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Regulation of integrins is critical for lymphocyte adhesion to endo-
thelium and migration throughout the body. Inside-out signaling to
integrins is mediated by the small GTPase Ras-proximate-1 (Rap1).
Using an RNA-mediated interference screen, we identified phospho-
lipase Ce 1 (PLCe1) as a crucial regulator of stromal cell-derived factor
1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-
1α-induced activation of Rap1 is transient in comparison with the
sustained level following cross-linking of the antigen receptor. We
identified that PLCe1 was necessary for SDF-1α-induced adhesion
using shear stress, cell morphology alterations, and crawling on in-
tercellular adhesion molecule 1 (ICAM-1)–expressing cells. Structure–
function experiments to separate the dual-enzymatic function of
PLCe1 uncover necessary contributions of the CDC25, Pleckstrin
homology, and Ras-associating domains, but not phospholipase
activity, to this pathway. In the mouse model of delayed type hy-
persensitivity, we have shown an essential role for PLCe1 in T-cell
migration to inflamed skin, but not for cytokine secretion and pro-
liferation in regional lymph nodes. Our results reveal a signaling
pathway where SDF-1α induces T-cell adhesion through activation
of PLCe1, suggesting that PLCe1 is a specific potential target in treat-
ing conditions involving migration of T cells to inflamed organs.
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T-cell adhesion contributes to routine immune surveillance and
generating inflammatory responses. The interaction between a T

cell and an antigen presenting cell (APC) requires an adhesion
complex that is stable long term; relative to each other, this in-
teraction is static (1). Here, the signaling cascade leading to integrin
activation is initiated through the T-cell receptor (TCR) and
coreceptors (2). Alternatively, T-cell trafficking and extravasation
require a more dynamic, firm adhesion between T cells and
endothelial cells of blood vessel walls. Chemokines are largely re-
sponsible for orchestrating T-cell trafficking throughout the body.
The localized expression of chemokines on endothelia, and che-
mokine receptor expression patterns on T-cell populations, give rise
to a network of T-cell recruitment with signatures for anatomical
compartments or disease states (3). Whereas much work has been
aimed at establishing these signatures, the same cannot be said for
elucidating the signaling cascades downstream of chemokine re-
ceptors. The small GTPase Ras-proximate-1 or Ras-related protein
1 (Rap1) and its effectors are necessary for integrin activation and,
therefore, T-cell adhesion (4). Rap1 is active in the GTP-bound
form following interaction with a guanine exchange factor (GEF)
and inactive in the GDP-bound form following interaction with a
GTPase activating protein (GAP). Phospholipase Ce 1 (PLCe1) is a
protein with dual enzymatic functions of a lipase and a GEF (5, 6).
Here we show that T-cell adhesion induced by the stromal cell-
derived factor 1 alpha (SDF-1α)/C-X-C chemokine receptor type 4
(CXCR4) axis involves Rap1 activation, exclusively mediated by
PLCe1. We provide evidence that the lipase function of PLCe1
does not contribute to the activation of adhesion in this pathway.
Through expanding these studies to a mouse model of contact

sensitivity, we conclude that PLCe1 plays an essential role in T-cell
recruitment to the site of inflammation. These findings suggest that
PLCe1 is a potential target in treating inflammatory conditions.

