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Humans move their eyes to gather information about the visual
world. However, saccadic sampling has largely been explored in
paradigms that involve searching for a lone target in a cluttered array
or natural scene. Here, we investigated the policy that humans use to
overtly sample information in a perceptual decision task that required
information from across multiple spatial locations to be combined.
Participants viewed a spatial array of numbers and judged whether
the average was greater or smaller than a reference value. Partici-
pants preferentially sampled items that were less diagnostic of the
correct answer (“inlying” elements; that is, elements closer to the
reference value). This preference to sample inlying items was linked
to decisions, enhancing the tendency to give more weight to inlying
elements in the final choice (“robust averaging”). These findings con-
trast with a large body of evidence indicating that gaze is directed
preferentially to deviant information during natural scene viewing
and visual search, and suggest that humans may sample information
“robustly” with their eyes during perceptual decision-making.

decision-making | categorization | eye movements | numerical averaging |
information sampling

Awell-validated computational framework argues that deci-
sions are made by integrating information toward a threshold,

at which point a response is made (1, 2). Within this integration-to-
bound framework, decisions are optimized by sequential sampling,
at the cost of delaying responding (3). Studies using this framework
in conjunction with psychophysical tasks have suggested that hu-
mans and monkeys make approximately optimal perceptual cate-
gory judgments, with choice accuracy limited mainly by sensory
noise or uncertainty in the external world (2, 4, 5). These psycho-
physical studies have been argued to offer a window on the general
mechanisms by which humans make decisions (6).
However, paradigms in which stimulation is continuously available

and controlled exclusively by the experimenter differ from everyday
choices in real-world environments. For example, in the random dot
motion (RDM) paradigm, subjects passively sample from a single,
continuous, centrally presented stream of information and decide
whether average dot motion tends in one direction or another (7). By
contrast, decisions about the average feature in a natural scene are
made by actively saccading (or covertly attending) to successive im-
age locations and sampling the subset of information that is available
there. For example, a foraging monkey might move its eyes freely to
several locations in the forest canopy and average the available fruit
yield to decide where to move. Real-world category decisions, thus,
are affected not only by the quality of the sensory information and
the dynamics of integration, but also by the policy that dictates how
information is sampled and weighted when forming a decision.
However, the nature of this policy remains largely unknown.
The determinants of saccadic eye movements have been ex-

tensively investigated during visual search (8) and natural scene
perception (9). In visual search tasks, eye movements are
attracted to image locations that contain perceptually salient or
surprising items (10, 11) or to those points at which task-relevant
information is maximal (12–15). In value-based choice tasks, in
which for example participants judge which of two or more food
items is preferred, choices and eye movements are interlinked, in

that items that are fixated more frequently are chosen more
often (16, 17). Other models have suggested that more uncertain
sources are sampled more thoroughly with the eyes (18) or that
decisions and information-gathering mutually drive one another
in a reciprocal cascade (19). However, little is known about the
policy by which participants sample information during choice tasks
that involve integrating decision information from multiple locations
across the visual field. Various studies have investigated the sampling
policy in differing domains, such as category learning (20) and
classification tasks (21). Recently, researchers have highlighted
the importance of investigating evidence accumulation as an ac-
tive sampling process (22). We investigated this sampling process
by measuring eye movements while human participants performed
a categorization task that involved averaging numbers in a spatial
array. We used fully visible symbolic numbers as stimuli, allowing
us to assess how gaze placement was determined by the statistics
of decision information, rather than the perceptual arrangement
of the stimulus array.
When averaging perceptual features across multiple locations

under central fixation, participants tend to downweight or ignore
extreme values, such as a deviant expression in a crowd of faces
(23) or outlying color values in an array of shapes (24). This has
led to the proposal that “inlying” items (those that are closer to
the category boundary) are processed with higher gain than
outliers (24, 25). However, a related possibility is that observers
tend to sample by preference those items that are closer to the
category boundary. Testing this theory, we found humans prefer
to fixate the inlying items in a stimulus array during a perceptual
decision-making task—a policy that contradicts the well-estab-
lished preference for fixating deviant items in visual search tasks.

