the “singleton” category (i.e., variants seen only once
in our sample set). Here, singletons have a Ts/Tv ratio of 2.105-1,
better than the PEMapper/PECaller average of 2.073-1 and very
close to Ts/Tv ratio of the overlap set between GATK and
PEMapper/PECaller. Therefore, singletons, despite the additional
potential for false-positive calls, actually seem to be as reliable or
more reliable than the set of all sites.

dbSNP 146 contains all variants currently reported in the EXAC
(7) dataset as well as all variants discovered by 1000 Genomes
(19). An exonic variant not found in dbSNP 146 is almost surely
either a false-positive call or a variant that is exceedingly rare in

Ts/Tv
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Fig. 2. Comparison of Ts/Tv ratios for PEMapper/Caller, GATK PASS, and
GATK Tranche99.9 called variants. PEMapper/PECaller and GATK PASS are
virtually identical at near 2.04 and 2.05 per sample, respectively, indicating
excellent quality calls. GATK Tranche99.9 is much lower, between 1.3 and 1.5
per sample, indicating much lower-quality calls.
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Fig. 3. Theta in all sample exomes based on PEMapper/PECaller, GATK PASS,
and Tranche99.9 calls. GATK PASS and PEMapper/PECaller samples are near
0.00045 as expected, with PEMapper/PECaller calling slightly more variants.

the general population. Exonic sites that change the amino acid
(replacement sites) and are not found in dbSNP should be the
category of variation most enriched for false-positive calls. For the
entire set of replacement SNPs, the Ts/Tv ratio is 2.173. Re-
placement SNPs in dbSNP are 2.254, whereas those not in dbSNP
are 1.762. For singleton replacement SNPs, the Ts/Tv ratio is
2.328. Singleton replacement SNPs in dbSNP are 2.562, whereas
those not in dbSNP are 1.846. This set of singleton replacement
sites that are not found in dbSNP is the set that ought to be most
enriched for false positives. Despite this enrichment, replacement
sites that are not in dbSNP have a Ts/Tv ratio only ~10% lower
than SNPs overall, suggestive that, although this set may be the
most enriched for false positives of any possible set, it is still
comprised largely of true-positive calls.

Completeness and Accuracy. Overall, more than 98.4% of the
nonrepeat-masked genome had high-quality calls. As expected,
more than 99% of these sites were called homozygous reference in
all 97 samples. At sites called variant in at least one sample, our
overall data completeness was 99%. Most of these samples (93)
were also genotyped on Illumina 2.5M arrays. These arrays provide
over 140 million genotypes that can be compared with the se-
quence-called genotype. Over these 140 million genotype calls,
PECaller data were 99.85% complete and agreed with array call
99.76% of the time. Partitioning these numbers by array-called
genotype, we note that, if the genotyping array called “homozygote
reference,” the sequencing call was 99.95% complete and agreed
99.94% of the time. If the array called a “heterozygote,” the se-
quencing was 99.81% complete and agreed 99.23% of the time.
Finally, if the array called a “homozygote nonreference,” the se-
quencing was 99.88% complete and agreed with the array 99.56%
of the time.

Lack of agreement between sequencing- and array-based calls
can be caused by errors in either the array or the sequencing call.
One can show that, if the arrays are 99.8% accurate, regardless of
true genotype, the agreement level above is consistent with se-
quencing being 99.9% accurate overall (i.e., if arrays are only
99.8% accurate, most of the disagreements between array and
sequencing are caused by array errors).

PNAS | Published online February 21, 2017 | E1925
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Fig. 4. Ts/Tv ratio across all sample exomes based on PEMapper/PECaller, GATK
PASS, and Tranche99.9 calls. All samples called by PEMapper/PECaller and GATK
PASS are near three as expected. Tranche99.9 calls are much lower again.

Rare Variant False Negatives. Although the overall completeness
and accuracy at high-frequency sites are excellent (99.85% com-
plete and more than 99.76% accurate), it is possible that data
completeness and accuracy at low-frequency variants might be
considerably worse. This worsening could occur, because joint
calling of samples can increase one’s confidence for high-frequency
variants, while providing comparatively little benefit for rare variant
calling. To assess the probability of “missing” rare variants, we look
at variants called by the Illumina 2.5M array where the variant
allele was observed in only one of our samples. In this collection of
~40,000 singleton variants, we do not see evidence for increased
missing data rates in singleton variants, with only 0.24% missing
data. We also do not find any substantial genotyping error in these
variants, assuming the array is less than 99.991% accurate at sites
where all samples are homozygote.

Performance of GATK. We have run the complete “best practices”
pipeline, including the latest version (3.6) of the HC and complete
joint calling with variant recalibration and filtering on 97 samples (6,
12). PEMapper seems to perform as well or better than GATK in all
measurable ways. GATK tends to conflate missing data with error.
Variant call files (VCFs) do not report sites that do not have high-
quality variant sites in at least one sample. Thus, if a site is not in the
VCF file, it is not immediately clear whether the site is missing
(insufficient evidence) or “error” (falsely believed to be high quality
and reference). To try to disentangle the two in a way that displays
GATK in the best possible light, we imposed the following rules. If a
site was not in the VCF file and the array called homozygous ref-
erence at the site in the sample, those sites were scored as “com-
plete” and “agree” with the array. If a site was called variant by the
array in at least one sample but missing from the VCF file, this site
was called missing in individuals who are not homozygous reference.

GATK calls two classes of SNPs: PASS (their highest-quality
calls) and Tranche99.9to100 (their second highest quality; called
Tranche99.9 hereafter). Using this paradigm, GATK finds theta in
these samples to be 0.000829 (0.000792 coming from PASS and
0.0000371 coming from Tranche99.9). GATK finds the Ts/Tv ratio
to be 2.09 for PASS and 1.439 for Tranche99.9, indicating that
variants in Tranche99.9 are not especially trustworthy and are
quite likely to be false positives.

E1926 | www.pnas.org/cgi/doi/10.1073/pnas.1618065114

GATK Exonic Variation. GATK finds the value of theta in the
exomes of these samples to be between 0.00041 and 0.00043, av-
eraging 0.00423 in PASS variants. Using both PASS and Tran-
che99.9, theta in exomes averages 0.000458. The Ts/Tv ratio in
exons averages 3.086 in PASS variants and 1.88 in Tranche99.9
variants. The silent to replacement site ratio averages 1.131 in
PASS sites and 0.613 in Tranche99.9 sites, again suggesting that
Tranche99.9 variants are not high quality. The individual samples
averaged ~19,000 exonic variants identified by GATK PASS.