Results
PLCe1 Is Required for SDF-1α–Induced Rap1 Activation. To analyze
Rap1 activation, we transfected Jurkat T cells with a GFP-tagged
version of the Ras-binding domain of Ral guanine nucleotide dis-
sociation stimulator (GFP–Ral–GDS–RBD). When Rap1 is GDP
bound (inactive), GFP–Ral–GDS–RBD is cytosolic; however, when
Rap1 is GTP bound (active) it binds to the sensor, mainly at plasma
membrane. Therefore, GFP–Ral–GDS–RBD acts as an indicator of
Rap1 activation that can be analyzed microscopically and quantified
by fluorescent line analysis (Fig. S1A). Upon stimulation with anti-
CD3 or SDF-1α, Rap1 was activated at the plasma membrane (Fig.
1A). Similar results were also obtained with a cherry-tagged version
of the Ras-associating and Pleckstrin homology domains of Rap1-
GTP–interacting adaptor molecule (cherry–RIAM–RAPH), an al-
ternative biosensor (Fig. S1B) (7). In primary human T cells, Rap1
GST pull-down assay shows that Rap1–GTP is increased nearly
twofold (Fig. 1B) upon stimulation with SDF-1α. We next ques-
tioned whether the kinetics of Rap1 activation downstream of the
TCR and CXCR4 were distinct. Following anti-CD3 stimulation
Rap1-GTP remains elevated throughout the 30 min (Fig. 1C and
Fig. S2A). In contrast, Rap1-GTP levels following SDF-1α have two
distinct peaks (Fig. 1C and Fig. S2A). The differences in kinetics in
these two cascades suggest differential regulation at the level of
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GEFs or GAPs. To identify the GEFs in each cascade, individual
GEF expression was targeted in Jurkat T cells. GEFs included in
this screen were chosen based on previously shown GEF activity
toward Rap1 and expression in T cells. To identify the most es-
sential GEFs for each stimulation, the magnitude of fold change in
Rap1–GTP was compared (Fig. S2B). Whereas more than one
GEF contributed to anti–CD3-mediated Rap1 activation, phos-
pholipase Ce 1 (PLCe1) was the only GEF that resulted in a drop
below twofold activation following SDF-1α stimulation. Notably,
C3G was one of four potential GEF contributors to anti–CD3-
mediated Rap1 activation. Whereas other studies have shown that
C3G is the main GEF responsible (8), additional studies with
combined knockdowns should be done to rule out potential com-
pensation from other GEFs when C3G levels are decreased.
Although the expression of PLCe1 has previously been shown

in lymphocytes (www.proteinatlas.org/ENSG00000138193-PLCE1/
tissue; www.proteinatlas.org/ENSG00000138193-PLCE1/cell;
medicalgenomics.org/details_view_limited?gene_id=51196), we con-
firmed expression and reduction at the protein level in Jurkat
T cells (Fig. 1D). We further confirmed expression in primary
human and Jurkat T cells (Fig. 1E) by quantifying mRNA ex-
pression and showing efficient knockdown by si/shRNA. We con-
firmed the necessary role for PLCe1 in SDF-1α, but not anti-CD3,
induced Rap1 activation, by GFP–Ral–GDS–RBD recruitment
(Fig. S2C) and GST pull-down (Fig. 1F). These studies suggest a role
for PLCe1 in Rap1 activation downstream of SDF-1α.

Firm Adhesion Under Shear Stress Downstream of SDF-1α Requires
PLCe1. To establish a necessary role for PLCe1 in Rap1-medi-
ated cellular functions, a chemokinesis assay was performed. We
observed that control cells rapidly arrest on the CHO–intercellular
adhesion molecule 1 (ICAM-1) monolayer following SDF-1α ad-
dition, with average distance traveled per cell dropping from 7.6 ±

0.63 to 3.4 ± 0.42 μm (Fig. 2A). In contrast, PLCe1 knockdown
cells fail to arrest, with average distance traveled per cell de-
creasing only slightly from 11.0 ± 0.91 to 8.2 ± 1.14 μm (Fig. 2A).
This result suggests that PLCe1 may play a role in adhesion and
crawling. To further explore this functional defect, an assay of firm
adhesion to ICAM-1 using shear stress conditions was employed
(9–11). While SDF-1α induces an increase in adhesion of control
T cells, there is no observed adhesion in PLCe1 knockdown T cells
(Fig. S3A and Fig. 2B), providing evidence of an essential role for
PLCe1 in SDF-1α–induced firm adhesion. Calculating the circu-
larity index before and after SDF-1α stimulation provides evi-
dence that PLCe1 knockdown cells are defective in adopting a
“crawling morphology” and maintain a circularity index (Fig. 2C)
and ratio of Ferets near 1 (Fig. S3B). PLCe1-deficient primary
human T cells are also less responsive to SDF-1α (Fig. 2D). PLCe1
knockdown did not induce any alteration in the level of surface
CXCR4 expression (Fig. 2E). Collectively, these results suggest
that PLCe1 plays an essential role in T-cell firm adhesion induced
by SDF-1α.