Significance

When making decisions, humans and other primates move their
eyes freely to gather information about their environment. A
large literature has explored the factors that determine where the
eyes fall during natural scene perception and visual search, con-
cluding that deviant or surprising perceptual information attracts
attention and gaze. Here, we describe a sampling policy that
paradoxically shows that in a decision-making task, the eyes are
attracted to expected rather than unexpected information: When
classifying the average of an array of numbers, human observers
looked by preference at the numbers that were closest to the
mean. This policy drove a behavioral tendency to discount the
influence of outliers when making choices, leading to “robust”
choices about the stimulus array.
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This “robust” sampling policy drove decisions to ignore or dis-
count outlying information during perceptual decisions.

Results
Participants (n = 54) viewed eight two-digit numbers distributed
quasirandomly around the screen (Fig. 1A). Numbers were
drawn from a distribution with mean μ and SD σ, and partici-
pants were asked to compare their average to a reference value
R that varied across blocks (μ = R ± 2 or R ± 4 in low and high μ
trials, respectively, and σ = 6 or 12 in low and high σ trials, re-
spectively). Half of the participants indicated whether the average
was higher (or not) than the reference; the others indicated whether
the average was lower (or not). Numbers were interspersed among
task-irrelevant items (letters), which introduced a gentle crowding
effect and encouraged shifts of gaze during decision formation. By
tracking gaze during task performance, we were able to ask how the
information sampled with the eyes related to decisions, with a focus
on whether participants sampled by preference those numbers that
were inlying (close to reference) or outlying (far from reference).
We report data collapsed over two experiments that differed only

in terms of the response deadline (3,000 ms and 5,000 ms in exper-
iment 1 and experiment 2, respectively). Overall mean accuracy was
70.5% (n = 54). Performance depended on both the mean and
variance of the distribution from which the numbers were drawn (Fig.
1B for accuracy and Table S1 for response time). Accuracy increased
on high μ trials compared with low μ trials [F(1, 53) = 76, P < 0.001]
and decreased on high σ (more variable evidence) trials compared
with low σ trials [F(1, 53) = 47, P < 0.001], as previously reported (24).

Gaze Trajectories. We developed an approach to analyzing eye-
tracking data (“landscape analysis”) that measured the decision
information sampled by the eyes as a continuous, time-varying

quantity (the “evidence trajectory,” or ET) across each trial (see
Fig. S1 and SI Methods for a detailed description of the analysis
method). We first converted the stimulus array on each trial to a
smooth topography (or landscape) of decision values, with peaks or
troughs centered on the spatial position of each element and a
height and sign that was determined by the difference between each
element Vk and the reference R (positive peaks favoring the de-
cision “higher than reference,” negative troughs favoring “lower”;
Fig. 1C). The momentary evidence at each point in time was de-
fined as the landscape value under the gaze location, and the ET
constituted the time-series of values obtained as the eyes moved
across the stimulus array on each trial (Fig. 1D and SI Methods).
This is equivalent to conceiving of the gaze as a “soft” (or smooth)
information-harvesting spotlight moving across the screen, allowing
evidence to be accumulated up to a decision threshold. The width of
the spotlight was estimated independently of further analyses under
the assumption that participants’ gaze maximized the acquisition of
total sensory evidence. We fit this value by searching for values that
maximized “quality trajectory” (QT)—that is, the extent to which
items were viewed irrespective of their task-relevant values (SI
Methods). We also validated all analyses using a “hard” spotlight—
that is, an aperture of fixed width with no spatial smoothing,
obtaining qualitatively identical results (Fig. S2).

Decisions Depend on Gaze Location. Using this approach, we first
compared cumulative ET on trials where participants responded
“higher” and those where they responded lower, correcting for
differences in available information on “high” and “low” trials
(SI Methods). As expected, choices depended strongly on the
decision information sampled, with average cumulative ET
building up steadily until the response: participants responded
lower when the sampled evidence was lower than the reference
and higher when the sampled evidence was higher than the
reference (Fig. 1D, Bottom). In other words, consistent with
previous findings, choices were strongly affected by where par-
ticipants looked (16).