GATK Vs. PEMapper/PECaller. To a great extent, PEMapper/PECaller
and GATK generally make the same genotype calls at variant sites
in the same samples. This level of overlap is a remarkable
achievement for PEMapper/PECaller given the impressive accuracy
and extensive use of training set data for GATK (20, 21). Over all
97 samples, PEMapper called 6,588,872 SNPs (SNPs with exactly
two alleles) (Fig. 1), with an overall Ts/Tv ratio of 2.07-1. In cat-
egory PASS, there are 6,338,222 SNPs, with a Ts/Tv ratio of 2.09-1;
of these SNPs, 6,241,660 (98.4%) were also called by PECaller. In
Tranche99.9, there were 424,564 SNPs, with a Ts/Tv ratio of 1.25-1.
Of those SNPs, “only” 145,373 variants were called in common with
PECaller, and those SNPs had a much better Ts/Tv ratio than
Tranche99.9 overall (1.72-1). The PASS GATK calls not made by
PECaller (96,562) had a Ts/Tv ratio of 1.25-1. The Tranche99.9
GATK calls not made by PECaller had a Ts/Tv (266,521) ratio of
1.06-1. Finally, PECaller SNPs not called by GATK (197,660) had
a Ts/Tv ratio of 1.31-1 (Fig. 2 and Table 2). Overall, these results
mean that PEMapper/PECaller calls slightly more variants than
GATK PASS and slightly fewer than GATK total (PASS + Tran-
che99.9). SNPs called by GATK but not called by PEMapper/
PECaller look to be of worse quality than SNPs called by
PEMapper/PECaller but not called by GATK. The performance of
Tranche99.9 SNPs in all ways suggests that they should probably
not be used for analysis, because they are likely to have significant
numbers of false positives.

Using the Illumina 2.5M Array as the gold standard, we
were able to compare the completeness and accuracy of both
PEMapper/PECaller and the GATK pipeline. Across the
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Fig. 5. Silent to replacement (S/R) ratio across all sample exomes based on
PEMapper/PECaller, GATK PASS, and Tranche99.9 calls. All samples called by
PEMapper/PECaller and GATK PASS are between 1.05 and 1.15 as expected.
Again, Tranche99.9 calls are significantly lower.
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Table 2. Comparison of the number of variants called and the
Ts/Tv ratio for those variants between PEMapper/PECaller
and GATK

No. of
Category variants called  Ts/Tv ratio
PEMapper/PECaller 6,588,872 2.07:1
GATK PASS 6,338,222 2.09:1
GATK 99.9 424,564 1.21:1
PEMapper/PECaller and GATK 99.9 145,373 1.72:1
GATK PASS but not PEMapper/PECaller 96,562 1.25:1
GATK 99.9 but not PEMapper/PECaller 266,521 1.06:1
PEMapper/PECaller but not GATK 197,660 1.31:1

Variants not called by PEMapper/PECaller (but called by GATK) are of worse
quality than those not called by GATK (but called by PEMapper/PECaller).

board, PEMapper/PECaller outperformed GATK, albeit only
slightly (Table 3). If the array called homozygous reference,
PEMapper/PECaller was 99.95% complete and 99.94% agreement
with the array compared with GATK, with 98.98% complete and
99.83% agreement. If the array called heterozygous, PEMapper/
PECaller was 99.81% complete and 99.23% agreement with the
array compared with GATK, with 99.31% complete and 99.78%
agreement. If the array called homozygous nonreference, PEMap-
per/PECaller was 99.88% complete and 99.56% agreement with the
array compared with GATK, with 99.68% complete and 99.15%
agreement. Overall, PEMapper/PECaller was 99.85% complete and
99.76% agreement with the array compared with GATK, with
99.82% complete and 99.74% agreement with array.

Essentially, both callers are primarily “limited” by microarray-
based errors. This limitation means that it may be that both callers
are nearly always getting the right answer when the array is correct
and that, when the array is in error, they differ in differing ways. To
a first approximation, the difference between the two can be
summarized, because GATK is slightly more likely than PEMap-
per to fail to report a site called variant by the array. The sites that
GATK excludes but PEMapper calls are slightly more likely than
average to disagree between PEMapper and the array. There is
certainly no evidence that GATK is doing a substantially better job
than PEMapper. We also point out that all of this is despite the
fact that GATK is using knowledge about the position of high-
frequency variants to help align sequences and set thresholds for
calling. PEMapper/PECaller uses none of this information, and it
is mapping and calling variants “naively” and yet, achieves the
same overall results.

In a slightly different comparison experiment, we know that,
with the Illumina arrays, GATK, and PECaller, we have three
separate sets of calls. Dropping any call that is missing in the array,
GATK, or PECaller, there are ~140 million genotypes called in
common between the arrays and either GATK or PECaller and
over 633 million variant calls that can be compared between
GATK and PECaller. For each of three, we can assume that one
of three is the “gold standard” for accuracy and ask what the error
rate is at variant sites relative to this gold standard. These results
are shown in Table 4. Several conclusions can be drawn. First, all
three are excellent and in close agreement. Second, GATK looks
to be a slight outlier. If GATK is set as the gold standard, both the
array and PECaller seem to have approximately a 1% error rate at
heterozygous sites and very low error rates at homozygous sites.
Conversely, comparing GATK with the array gold standard, het-
erozygotes seem to have an excellent error rate, but homozygous
nonreference calls have an abnormally high error rate. The sim-
plest explanation of both of these observations is that GATK is
slightly “overcalling” heterozygotes at the expense of homozygous
calls but only very slightly, because overall calling is truly excellent.
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Insertion and Deletion Comparisons. Calling of small insertions and
deletions remains a very difficult category of variation to evaluate,
largely because, unlike SNPs, there is no obvious external gold
standard (such as genotyping arrays) with which to compare. Var-
ious investigators have attempted to create artificial gold standards
[e.g., Chong et al. (22) use sets of “artificial” indels created by the
investigators at known locations], but given that GATK calling is
highly dependent on using known training set data to improve its
accuracy, it is not clear whether such testing paints an appropriate
picture of GATK accuracy. It is certain that GATK does a very
poor job (less than 20% accurately detected) at determining the
exact position and presence of small indels when those indels have
not previously been seen in its training set, but given that GATK
uses such extensive training sets, it surely is better than 20% accu-
racy overall. What is absolutely clear is that GATK and PEMapper/
PECaller often call the same small indels. When they do, they
usually agree on genotype (homozygous reference vs. heterozygous
indel vs. homozygous indel) for individual samples. When the two
calling algorithms disagree concerning the presence or absence of
an indel, it is very difficult to interpret. Precise calling of copy
number variants (CNVs) requires specialized software and is not
part of either the PEMapper/PECaller or GATK package (22, 23).