The Lipase Function of PLCe1 Is Not Required to Activate Rap1
downstream of SDF-1α. PLCe1 functions as a phospholipase and a
GEF. To determine whether the phospholipase activity of PLCe1
is induced by SDF-1α stimulation, we examined diacylglycerol
(DAG) accumulation. Baseline expression of this biosensor is
cytosolic, but following stimulation with phorbol myristate acetate
(PMA) or anti-CD3 it localizes to the plasma membrane (Fig. 3A).
Strikingly, following SDF-1α stimulation there was no recruitment
of the biosensor, indicating no observable accumulation of DAG
at that compartment (Fig. 3A). Following stimulation of primary
human T cells with anti-CD3, intracellular calcium levels increase
and peak after the addition of 2 mM calcium to the buffer (Fig.
3B). Following SDF-1α stimulation there is no initial increase in
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Fig. 1. PLCe1 is required for SDF-1α–induced Rap1 activation. (A) Jurkat T cells
transfected with GFP–Ral–GDS–RBD; stimulation with soluble anti-CD3 (5 μg/mL)
or SDF-1α (100 ng/mL). (B) GTP–Rap1 in primary human T cells following SDF-1α
treatment for 2 min quantified by pull-down using the GST–Ral–GDS–RBD.
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amounts of time before GST pull-down assay; n = 3. (D) Western blot of PLCe1
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calcium-free buffer, and the peak following the addition of 2 mM
calcium is smaller (Fig. 3B). Knockdown of PLCe1 by siRNA does
not alter the calcium response to either stimulus (Fig. 3B), sug-
gesting that this protein is not a significant contributor to in-
tracellular calcium levels in these pathways. Also of note, a mere
5% of cells showed any flux in intracellular calcium following
SDF-1α stimulation (compared with 25–35% following anti-CD3)
(Fig. 3C). Together these studies suggest that there is likely a
limited contribution of the activation of phospholipase, in this

specific pathway, and that further studies should be done to prove
independent regulation of the GEF and lipase functions of PLCe1.
Pretreatment of T cells with the intracellular calcium chelator
BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic
acid]-AM abrogated T-cell adhesion induced by anti-CD3; in
contrast SDF-1α–induced T-cell adhesion was not disrupted (Fig.
3D). Further, we used the PLC inhibitor U73122 in PLCγ1
knockout Jurkat T cells (to promote a preference of the inhibitor
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for PLCe1) and show that Rap1 activation following SDF-1α
stimulation is unaffected by PLCγ1 deficiency and U73122 pre-
treatment (Fig. 3E). As this inhibitor also inhibits PLCβ, these
results suggest no contribution of any phospholipase C family
member to this pathway. To confirm that the GEF activity of
PLCe1 is not dependent on the lipase activity, we generated GFP-
tagged full-length, wild-type PLCe1 or containing H1436L point
mutation (Fig. 3F) shown to result in inactive lipase (12). Through
expression of GFP alone, the established Rap1 GEF C3G, wild-
type PLCe1, or the lipase-dead PLCe1 mutant, we show that there
is no defect in Rap1 activation with the loss of lipase activity
(Fig. 3G). Together, these results show that the lipase activity of
PLCe1 does not contribute to the Rap1 GEF activity of the protein.