Gaze Is Directed Preferentially to Inliers Over Outliers.Next, we used
a similar landscape approach to determine the extent to which
participants’ gaze favored items that were inlying or outlying
(numerically closer or further from the reference). We generated
a new set of landscapes in which the topography on each trial was
determined by the rank of the absolute value of each element
(number) within the stimulus array, so that more inlying ele-
ments had higher values and more outlying elements had lower
values (Fig. 2A; similar results were obtained when this analysis
was carried out using the absolute values instead of the ranks).
The integral of the eye movement trajectory under these land-
scapes, which we call the “prototypicality trajectory” (PT), thus
encoded participants’ time-varying preference to fixate those
elements that were numerically similar (inliers; denoted by
positive values) or dissimilar (outliers; negative values) to the
reference. We found that inlying items were sampled preferen-
tially, from 400 to 800 ms poststimulus presentation, indicated by
a significantly positive PT value (Fig. 2B, black line and shading).
This result survived correction for multiple comparisons across
time points using a well-validated cluster-based approach (26).
Next, we evaluated this preference for inliers using a different

approach. On each fixation, we defined the item being viewed as
that which was closest to the current gaze location, allowing us to
calculate the probability of gaze moving from an item of one
rank (i.e., ordinal position in the array) to another. To avoid any
biases that may arise from nonindependence of nearby items, we
constructed a null distribution specific to our experiment by
randomly permuting item-location assignments on each trial and
repeating the analysis 1,000 times. Next, we computed the dif-
ference between gaze-transition probabilities in our dataset and
under the null distribution. Finally, we calculated the probability
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Fig. 1. Average accuracy and demonstration of the landscape approach.
(A) Example trial display. Participants could sample the numbers freely by
moving their eyes and had to indicate whether the average of all of the numbers
on the screen was higher or lower than the reference value. (B) Performance
increased for higher μ and lower σ. Bars are shown with 95% confidence inter-
vals. (C) Landscape was created by convolving each stimulus location with a bi-
variate Gaussian basis function. Evidence landscape was created by setting the
height of the Gaussian associated with each number location equal to the
number value – reference value (Vk – R). The integral of gaze (black line) under
these landscapes is used to calculate the ET. (D, Top) ET over time for four example
trials (lines). (Middle) The cumulative ET over time (t) for these four example trials
(i). (Bottom) The cumulative ET time series averaged across trials. Cumulative ET is
on average positive when participants responded higher than reference and
negative when participants responded lower than reference (green).
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for a single fixation to go to an inlier/outlier, split for short, me-
dium, and long Euclidean distance in pixels on the screen between
the currently and subsequently fixated items (Fig. 3). The main
effect of preference to sample inliers (sampling policy) was signifi-
cant [F(1, 53) = 8.58, P < 0.01]. This effect was largely driven by
fixations of medium distance [t(53) = 2.74, P < 0.01] in comparison
with short and long distances (both P > 0.05). The main effect of
distance [F(1.9, 100.67) = 1.71, P > 0.05] and its interaction with sam-
pling policy [F(1.89, 100.38) = 1.168, P > 0.05] were not significant.
These findings obtained using discrete fixations rather than

the landscape approach demonstrate that observers exhibited a
tendency to shift their gaze toward inliers rather than merely
dwelling for longer while viewing these items. Unsurprisingly,
these effects diminished for long Euclidean distances between
previous and current fixations, as the decision information as-
sociated with distant items cannot be evaluated through paraf-
oveal processing. Thus, the data suggest that participants’
parafoveal processing is not unbounded but occurs within a fixed
range, and the sampling bias (moving to inlying information) is
only possible for items falling within this range.

Humans Show Robust Averaging of Number. Next, we investigated
whether participants’ decisions show evidence of robust averag-
ing—that is, a decision policy in which outliers carry less weight
than inliers. We used probit regression to predict human choices
as a function of (i) the numbers associated with each item (ranked
from lowest to highest), (ii) the time spent sampling those num-
bers, and (iii) the interaction between these two factors, all en-
tered as competitive predictors in the predictor matrix (Fig. 4 A–C
andMethods). The weighting function plotted in Fig. 4A shows the
main effect of stimulus—that is, the weight given to each number
as a function of its rank within the numerical array. The inverted-u

shape indicates that outliers are downweighted. This observation
is qualified by a statistical comparison between the weight given to
inlying ranks [3, 4, 5, 6] and outlying ranks [1, 2, 7, 8], t(53) = 3.72,
P < 0.001. This finding of robust averaging with numbers com-
plements earlier reports with color, shape, and facial expression,
confirming that outliers carry less influence during perceptual
averaging across domains and task settings (24, 25).