PECaller called 406,015 small deletions, of which 84% (342,094)
were called in exactly the same position by GATK. PECaller also
called 212,272 insertions, of which 84% (178,478) were called by
GATK. Therefore, a large percentage of the indels called by
PEMapper/PECaller overlap perfectly with GATK. In the other
direction, GATK called many more indels than PECaller. A total
of 37% of deletions called by GATK and 57% of GATK-called
insertions were not called by PECaller. This difference was not
primarily because of the fact that the Smith-Waterman mapping
parameters in PEMapper were set to drop any read with a large
(larger than ~10 bp) indel, because even for the smallest of indels,
there was often considerable disagreement (30% of the one-base
deletions called by GATK were not called by PEMapper, and 55%
of the one-base insertions were not called). It should be noted that
this comparison required the indel to be called in exactly the same
position (i.e., not even one base different from one another). In
even slightly repetitive sequence, precise indel position is often
unknowable, and it is hardly surprising that indels called by one
algorithm are sometimes given slightly different positions by
another; even allowing for such, there is a considerable number
of small indels called by each algorithm not called by the
other, with vastly more indels called by GATK than called
by PEMapper/PECaller.

However, when both algorithms called an indel at the same
position, there is great agreement between them in individual
genotype calls. Among individuals called homozygous reference by
PECaller at sites containing a deletion, GATK called those same
individuals homozygous reference 99% of the time; individuals
called heterozygous deletions by PECaller 99% of the time were
also called heterozygous deletions by GATK. Individuals called

Table 3. Comparison of calling completeness and accuracy
compared with the lllumina 2.5M array gold standard for
PEMapper/PECaller and GATK

PEMapper/PECaller, % GATK, %

Variant call type Completeness Accuracy Completeness Accuracy

Ref/ref 99.95 99.94 99.98 99.83
Ref/alt 99.81 99.23 99.31 99.78
Alt/alt 99.88 99.56 99.68 99.15
Overall 99.85 99.76 99.82 99.74

PEMapper/PECaller performs slightly better than GATK. Alt/alt, two alter-
nate alleles; Ref/alt, one reference and one alternate allele; Ref/ref, two
reference alleles.
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Table 4. Comparison of error rates using three possible gold
standards (lllumina array with 140 million calls, 630 million
PECaller calls, and 630 million GATK calls)

Illumina array as  PECaller as gold GATK as gold
gold standard standard standard
Variant type PECaller GATK  Array GATK  Array PECaller

Ref/ref 0.00061 0.00174 0.00224 0.00157 0.00080 0.00136
Ref/alt 0.00766 0.00217 0.00351 0.00712 0.01032 0.01132
Alt/alt 0.00439 0.00849 0.00123 0.00739 0.00107 0.00240
All 0.00235 0.00261 0.00235 0.00300 0.00261 0.00300

When lllumina array calls are the gold standard, PECaller has much less
error in homozygous reference and homozygous alternate calls, while hav-
ing more in heterozygous calls. Overall, PECaller has slightly less error. Using
all three, it is possible to discern that GATK is overcalling heterozygotes at
the expense of homozygous calls. Alt/alt, two alternate alleles; Ref/alt, one
reference and one alternate allele; Ref/ref, two reference alleles.

as homozygous deletions by PECaller were called homozygous
deletions by GATK 97% of the time. Insertions were slightly
less consistent with 96, 93, and 94% consistency in the calls for
homozygous reference, heterozygous insertion, and homozy-
gous insertions, respectively, in individuals at sites containing an
insertion. PEMapper/PECaller and GATK are in great agreement
when they both call an indel at the same site.

Exome Comparison. Given that Tranche99.9 variants are of poor
quality, we look at only the comparison between PEMapper/
PECaller and GATK PASS variants in the exome. Overall,
PEMapper/PECaller calls ~1,000 more variants per exome than
GATK PASS (Fig. 3). The statistics for these variants are nearly
identical, with PEMapper/PECaller producing a Ts/Tv ratio of
3.06 compared with 3.09 for GATK (Fig. 4). PEMapper/PECaller
produced a silent to replacement ratio of 1.11 compared with 1.13
for GATK (Fig. 5). Essentially, GATK seems to use its prior
knowledge of variant locations to find slightly more silent sites but
may call slightly fewer potentially novel exonic replacement vari-
ants, because it is limited by the existing variant lists.

Computational Time. The PEMapper and PECaller pipeline is
dramatically faster than the GATK pipeline. In both cases, the first
one-half of the pipeline was run offsite using AWS resources; the
best practices require read sorting that cannot be run in parallel on
our local cluster, because our cluster (like many others) uses a
shared disk array environment. Total central processing unit
(CPU) time will scale similarly, because all AWS instances use the
same number of processors. Likewise, in both cases, the second
one-half of the pipeline was run locally using the Emory Libraries
and Information Technology’s “Tardis” resource. This computing
cluster offers 12 nodes, each with 64 cores and 512 GB RAM. We
report wall clock time for these tasks as well, resulting in a fair
comparison. The time to map and call 97 genomes is ~1.2 d using
the PEMapper/PECaller pipeline and ~3 d using the GATK BWA/
HC pipeline per genome analyzed (Table S1). Thus, PEMapper/
PECaller is more than twice as fast, even when all disk operations
occurred in an isolated disk environment. In a shared disk envi-
ronment, we could only run PEMapper. It should further be noted
that PECaller jointly called the entire batch of 97 samples, some-
thing the GATK Unified Caller was incapable of doing, even on a
node with 512 GB RAM. Some of the time saved using AWS is
because of the fact that the GATK output is significantly larger than
the output from PEMapper (~150 GB per sample); therefore, the
data transfer time is longer, but given that it averaged over ap-
proximately 30 megabytes per second (MB/s) of transfer, this ad-
ditional download time added only ~1.5 h per genome. Additionally,
PECaller output requires less than 10th of the data storage space as
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GATK (Table 1). Including the raw sequencing data, PEMapper/
PECaller requires only 40% of the storage space that GATK re-
quires for the same sample. Finally, it should be noted that PECaller
called all samples in a single batch, which allowed missing data vs.
homozygous reference allele calls to be distinct for all samples.