The Ras-Associating 1/2 and the Pleckstrin Homology Domains of
PLCe1 Contribute to SDF-1α Signaling. PLCe1 knockdown does not
diminish anti-CD3 or SDF-1α–induced GTP–Ras accumulation
(Fig. 4A), suggesting that this enzyme is not the GEF-activating Ras
in this pathway. After establishing that the lipase activity of PLCe1 is
not contributing to SDF-1α–induced adhesion, the contribution of
the Ras-associating (RA) domains was left in question (16). In SDF-
1α–stimulated Ras knockdown Jurkat T cells (Fig. 4B) GTP–Rap1
accumulation was completely abrogated (Fig. 4C). To assess a re-
quirement for the Pleckstrin homology (PH) domain in anchoring
PLCe1 to the plasma membrane we treated T cells with wortmannin
before quantifying Rap1–GTP levels. Pretreatment resulted in de-
crease in Rap1 activation following SDF-1α stimulation (Fig. 4D),
suggesting that the PH domain is playing a necessary role. To es-
tablish that the CDC25 (GEF), PH, and Ras-associating 1/2 (RA1/2)
domains are also sufficient to activate T-cell adhesion, we gen-
erated a PLCe1 truncation construct composed of only these four
domains (PLCeNtermRA), with two point mutations (K2150E and
K2152E) that disrupt Ras binding (14), or with the PH domain
excised (PLCe1NRAΔPH) (Fig. 4E). Rap1 activation was assessed by
microscope and fluorescent line analysis of GFP–Ral–GDS–RBD
translocation (Fig. S1A). Stimulation with SDF-1α of PLCe1
knockdown T cells results in no translocation of GFP–Ral–GDS–
RBD to the plasma membrane in the majority of the cells (Fig. 4F).
Strikingly, coexpression of the PLCeNtermRA truncation rescues
Rap1 activation, whereas rescue with the construct containing the
K2150E and K2152E point mutations or with PLCe1NRAΔPH does
not (Fig. 4F). All imaged cells were analyzed individually by fluo-
rescent line analysis and counted as either Rap1 inactive or active
(Fig. S1A). A comparison of the percent of counted cells exhibiting
an active Rap1 localization reveals that SDF-1α stimulation leads

to an 85% increase in plasma membrane localization in cells
expressing nontargeting shRNA; this amount is decreased to 18% of
cells with PLCe1 knockdown, but we observed a 49% increase in
Rap1 activation in cells expressing PLCeNtermRA, whereas those
expressing K2150E, K2152E mutant PLCeNtermRA did not have
any increase in Rap1 activation (Fig. 4G). These results suggest that
these four domains are sufficient to rescue Rap1 activation in
PLCe1-deficient cells, and that the PH domain and Ras binding to
PLCe1 play necessary roles in Rap1 activation. Many small GTPases
are regulated by the localization of GEFs, and because PLCe1 must
be recruited to the plasma membrane, the PH domain and the as-
sociation between Ras and the RA domains serve as the localization
anchor. To rule out a non-Rap1 role for PLCe1, we quantified
adhesion in PLCe1 knockdown cells that express a constitutively
active form of Rap1 (Rap1–V12). As shown, PLCe1 knockdown
T cells are less adhesive than those expressing a nontargeting
shRNA, but expression of Rap1–V12 is sufficient to rescue SDF-1α–
induced adhesion (Fig. 4H). Together, these studies suggest that the
role of PLCe1 in SDF-1α–induced T-cell adhesion is solely to ac-
tivate Rap1, and the CDC25 (GEF), PH, and RA1/2 domains are
sufficient.

PLCe1 Is Required for Recruitment of Sensitized T Cells to Site of
Inflammation. To assess the role of PLCe1 in T-cell adhesion
in vivo PLCe1 knockout mice were used in a model of contact
sensitivity (15) (Fig. S4). PLCe1 knockout mice developed less ear
swelling following dinitrofluorobenzene (DNFB) sensitization and
challenge than wild-type mice (Fig. 5A). A three point scoring
system was used to grade each tissue section based on mono-
nuclear cell infiltration and PLCe1 knockout ear tissue demon-
strated less infiltration (Fig. 5B). In wild-type mice there are more
infiltrating CD3+ cells compared with PLCe1 knockout mice (Fig.
5C). Further, the infiltrating population is composed of both CD8+