Linking Sampling Policy and Human Decisions. Next, we show how
the main effect of sampled information influenced choices,
finding that the resulting estimates grew with rank: sampling low
numbers was associated with a propensity to respond low, and
sampling high numbers was associated with responding high (Fig.
4B). This is expected from the ET analyses above (Fig. 1D),
which show that the information sampled was strongly predictive
of the response (high vs. low). Critically, the third predictor
(interaction term) in the regression allowed us to assess how the
weight given to each stimulus rank was modulated by gaze du-
ration, over and above the influence of stimulus value. Ranks
where this term differs positively from zero are those where
directing gaze to the relevant numbers amplifies their weight
multiplicatively. For example, if gaze were merely a filter that
acted equally for all numbers irrespective of their rank, we would
see weights that are equal for all ranks. However, this is not what
is observed (Fig. 4C). The time spent sampling inlying items
enhances the effect that they will have on choice (compared
with outlying items) above and beyond what would be pre-
dicted simply by their values alone [inlying vs. outlying: t(53) =
5.10, P < 0.001]. We note that this finding is not simply due to a
logarithmic (Weber-like) compression of the number line,
because it occurred both for those participants that were asked
whether the average was higher than the reference [t(28) = 4.99,
P < 0.001] and those that reported whether the average was
lower than the reference [t(24) = 2.18, P = 0.039], a framing
variable that we counterbalanced over participants (Methods).
This result also persisted when we used the average (rather
than total) ET calculated over the trial, suggesting that it is not
simply due to different sampling policies being deployed on
trials with short and long RTs.
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Fig. 2. PTs for the human and model data. (A) Prototypicality landscape for
the example trial from Fig. 1. This landscape is created by setting the height
of the Gaussian (gk) associated with each number location equal to the
prototypicality value Pk = 4.5 – tiedrank(jVk – Rj). (B) PT over time. Inlying
items were viewed by preference from ∼400–800 ms poststimulus pre-
sentation, indicated by a significantly positive PT value (black). Significant
clusters (P < 0.05, corrected for multiple comparisons) are marked by black
bars (see Methods). Shading around the lines signify 95% confidence in-
tervals. The magenta line shows the predicted values for PT over time for
the best fitting sampling strategy (determined per subject) of the model.
(C) Simulated PTs for different sampling strategies (π) in the model. More
positive values indicate a preference to sample inlying items first; more
negative values indicate a preference to sample outlying items first.
(D) Accuracy of the model under different sampling policies. Performance is
lower for a sampling policy preferentially sampling inliers first (positive π)
compared with sampling outliers first (negative π).
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Given that the prototypicality analysis (above) showed that inly-
ing items were preferentially viewed 400–800 ms poststimulus, we
examined whether this downweighting, due to preferential sam-
pling, is also most apparent in this time period. To do this, we
conducted the previous regression for each sampling time point
individually and tested which of these resulting coefficients (for the
Gaze × Stimulus interaction) were significantly different from zero.
In Fig. 4D, these are plotted (t values > 3) on a heat map, showing
that this downweighting of outliers effect is also maximally depen-
ded on gaze during this 400–800 ms timeframe. These results sug-
gest that robust averaging is due at least in part to the sampling
policy with which participants actively sample inlying rather than
“outlying” information.
Together, Fig. 4 A and C show that (i) inlying stimuli (i.e., those

close to the reference) have a stronger influence on choice than
outlying stimuli (i.e., those that are much larger or much smaller
than the reference) and (ii) that this effect is multiplicatively en-
hanced by gaze. Thus, any tendency that inlying stimuli might have
had to drive choices more strongly is exaggerated when they are
fixated, but this is not true for outlying stimuli. In other words,
human observers are not only “robust averagers” but also “robust
samplers”—selectively viewing inlying category information and
thereby ensuring that this information is a more potent driver of
choice. In further control analyses, we ruled out the possibility that
this effect was due to a “counting” strategy, in which all items above
or below the reference contributed equally to decisions (Fig. S3).