All of these comparisons mean that it is both faster and easier to
run PEMapper/PECaller than the GATK pipeline for studies with
more than even a handful of samples. It is also less expensive
because of the reduced use of computational resources. Taken
together, PEMapper/PECaller enables more genomes to be ana-
lyzed, allowing for larger study sizes.

Discussion

The future of genomics is WGS on greater than thousands of ge-
nomes. Analyzing that many genomes at once, both efficiently and
accurately, is a tremendous computational challenge. The GATK
best practices pipeline is the de facto standard for analysis of se-
quencing data because it does an excellent job and has proven its
utility in vast numbers of exome studies. Although a user may be well-
advised to continue using the GATK pipeline for exome analysis or
small numbers of whole genomes (24), we show here that PEMapper/
PECaller is the decidedly better option for large-scale mapping and
calling of genomes (25). PEMapper/PECaller is significantly more
efficient than GATK, requiring fewer computational resources and
less storage space and thus, costing less (5). PEMapper/PECaller
manages to do this while providing nearly identical (or better)
calling quality than GATK. PEMapper/PECaller also does not rely
on any more outside information than a reference genome, making
it applicable to both human and nonhuman sequencing studies.

PEMapper/PECaller completely overcomes the technical chal-
lenges of GATK best practices. It runs well in a shared disk
environment. Batch calling can occur in batches of hundreds to
thousands of whole genomes easily [although computation time
scales as Nlog(NN) of batch size]. All sites are output together with a
confidence score, so that the missing vs. homozygous reference dis-
tinction is always maintained trivially. This distinction is important,
because it allows straightforward implementation of genome-wide
association study (GWAS) style QC procedures—e.g., sites can be
filtered on call rate and Hardy—Weinberg. The most natural way to
handle these data is simply to convert them to PLINK format, QC,
and analyze them like any other GWAS, except that these data just
happen to include all of the rare and common sites from the onset.

Overall, GATK best practices and PEMapper/PECaller make
identical calls at almost every site. When they differ from one another,
there is evidence that neither is very reliable. GATK best practices
achieves its excellent results in large part by incorporating preexisting
knowledge into the pipeline. Reads are realigned based on preexisting
knowledge of SNPs and indels. Variants are classified, filtered, or
dropped based on extensive training sets of known human vari-
ants. PEMapper/PECaller achieves essentially the same result based
on no specific prior knowledge but an intelligent genotyping model
that uses nothing more than the observed data at hand. In principle,
the PECaller variants could be similarly filtered/tranched/etc., but we
show there is no obvious need. By not using any preexisting knowl-
edge, PEMapper/PECaller is far easier to use in nonhuman systems.

PEMapper/PECaller is not only much simpler to use than GATK
best practices, but also, it produces data that are of the same or very
slightly higher quality. It is clear that either calling platform is more
than adequate to support modern genetic studies (26), but
PEMapper/PECaller is far easier to run, uses less computational time
and storage, and behaves far better in a shared disk environment.
These benefits will enable researchers to analyze large numbers of
whole-genome sequences both faster and more efficiently. Using
PEMapper/PECaller to map and call large-scale genome sequencing
will also further precision medicine efforts (27). Large studies using
whole-genome sequences are now much easier to complete com-
putationally using PEMapper/PECaller by reducing the currently
most challenging bottleneck from experiments of this type.

Johnston et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618065114/-/DCSupplemental/pnas.201618065SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1618065114

Methods

The PEMapper/PECaller assumes that a reference target sequence is available,
but no other information is needed. All mapping and genotype calling occur
relative to this reference sequence. The PEMapper pipeline is composed of a
series of three interconnected programs. The first of three prepares a hashed
index of the target sequence. The remaining two programs form a pipeline, with
the output of PEMapper forming the input of PECaller. PEMapper is compu-
tationally intensive but extremely gentle on disk and network subsystem. To
make this possible, the underlying philosophy behind the PEMapper is that
memory use should be killed for speed and limited I/O. As a result, PEMapper
uses ~45 bytes of memory per base in the reference sequence plus approxi-
mately 1 GB of memory per computational core. Therefore, a whole-human
genome sequence on a 64-core workstation typically uses ~200 GB RAM. The
source code is freely available at https:/github.com/wingolab-org/pecaller.

The first of three programs in the PEMapper/PECaller is called index_target.
Following BLAT (28), Maq, and several other published algorithms, the target
region is decomposed into 16-nt reads. The positions of all overlapping 16-mers
in the target are stored. This program needs to be run only once for each target
region examined. Unlike GATK best practices, no additional information on
“known SNPs,” “indels,” or training sets is required or used.

The next stage called PEMapper, which also builds on approaches similar to
BWA, contains a small innovation to help enable indel mapping. Reminiscent of
several other algorithms, the 16-mers are allowed to have up to one sequence
mismatch from the target. Thus, when mapping a 100-base read with a 16-base
index, an individual read could have up to six errors and still be properly mapped
as long as those errors are evenly distributed along the read. However, the
algorithm also allows the 16-mers some “wobble” room, so that, relative to
each other, they can map a few bases away from their expected location (up to
eight bases for a 16-mer). Finally, only one-half of the 16-mers need to map in
the correct order, orientation, and distance apart from one another. Positions
that satisfy these requirements are taken as “potential mapping” positions.

PEMapper takes this list of putative mapping locations for each read and
performs a Smith-Waterman alignment in each potential location to determine
the optimal position and alignment score. At this stage, reads are rejected if the
final Smith-Waterman alignment score is less than a user-defined percentage
of the maximum score possible for the given read length (29). For results de-
scribed below, we required 90% of the maximum alignment score and used the
following alignment penalties: match = 1, mismatch = —1/3, gap open = -2, and
gap extend = —1/36. The primary output of PEMapper is the “pileup” statistic
for each base in the target. PEMapper pileup output files include the number of
reads where an A, C, G, or T nucleotide was seen together with the number of
times that base appeared deleted or there was an insertion immediately after
the base. Thus, each base appears to have six “channels” of data: the numbers
of A, C, G, T, deletion, and insertion reads.