and CD4+ cells (Fig. 5D). These results suggest that PLCe1 plays a
role in inflammation and T-cell infiltration following DNFB chal-
lenge. We found no difference in adhesion of murine T cells from
wild-type and PLCe1 knockout mice at baseline; however, T cells
isolated from PLCe1 knockout mice were unresponsive to SDF-1α
stimulation, whereas those isolated from wild-type mice exhibited a
highly significant increased level of adhesion (Fig. 5E). These re-
sults confirm that PLCe1 knockout T cells are defective in SDF-1α–
induced adhesion.
To confirm that PLCe1 plays a role in T-cell infiltration following

challenge but not in T-cell activation and proliferation during the
sensitization phase of the model, we isolated inguinal lymph nodes
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from DNFB naïve and sensitized mice. Inguinal lymph nodes from
PLCe1 knockout and wild-type mice were comparably enlarged
following sensitization (Fig. 6A), suggesting T-cell activation by
APC and proliferation took place. Lymphocytes were isolated from
these lymph nodes and stained for CD3, CD4, and CD8. Analysis
shows that DNFB sensitization results in a shift toward CD8+ T-cell
expansion, and importantly, this increase in CD8+ cells was ob-
served in both wild-type and PLCe1 knockout lymphocytes (Fig. 6B)
(16). These cells were comparably proliferative in response to con-
canavalin A (conA) (Fig. 6C). Likewise, the cells secreted equally
high levels of IL-2 in response to conA (Fig. 6D). Antigen-specific
T-cell response was assessed in vitro by loading primary murine
antigen presenting cells with sodium 2,4-dinitrobenzenesulfonate
(DNBS) and coculturing with T cells isolated from the inguinal
lymph nodes of naïve or sensitized mice of both genotypes. Secreted
IFNγ levels were increased comparably by DNFB sensitization (Fig.
6E). Together these findings provide evidence that T cells within the
inguinal lymph nodes of both wild-type and PLCe1 knockout mice
following DNFB sensitization are primed and activated.
Through adoptive transfer before sensitization we were able to

assess the role of T cells in the observed inflammatory defect. The
transfer of wild-type T cells into PLCe1 knockout mice followed by
sensitization and challenge resulted in a rescue of ear swelling
(Fig. 6F), including more extensive cellular infiltration (Fig. 6G),
along with areas of spongiosis and necrosis. These results indicate
that the role of PLCe1 in generating this response is restricted to
the T-cell compartment. Of note, the transfer of PLCe1 knockout
T cells into PLCe1 knockout mice followed by sensitization and
challenge did not rescue ear swelling and cellular infiltration (Fig.
6 F and G), confirming that the increase in T-cell number is not
responsible for generating the response. Collectively, these studies
allow for the conclusion that PLCe1 does not play a role in the
sensitization phase of contact sensitivity, but is necessary for
lymphocyte trafficking and infiltration to site of challenge.

Discussion
In this work, we discovered a signaling pathway regulating T-cell
adhesion downstream of SDF-1α/CXCR4. We showed that SDF-
1α induced transient activation of Rap1 in comparison with the
sustained activation following cross-linking the TCR. We identi-
fied that the GEF mediating SDF-1α/Rap1 activation was PLCe1.
Further studies documented the contribution of the CDC25, PH,
and RA domains of PLCe1, but not the enzyme’s phospholipase
activity, to its function in this particular signaling pathway (Fig.
S5). In vivo studies highlighted the specific role of PLCe1 in T-cell
recruitment to site of inflammation.
T-cell adhesion plays a critical role not just in normal immune

system function but also in the pathogenesis of inflammatory and
autoimmune diseases. Due to this phenomenon, adhesion mole-
cules are promising targets for antiinflammatory therapies. Sig-
nificant achievement has been accomplished with Efalizumab, a
monoclonal LFA-1 antibody to treat psoriasis and in the treatment
of Crohn’s disease with Natalizumab, a monoclonal VLA-4 anti-
body (17). The adverse effects of these therapeutics often include
issues of immune suppression due to the broad effects on T-cell
adhesion. With this in mind it is of critical importance to better
understand and leverage points of distinction between TCR and
chemokine induced T-cell adhesion (3, 18, 19).
PLCe1 functions are not limited to cellular adhesion. PLCe1 has