Computational Simulations. Next, to validate our approach, we used
computational simulations to estimate how the ET and PT should
vary under differing sampling policies. Using distributions of de-
cision information (i.e., numbers) identical to those viewed by hu-
man participants (i.e., same μ and σ), we constructed simulated ET
and PT vectors consisting of alternating periods of fixation and eye
movements, prefixed by a delay period. The duration of all of these
periods (initial delay, fixation, eye movement) was sampled from
the distributions exhibited by human participants. During simulated
fixations, simulated ET was set to the decision values Vk –R (where

Vk is the numerical value of item k), and during delay and eye
movements, ET values were set to zero. Simulated PT was con-
structed in the same manner by setting PT during a fixation of
stimulus k to its value ranked within the array, as for the human
analyses. Model choices occurred when the cumulative simulated
ET reached a fixed threshold, as in standard integration-to-bound
models (2). The sign of the cumulative ET at this fixed threshold
determined model choice and thus accuracy. To ensure that human
PT and model PT values were on the same scale, we multiplied the
model PT with the average QT for the corresponding participant.
This framework allowed us to manipulate the model sampling

policy—that is, to simulate the order in which the array items were
sampled. We implemented this via a single parameter π that dic-
tated whether the observer preferred to view inliers before outliers
(π > 0), outliers before inliers (π < 0), or sampled the elements in
random order (π ∼ 0). The parameter π encodes the (positive or
negative) correlation between the observed sampling order and the
most “prototypical” ordering—that is, from most inlying to most
outlying. In Fig. 2C, we plot simulated PT for different values of π.
The best fitting parameterization was determined per subject by
calculating the mean squared error (MSE) between human and
simulated PT for each value of π. Fig. 2B shows the simulated values
of PT for the best fitting average π value over subjects (magenta
line) plotted against human data. Human PT curves were best
accounted for by positive π values, consistent with a policy that
involved sampling inliers before outliers and thus with the analyses
described above. Fig. S4 shows the distribution of best fitting values
for π over subjects. Next, using the best fitting π values for each
subject, we returned to the analysis of ET and compared the human
and simulated ET values for the different conditions—that is, for
different means μ and SDs σ of the decision values with respect to
the reference. We observed a striking convergence between the
human and model ET values (Fig. S5), providing an independent
validation of our best fitting model.

Determinants of Human and Model Performance. Finally, we tested
how model performance (accuracy) varied with π. Interestingly,
performance for the model linearly decreased as the sampling
policy π changed from a policy to sample outlying information first
to a policy to sample inlying information (Fig. 2D). Thus, for an
“ideal” model—in which decisions are only limited by the quality of
information that is sampled from the screen—a policy that prefer-
entially samples inlying information incurs a model performance
cost relative to random sampling. To test whether this was the case
for human observers, we conducted an additional analysis that
evaluated how estimated human values of π predicted accuracy at
the single-trial level. We computed single-trial estimates of π by
correlating the order in which items were actually sampled with
their ranked equivalent and then used logistic regression to estimate
how these values predicted choice accuracy (Fig. S6). Both the
sampling policy π [t(53) = 2.37, P < 0.05] and the average proto-
typicality [t(53) = 11.3, P < 0.001] were positive predictors of accu-
racy, indicating that unlike the model, participants performed better
as they exhibited more robust sampling.