The PE Distribution. The PE distribution is a multidimensional extension of the
beta-binomial distribution. Although it arises in numerous contexts and was
initially described in connection with an urn sampling model (30), for our pur-
poses, we view the PE distribution as the result of multinomial sampling when
the underlying multinomial coefficients are themselves drawn from a Dirichlet
distribution (31) in the same way that the 1D analog, the beta-binomial dis-
tribution, can be thought of as binomial sampling with beta-distributed prob-
ability of success. Intuitively, we envision six channels of data (numbers of A, C,
G, T, deletion, and insertion reads) as being multinomially sampled with some
probability of drawing a read from each of the channels, but that the proba-
bility varies from experiment to experiment and is itself drawn from a Dirichlet
distribution. The coupling of the Dirichlet distribution with the multinomial
distribution is common in Bayesian inference, because the former distribution is
often used as a conjugate prior for parameters modeled in the latter distribu-
tion (31). Here, our purpose is subtly different. In Bayesian estimation, the as-
sumption is that the observations are fundamentally multinomial but that the
parameters of that multinomial are unknown, and the Dirichlet is used to
measure the degree of that uncertainty in the parameter estimates. In the
Bayesian estimation case, as the data size gets sufficiently large, convergence to
a multinomial occurs. Here, however, we assume that the observations are
fundamentally overdispersed relative to a multinomial, and there is not nec-
essarily a multinomial convergence.

At any given base, a diploid sample could be 1 of 21 possible genotypes (a
homozygote of A, C, G, T, deletion, or insertion and all 15 possible heterozy-
gotes). We assume that the number of reads seen in each of six possible channels
(A, C, G, T, deletion, and insertion) of data for an individual with genotype j is
drawn from a PE distribution in six dimensions. We further assume that each of
21 possible genotypes is characterized by its own PE distribution and that these
21 distributions vary from base to base but are shared by all samples at a given
base. A 6D PE distribution is characterized by six parameters, so let a; be a 6D
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vector corresponding to the parameters for genotype j. If n; is a 6D vector con-
taining six channels of data observed in individual i at a given base and if indi-
vidual i has genotype j, then the probability of those observations is PE(n;; a;) =
(N;i/Ria. M2, M3, Nia, Nis. Nig)T(A)) /T (A + N)TTS_ D@k + mik) /T (@), where
N;is the total number of reads observed (N; = n;; + n;> + n;3 + N4+ n;s + n;¢) for
individual i, A; is the corresponding sum of the parameters for genotype j (4; =
aj7 +aj>+ a3+ a4+ a;5 + a;¢), and I is the usual gamma function (32). Note
that the expected proportion of reads coming from channel k is given simply
by a;i/A;.

Genotype-Calling Overview. Genotype calling occurs across all samples simul-
taneously in a fundamentally Bayesian but iterative manner. First, the PE pa-
rameters for all 21 genotypes are set to “default values” and assumed to be
known. Second, the genotypes of all of the samples are called in a Bayesian
manner, conditional on the known PE parameters. Third, the PE parameters are
estimated, conditional on the genotypes called in step 2. The process then it-
erates, with the genotypes recalled and parameters reestimated. The iteration
continues until either calls no longer change or a maximum number of itera-
tions is reached. For all of the results described here, the maximum was set at
five iterations, which was seldom reached.

PE Parameter Initialization. For all 21 genotype models, A; is set to either the
average read depth across samples or 100, whichever is larger. For homozy-
gote base calls (A, C, G, and T but not indels), the expected proportion of reads
coming from channels different from the channel associated with the homo-
zygote allele (i.e., the expected proportion of error reads) is set at 1/A; or 0.3%,
whichever is larger for each channel; thus, at initialization, we assume be-
tween 0.3 and 1% error reads in every channel. The remainder of the reads is
expected to come from the “correct” channel. For heterozygote genotype
calls, the error channels are set similarly, except for the “deletion” channel,
which is expected to have 5% of the reads, indicating a prior assumption that
~5% of true heterozygous reads will map incorrectly as deletions. If the het-
erozygote genotype does not involve the reference allele, the remaining reads
are expected to come equally to both of the appropriate channels. However, if
the heterozygote includes the reference allele, we assume that 52% of the
remaining reads map to the reference allele and that 48% map to the non-
reference allele. This assumption incorporates our notion that, some portion
of the time, nonreference alleles will not map or will map incorrectly as indels.
To meet the challenge of mapping indel variation, we made the following
assumptions: for deletion homozygotes, we again assume a 0.3-1% read pro-
portion in all of the channels that do not involve the reference allele or the
deletion; however, we expect the remaining reads to divide 80% deletion and
20% reference, indicating our assumption that a substantial fraction of deletion
reads mismap as reference, even when the deletion is homozygous. When the
deletion is heterozygous, we assume the nonerror channels to divide 60 and
40% between the reference channel and the deletion channel, respectively.
Insertions after the current base are again assumed to have 0.3-1% reads in the
error channels. For homozygotes, 80% of the remaining reads are expected to
include the reference base and have an insertion afterward, whereas 20% of
the reads will only include the reference allele. For heterozygous insertions,
40% of the remaining reads are expected to include both the reference allele
and an insertion, and 60% are expected to include only the reference allele.