been characterized as a direct effector of Ras (13), and recent
work has shown a tumor suppressor role for this protein in Ras-
triggered cancers (20, 21). PLCe1 was also shown to modulate
adrenergic receptor-dependent cardiac contraction and to inhibit
cardiac hypertrophy (22, 23). Patients with focal segmental glo-
merulosclerosis have been found to have loss-of-function muta-
tions in PLCe1, and PLCe1 itself interacts with transient receptor
potential channel 6 (24–27). Even more intriguing is the fact that a
genome-wide association study identified the susceptibility loci for
dengue shock syndrome at PLCe1 (28). Whether mutations in
PLCe1 are directly responsible for this clinical syndrome remains
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unclear. The role of PLCe1 in skin inflammation has been ques-
tioned before; however, it was suggested that the effects of this
enzyme were not mediated exclusively by CD4+ cells and the in-
volvement of other cell types, such as of fibroblasts and kerati-
nocytes, has been suggested (29).
Our work is not free of limitations. Other investigators proposed

that additional GEFs, such as C3G, are also important for che-
mokine-induced migration (8). Further, whether PLCe1 is required
for the Rap1 activation downstream of other chemokines is not
clear. We showed that Rap1 was activated in cells stimulated with
the chemokine RANTES, but this activation failed to result in
increase adhesion (Fig. S6). Based on our work we conclude that
the GEF activity of PLCe1 is the principal contributing factor to
T-cell adhesion. This finding leaves open two intriguing possibili-
ties: that the lipase is activated but not contributing to the regu-
lation of adhesion, or that the GEF and lipase activities of PLCe1
are independently regulated by an unknown mechanism. The lack
of DAG accumulation and significant intracellular calcium increase
suggests no phospholipase is active. Previous studies provide no
evidence of distinct regulation mechanisms and in fact suggest that
Rap1 engages in a feedback loop wherein activated Rap1 prolongs
PLCe1 lipase activation through binding to the RA domain along
with Ras (12, 14). Much of the work aimed at resolving mecha-
nisms of PLCe1 regulation have been done in extracellular assays
or in various cell types downstream of receptors with alternate
GEFs responsible for Rap1 activation (12). The results presented
herein provide a pathway to study PLCe1 regulation in which it is
the sole GEF responsible for Rap1 activation, and the lipase
activity is not contributing considerably to the resulting function.
We believe that understanding the regulation of this unique dual
enzyme is a critical next step in PLCe1 biology and targeting.

To summarize, we discovered a signaling pathway downstream of
CXCR4 in T cells leading to Rap1 activation and increased adhe-
sion. This phenotype was PLCe1 dependent and therefore targeting
this enzyme should offer new approaches to treat inflammatory
disease.

Materials and Methods
Cell Culture. Human T cells were isolated from peripheral blood of healthy
donors (NY Blood Center). Murine T cells were isolated from spleens of 10- to
12-wk-old mice. Jurkat T cells, Jγ1 cells, HEK-293T, and CHO cells expressing
ICAM-1 were obtained from American Type Culture Collection.

Generating PLCe1 T Cells. Individual GEF expression was knocked down in
Jurkat T cells usingMission shRNA (Sigma). SMARTpool ON-TARGETplus PLCe1
and control siRNA were obtained from Dharmacon.

Adhesion Assays. Static and shear flow T-cell adhesion assays were performed
as reported (1, 11).

Rap1/Ras Activation Assay. Activated Rap1 or Ras was detected by GST pull-
down assay (30).

Mice. C57/Bl6 female mice, or PLCe1 knockout (23), at 6–12 wk of age were used.
Animal studies were approved by the New York University institutional animal
care and use committee.
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