Discussion
In real-world settings, information arises in crowded natural
scenes, replete with multiple features and objects that compete
to drive decisions. Studies of saccadic control have revealed that
attention is automatically captured by perceptually salient in-
formation, such as a target defined by a unique color in a visual
search experiment (27), and may also be captured by semanti-
cally deviant information, such as an object in an unusual context
(e.g., a sofa on the beach), although the latter claim remains
controversial (11). However, the task at hand is a key de-
terminant of saccadic control, and the eyes are drawn to those
scene elements that are task-relevant, or valuable, or to those
locations where the most information can be gleaned (10, 12–15,
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28). Nevertheless, most decision-making studies either use a
single, centrally presented source of information (such as a dot
motion stimulus) precluding the detailed investigation of the
policy by which participants sample decision information or assume
that gaze allocation is a stochastic process that drives a preference
for fixated alternatives, rather than vice versa (16, 17). Recently,
researchers have highlighted the importance of investigating evi-
dence accumulation as an active sampling process (22).
Here, we reveal an aspect of the sampling policy that deter-

mines where gaze is allocated during decision-making: faced with
multiple spatially distinct sources of decision information, ob-
servers tend to ignore those sources that carry the most extreme
information and focus instead on the inlying decision information—
that is, that falling closest to the boundary that segregates one
choice from another (or close to the mode of the overall in-
formation presented on one trial; our approach was not designed to
distinguish these possibilities). This is surprising given that partici-
pants exhibit a well-characterized policy to saccade toward per-
ceptually deviant information during natural scene viewing, or visual
search (10, 11). The focus on inlying elements influenced human
choices, with gaze driving a multiplicative effect to weight inlying
elements more heavily, which in turn drove “robust averaging” in
perceptual choices made during the experiment.
Robust averaging of perceptual information has been de-

scribed before, for faces (23) and for colors and shapes (24, 25).
Here, we add to these findings, revealing that humans engage in
robust averaging of symbolic number. Importantly, we assumed that
participants used an approximate number sense, meaning that
numbers are treated as noisy estimates of magnitude, which can be
averaged like continuous sensory signals (29). This assumption
follows from the short duration for which numerical information
was available and the low average dwell times observed for each
number, which would preclude overt arithmetic approaches. Pre-
vious studies have left unresolved the question of whether robust
averaging occurs because inlying items are sampled (i.e., overtly
attended) by preference or whether the influence of outliers is at-
tenuated at a later decision stage. For example, one model proposes
that observers simply compute a posterior likelihood ratio condi-
tional on the past distribution of features and their associated re-
sponses. This is equivalent to using a nonlinear decoder that
“squashes” outlying information, muting its influence in the average
and prolonging response latencies when decision information is het-
erogeneous (24). However, here we show that the robust averaging is
driven at least in part by the policy with which gaze is directed during
information integration. In other words, humans are not just robust
averagers but robust samplers of decision information.
Why do humans sample and average robustly? We describe a

computational simulation of the sampling policy adopted during
our spatial averaging task that was able to faithfully recreate the
relationship between the evidence sampled and the choices made
by humans. Exploring model performance under a range of poli-
cies (spanning a tendency to sample inliers or outliers by prefer-
ence) revealed that for an ideal model limited only by the
information available on the screen, sampling outliers rather than
inliers by preference boosted performance. This is consistent with
the observation that when assigning samples to one of two
Gaussian-distributed classes, eccentric or “off-channel” features
are most diagnostic of the correct response (30, 31). It is very
different, however, from the optimal policy that emerges as par-
ticipants gradually learn a category boundary through repeated
sampling (32) (see Fig. S7 for discussion).
However, in the human data, a tendency to sample inliers was

a positive predictor of accuracy at the single-trial level (Fig. S6).
This implies that a robust sampling policy has evolved to counter
additional sources of loss that arise during the decision process,
such as “late” noise that corrupts the information of integration,
perhaps due to capacity limits on attention and working memory
processes. For example, robust policies may lead to more stable

estimates of decision information, just as nonparametric statis-
tical inference is robust to the inclusion of aberrant data points.
Other recent work has suggested that apparent “suboptimalities” in
human judgment may in fact maximize performance when this late
noise is taken into account (33, 34). The effect of the interplay
between the decision environment (i.e., task characteristics) and
cognitive constraints on the relative (sub)optimality of various
sampling policies is an interesting avenue for future research.
In summary, the current results highlight that perceptual

judgments are not only constrained by the quality of the sensory
information and the dynamics of integration but also by the
sampling policy, which dictates how the information is selected
for entry into the decision process. However, other questions
remain open. In particular, the information processing steps by
which fixations are guided to subsequent inliers remain unclear
in our work, although this presumably relies on parafoveal pro-
cessing of nonfixated locations. One possibility is that covert
attention is first shifted to candidate items and the eyes are then
“pulled” to this location (35, 36). Nor does our study directly
address how saccade placement varies according to the spatial
arrangement of items on the screen. For example, participants
may prefer to saccade toward the center of mass of clusters of
objects (37). Thus, gaze can indeed be driven by the spatial ar-
rangement of items on the screen, but gaze is additionally driven
by the decision values of the available evidence, exhibited in this
work via a preference to sample inlying samples.