Bayesian Genotype Calling with a Population Genetics Prior. \We assume that
m samples have been sequenced. Each of those m samples can be any of
21 possible genotypes. Thus, there are a total of (21)” possible genotype
configurations of those m samples. Let ¢, be one such configuration; ¢ is an
m-dimensional vector, where element ¢ ; is an integer between 1 and 21, and
indicates the genotype of sample i. Genotypes of all of the samples are as-
sumed to be independent, and therefore, the likelihood of configuration ¢ is

s

L(ck,m,ny, ...,Npm)= PE(ni:' ack‘,v)~

1

Most sites will not be segregating, and all m samples will be identical to the
reference allele. Let ¢, be the configuration where all samples are the refer-
ence allele. By assumption, the prior probability that this configuration is

| =

2m-1
Prior(co)=1-0> =,
P

where @ is a user-supplied parameter corresponding to 4Ny, N is the effective
size of the population from which the samples were drawn, and y is the per
site and per generation mutation rate (13). For humans, it is generally assumed
to be ~0.001 (14). All other configurations have at least one sample with at

PNAS | Published online February 21, 2017 | E1929

wv
=
o
a
w
<
=
o

GENETICS


https://github.com/wingolab-org/pecaller

least one allele different from the reference allele. Let f(c,r) be the number of
nonreference alleles of type r, 0 < r < 6, found in configuration c. The prior
probability of configuration ¢ is assumed to be

HW(‘:k) H f(cf, r

f(ck, r)>0

VSHG) T

f(c, r)>0

Prior(ci)=(1— Prior(co

where HW(c) is the Hardy-Weinberg exact P value (33) associated with
configuration ¢, and the sum in the denominator is taken over all (21)” - 1
genotype configurations (Methods, Computational Efficiencies).

Overall, this prior can be summarized as follows. The population from which
these samples are drawn is assumed to be of constant size and neutral, and the
reference allele is assumed to be the ancestral allele at every site. The prior
probability that a site is segregating is the one derived by Watterson (13) for an
infinite site neutral model. Conditional on the site segregating, the assump-
tion is that the site is in Hardy-Weinberg equilibrium, and the derived allele
frequency was drawn from an infinite site neutral model. Thus, the prior
probability is a combination of two terms, one of which derives from the
Hardy-Weinberg P value and the other that derives from the number of dif-
ferent alleles seen to be segregating. Finally, we should note that we have
tacitly assumed that all of the sequenced samples are randomly drawn from
the underlying population (i.e., not intentionally picked to be relatives of one
another). Alternatively, the user may provide a standard linkage/ped (PLINK
pedigree format) (34) to specify the relationship between samples. When this
option is invoked, Hardy-Weinberg is calculated only among unrelated indi-
viduals (i.e., founders), and for every configuration, ¢, the minimum number
of de novo mutations, Dn(cy), is calculated for the configuration. Each de novo
mutation is assumed to occur with user specified probability 4, and the prior
probability of the configuration is modified to

HW (couP ) T 72

(e, 1)

. . f(ck, r)>0
Prior(ck)=(1- Prior(cp)) X
SHWG T o2y
s * f(cs,r)>0f(cx'r)

The posterior probability of configuration ¢ is

_ Prior(c)L(Ck, N1, N2, -, Nim)

Post(cx, n1, Ny, .. = -
(Cks 1. 12, > Prior(cs)L(Cs, N1, N2, ..., Nm)"
s

<+ Nm)

where the sum is taken over all possible genotype configurations (but see
below). If 0 < g; < 22 is the genotype of individual i, then

Pr{gi=j}= Z I(cs, =j)Post(ck, M, N2, ..., Np),
s

where l(c;; = j) is an indicator function that equals one whenever element i of
configuration ¢; is equal to j and zero otherwise. Thus, we take the probability
that the genotype of individual i is j to be the sum of the posterior proba-
bilities of the genotype configurations in which we call sample i genotype j.
The PECaller calls sample i genotype j whenever Pr(g; = j) is greater than some
user-defined threshold, and otherwise, the genotype is called “N” for un-
determined. For all of the results presented here, the threshold was set at 0.95.

Estimating PE Parameters and Repeating. Because of local sequence context,
the repetitive nature of many organisms’ sequence, and specific issues with
sequencing chemistry as a function of base composition, not all bases have the
same error characteristics. Some bases may appear to have a very high fraction
of reads containing errors, whereas other bases have almost none. Some
heterozygotes may exhibit nearly 50:50 ratios of the two alleles; others can be
highly asymmetrical. To account for this fact, we wish to estimate the PE pa-
rameters independently at every base. There are three technical challenges.
First and most importantly, the genotypes of the samples are not known with
certainty; hence, we do not know with certainty which observations are as-
sociated with which underlying PE distribution. Second, for technical reasons
(one lane “worked better” than another, etc.), some samples may have many
more reads than other samples, and we do not want these high-read samples
to dominate our estimates disproportionately. Third, because it is necessary to
estimate parameters repeatedly, the algorithm must be computationally ef-
ficient. With this requirement in mind, we chose moment-based estimators of
our parameters (35).

In principle, we would like to estimate the PE coefficients for genotype j, a,
by averaging over the observed number of reads seen in every sample that has
genotype j; however, we do not know this with certainty. Therefore, let f; be a
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6D vector, where element f;x = n;/N; contains the fraction of individual i's
reads that were observed in channel k. Let

m
W= Pr{g;=j},
i=1

m .
> Prigi=j}
M, ==

k= .’
W

and

; fZPr{gi=j}
=

V*’ k
’ W

~ M

Thus, M and Vj are the “weighted” mean and variance, respectively, in read
fraction from channel kK among individuals with genotype j, where both mo-
ments are weighted by our confidence that the individual truly is genotype j.
Usually, most genotypes will have little weight (i.e., few if any samples are
called that genotype), and even when samples are called that genotype,
sometimes there is little to no variation seen in read fractions (i.e., 100% of the
reads come from one channel in all of the samples called that genotype). Let Y;
be the number of channels for genotype j that have nonzero observed vari-
ance in read fraction. Thus,

6

Yi=>_1(Vix>0).

k=1

where /(V;« > 0) is an indicator that genotype j has nonzero variance in
channel k. For any genotype with W; < 1.5 (i.e., less than two samples called
that genotype) or Y; < 2 (i.e., less than two channels with variance in read
fraction), all PE parameters are returned to their initialization values. Other-
wise, let channel z be the channel with nonzero variance (V;, > 0) but minimal
mean (M, < M; for all other k with nonzero variance) estimate

1
P Mik(1=Mi)\ _ "
= H Vi -

k Vjk>0,k#z .k

and

ajk= max(Mj,k, S/' 1)

Sj can be thought of as a “leave one out” moment estimate of the “precision”
of the PE distribution, and M is a first-moment estimate of the mean read
fraction in each channel (35). Notice that all channels with a small expected
read fraction are rounded up to one (see below). After the PE parameters for
all of the genotype models are estimated, the process repeats, and genotypes
are recalled until genotype calls no longer change or a maximum of five it-
erations is reached.

Computational Efficiencies. The sample space of configurations is impossibly
large. For anything other than a trivially small number of samples, the sums over
the configuration sample space cannot be done. Nevertheless, the prior dis-
tribution is remarkably “flat,” and this property can be used to great advan-
tage. If two configurations, ¢, and ¢,, differ by only a single sample’s genotype,
then we know that the ratio of their prior probabilities is bounded by

Prior(cy) >i
Prior(c,)” 4m’

To see this idea, note that the largest difference in prior probabilities occurs
when configuration ¢, has a single homozygote of an allele not seen in con-
figuration c,. The difference in Hardy—Weinberg P values associated with this is
less than 1/2m (33), and the difference caused by the number of alleles seg-
regating is 6/2. Thus, if

OL(cy, N1, N2, ..., Nm)
L(cy,n1, N, ...,Nm) < ,
(v 1 2 m) am
then
Post(c,, N1, Nz, ..., Nym) < Post(cy, N1, Nz, ..., Nm).

The immediate implication of this is that dropping configuration ¢, from the
sum will have little effect on the posterior probabilities of any of the likely
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configurations of the genotypes, and a simple, nearly linear time algorithm
to enumerate all of the likely configurations and ignore the unlikely ones
is suggested.

We build the list of likely configurations by moving through the samples one
at a time. Initially, we start with a set of 21 configurations that correspond to all
of the possible genotypes for sample 1. We calculate the likelihood of all 21 one-
sample configurations and then, remove any configuration with likelihood less
than 107° times the largest likelihood. Additionally, we always save the con-
figuration associated with all samples being homozygote reference, because a
priori, this configuration is the most likely configuration of samples. Next, to
each of the remaining configurations, we add all 21 possible genotypes for the
second sample, thereby increasing the number of sample configurations by a
factor of 21. However, we again immediately remove all configurations with
likelihood less than 107 times the largest likelihood. We repeat until we have
gone through all m samples. In principle, each step could increase the number
of likely configurations by a factor of 21, but in practice, it almost never in-
creases the number by more than a factor of 2 (i.e., there are almost never
more than two likely genotypes for one sample); most of the time, it does not
increase the number of configurations at all (i.e., most of the time, there is
only one likely genotype for a sample). Even when m is in the hundreds, most
bases have only a handful of likely configurations, and seldom is the total
number of likely configurations more than a few thousand.

PECaller takes advantage of two other computational efficiency tricks. First,
HW exact probabilities are fundamentally discrete and a simple function of the
numbers of heterozygous and homozygous genotypes. Those values can be
calculated ahead of time and stored in lookup tables, greatly aiding that
computation. Second, PE distributions contain several gamma functions, and
although gamma functions can be computationally expensive to calculate, in a
special case, they are cheap. If x is an integer, I'(x) is equal to (x — 1) factorial,
and therefore, we round all PE coefficients to their nearest integer >1. PE
distributions can be calculated strictly in terms of factorials, and it is easy to
precalculate and store all factorial values less than, say, 10,000. It should be
noted as well that all likelihood calculations occur computationally as natural
logs and are raised to an exponential only when necessary for posterior
probability determinations. Thus, as a practical matter, the natural log of
factorials is computed and stored.

Finally, both PEMapper and PECaller can be set to disregard highly repetitive
sequences. By default, during the initial placement of reads, PEMapper ignores
any 16-mer that maps to over 100 different locations in the genome. Thus, to
even attempt Smith-Waterman alignment, at least one-half of the 16-mers in
a read must map to less than 100 places in the genome. Any read more re-
petitive than this is dropped. Similarly, PECaller can be given a file in bed
format that constitutes the “target” region to be called. This file can be used,
for example, to specify the exome only for exome studies or the nonrepeat-
masked regions of the human genome for WGS studies. Because variation in
repeat-masked regions is both extremely difficult to interpret and highly
prone to error/mismapping, all of the results described will be for the unique
portion of the genome (i.e., nonrepeat masked).

Bisulfite Sequencing and Other User Options. A possible application of next-
generation sequencing is to determine the pattern of methylation in a given
region sequenced. One way of doing this is to first treat the DNA with bisulfite,
which converts Cs to Ts, unless the C has been methylated. Bisulfite treatment
can pose unique challenges for mapping short sequence reads. The PEMapper/
PECaller contains a user option to gracefully handle bisulfite-treated DNA.
When the user selects this option, all mapping is initially done in a “three-base
genome,” where Cs and Ts are treated as if they are the same nucleotide.
Indexing of the genome is done in this three-base system as is initial mapping.
Final placement of reads with Smith-Waterman alignment is done in a four-
base system, but C-T mismatches are scored as if they are perfect matches. The
methylation status of any C allele can then be immediately calculated from the
pileup files, which gives the numbers of C and T alleles mapping at any base.

Many second generation sequencing technologies can create both single-
ended and pair-ended reads, with either single files per sample or multiple files
per sample. The PEMapper can take all of these forms of data, and for pair-
ended data, the user specifies the minimum and maximum expected distances
between the mate-pair reads. For mate-pair data, the PEMapper will first at-
tempt to place the reads in a manner consistent with the library construction
rules, but if no such placement can be made, it will place one or both reads if
they individually map uniquely with sufficiently high score.

Throughout Methods, Bayesian Genotype Calling with a Population Genetics
Prior, we assumed that every sample was diploid and therefore, that there were
21 possible genotypes for any sample at a given base. If the user specifies that
this is haploid data, only six possible genotypes are assumed (homozygotes for
any of six alleles), and the Hardy-Weinberg P value is removed from the prior.
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WGS. We tested the performance of GATK and PEMapper on 97 WGS samples
sequenced as part of the International Consortium on Brain and Behavior in
22qg11.2 Deletion Syndrome (www.22q11-ibbc.org). The collaboration, an ini-
tiative supported by the National Institute of Mental Health, combines geno-
mic with neuropsychiatric and neurobehavioral paradigms to advance the
understanding of the pathogenesis of schizophrenia and related disorders
given the high risk for these conditions (more than one in four) in individuals
with the 22q11.2 deletion (36). Rigorous approaches are applied across the
International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome
to characterize the phenotypes, the 22q11.2 deletion, and the remaining ge-
nome. DNA samples from 97 participants (37, 38) each had a typical 2.5-Mb
hemizygous 22q11.2 deletion. Eight of these participants have previously
published WGS data using different methods (38).

All samples were sequenced at the Hudson-Alpha Institute of Biotechnology
(Birmingham, AL) on Illumina HiSeq-2500 machines using their published
protocols. Briefly, the concentration of each DNA sample was measured by
fluorometric means (typically PicoGreen reagent from Invitrogen) followed by
agarose gel electrophoresis to verify the integrity of DNA. After sample quality
control, all samples with passing metrics were processed to create a se-
quencing library. For each sample, 2 pg blood-extracted genomic DNA was
sheared with a Covaris sonicator, the fragmented DNA was purified, and
paired-end libraries were generated using standard reagents. Yields were
monitored after sonication and ligation and at the complete library stage with
additional PicoGreen quantitation steps. Every library in the project was tag-
ged with a 2D barcode that leverages the Illumina sequencer’s ability to per-
form four sequencing reads per run (two data reads and two index reads). Two
types of quality control were performed on each library before sequencing.
First, the size distribution of the library was determined with a Perkin-Elmer/
Caliper LabChip GX to verify a correctly formed and appropriately sized library.
To avoid overlapping reads, a physical size of 500-600 bp was verified on the
Caliper or Agilent instrument. This observed physical size corresponds to an
alignment-based insert size of slightly over 300 bp. Second, the next step in the
quality control process was a real-time quantitative PCR assay with universal
primers to precisely quantity the fragments that are able to be sequenced in
the library. The real-time PCR results in combination with the size data were
used to normalize all libraries to a 10-nM final concentration. After quality
control, each plate of 96 libraries was pooled into a single complex pool. The
final library pool was sequenced on a test run using the Illlumina MiSeq in-
strument and a paired-end 150-nt sequencing condition with indexing reads.
The data from the MiSeq served as a final quality control step for both samples
and the libraries. Libraries that passed QC were subjected to full sequencing on
the lllumina HiSeq 2500 instruments according to current lllumina protocols,
essentially as described in the work by Bentley et al. (39). The unique bar-
coding features of the described library construction allow up to 96 samples to
be pooled and sequenced simultaneously. Of these samples, 93 were also run
on lllumina Omni 2.5 genotyping arrays (https:/Awww.illumina.com/techniques/
popular-applications/genotyping.html), which served as an additional se-
quencing quality control.

PEMapper/PECaller Methods. PEMapper was run on AWS r3.8xlarge instances
with 32 CPUs with 244 GB RAM for each sample. Globus Genomics (https:/
www.globus.org) was contracted to facilitate the running of PEMapper on
AWS. A PEMapper workflow is available through Globus Genomics, which
leverages batch submission, such that multiple samples can be submitted for
mapping simultaneously. The sequencing files (fastq format) were uploaded to
AWS via Globus Genomics, and the PEMapper output is subsequently returned
to the user’s local machine. PEMapper was run with all default parameters and
a 90% threshold for Smith-Waterman alignment. PECaller was run with a
default theta value of 0.001 (Results) and a 95% posterior probability for a
genotype to be considered called (less than 95% is reported as missing or N).
Sites with less than 90% complete data were dropped. All mapping and
genotyping occurred relative to the human HG38 reference as reported by the
University of California at Santa Cruz (UCSC) Genome Browser on July 1, 2015.
We report results only for the nonrepeat-masked portion of the genome.

End User Instructions. Running the PEMapper/PECaller pipeline is very
straightforward for an end user. One begins with fastq files from WGS (the
number does not matter; however, many represent the complete sequencing of
the sample of interest). If the end user has opted to use the Globus Genomics
pipeline on AWS, the fastq files are uploaded to the PEMapper workflow, and
the user receives three important files in return: a pileup file, a summary file, and
an indel file. If the end user is running PEMapper locally, he or she must have a
copy of the reference genome and load that into memory before running
PEMapper with the map_directory_array.pl script. In either case, the user will run
PECaller locally. To do so, one gathers the pileup and indel files for each sample
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to be processed in a single folder. The script call_directory.pl is used to launch
PECaller. That script generates an .snp file (containing all SNPs but no indels in an
unsorted list) as output. Then, merge_indel_snp.pl is run to merge the indels into
the list of SNPs. This script produces a merged .snp file (containing SNPs and
indels in a sorted list). This file can be converted simply to a PLINK pedigree
format and represents the primary output of the pipeline. Several additional
scripts permit easy quality control assessments of the data. The first script,
snp_tran_counter.pl, generates a file with Ts/Tv ratio information about the
samples. At this point, the web-based annotation program, SegAnt (https:/
seqant.genetics.emory.edu/) (17), can be used to annotate the merged .snp file.
Finally, a second script, snp_tran_silent_rep.pl, takes the output from SegAnt
and generates a file with silent/replacement information about the samples.

GATK Methods. The initial steps of GATK, BWA and HC, were similarly run on
AWS r3.8xlarge instances with 32 CPUs with 244 GB RAM for each sample.
Globus Genomics (https:/iwww.globus.org) was also contracted to facilitate the
running of GATK. A GATK workflow is available through them that runs, in
order, BWA v0.7.12-r1039, sambaba v0.5.4, and GATK v3.5-0-g36282e4. The
reference genome used was hg38 downloaded from the Broad Institute. This
workflow leverages batch submission, such that multiple samples can be
submitted for mapping simultaneously. The sequencing files (fastq format)
were uploaded to AWS through Globus Genomics, and the GATK output
(BAM and VCF files) was subsequently returned to the user’s local machine.
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Joint genotyping and variant recalibration were done in GATK v3.6 locally in
batches of 10 samples because of the intensive computational load. The joint
genotyping and variant recalibration tools were run on nodes with 64 cores and
512 GB RAM. All mapping and genotype calling were relative to same reference
hg38 genome in PEMapper/PECaller, with SNP sets, etc. taken from the hg38
resource bundle provided by GATK. All repeat-masked regions of the genome
were dropped. The Unified caller would not run on the entire 97 sample
dataset, even on compute nodes with 512 GB RAM free (it always eventually
reported an “out of heap space” error whether run on the whole genome or
each chromosome separately). We attempted to run the unified caller on
subsequently smaller batches of data: it would complete in a batch size of 10
genomes but failed at a batch size of 20. Results below are from nine batches
of 10 samples each and one batch of 7 samples.
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