Methods
Participants. Sixty healthy human participants with normal or corrected-to-
normal vision were recruited in two experiments (experiment 1, n = 30;
experiment 2, n = 30). Participants provided written consent beforehand,
and the study was approved by the Oxford University Medical Sciences
Division Ethics Committee (approval no. MSD-IDREC-C1-2009-1). There
were only minor differences between the two experiments (highlighted
below), and so we collapse across their results. Six participants whose
performance failed to differ from chance were excluded from all further
analyses, leaving n = 54.

Stimuli. On each trial, participants viewed an array composed of eight two-
digit numbers. Stimuli were generated using PsychToolbox (psychtoolbox.
org/) for MATLAB (Mathworks) and presented on a 17-inch screen (resolu-
tion, 1024 × 768) viewed from a distance of 60 cm. Numbers (∼1.15° hori-
zontal and ∼0.95° vertical visual angle) were presented at randomly selected
locations within an invisible 8 × 8 grid. Eight additional randomly selected
grid locations contained letter pairs, which were distracters. No letter or
number pairs were presented within the central four grid locations. An ex-
ample stimulus array can be seen in Fig. 1A.

At the start of each block of 96 trials, participants were informed of the
reference value, against which they compared the average number for all
trials across that block. Subsequently, each trial began with the onset of a
central fixation cross (500ms), followed by the stimulus array, which remained
on the screen for either up to 3,000 ms (experiment 1) or up to 5,000 ms
(experiment 2). During array presentation, participants freely moved their
eyes across the screen and chose which was higher (lower): the reference
number or the average of the number array. The decision framing (decide
whether numbers higher vs. lower than reference) was counterbalanced
across participants within each experiment. Participants could respond at any
point during the array presentation by pressing one of two keys (“F” or “J”),
and they received auditory feedback in the form of a high or low tone
lasting 100 ms (800/400 Hz, correct/incorrect). In experiment 2 only, partici-
pants were additionally paid in proportion to their accuracy. In the high
frame, participants received a bonus corresponding to their choice (refer-
ence vs. numbers, in pence) on 20 randomly selected trials. In the low frame,
the reward of participants started at £20, from which their choice was
deducted on 20 randomly selected trials. Participants earned £10 on average
for their participation. Participants performed eight blocks of 96 trials (768
trials in total) in an experiment lasting ∼50 min.

Design. The reference number R on each block was drawn randomly from a
uniform distribution between 25 and 75. The sample numbers were drawn from
one of eight Gaussian distributions whosemean μ differed from R by either±2 or
±4 and whose SD σ was either 6 or 12. Sample values were resampled to ensure

Vandormael et al. PNAS | March 7, 2017 | vol. 114 | no. 10 | 2775

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613950114/-/DCSupplemental/pnas.201613950SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613950114/-/DCSupplemental/pnas.201613950SI.pdf?targetid=nameddest=SF6
http://psychtoolbox.org/
http://psychtoolbox.org/


that the sample mean and variance fell within the desired value for that trial
with a tolerance of 0.7 and 0.1, respectively. Each of the eight trial types occurred
equally often, and their presentation order within a block was random.

Eye-Tracking. All eye movement data were recorded monocularly using an SR
Research EyeLink 1000 eye-tracking system at a sampling rate of 1,000 Hz.
Participants placed their heads on a chin rest that wasmounted on the table at a
fixed distance of 68 cm from the screen. Before the start of each new block, a
standard calibration/validation procedure was executed, in which participants
trackeda dot that appeared at 13 evenly spaced locations across the screen. Data
were converted to vectors of x, y position in the frameof reference of the screen
exported to MATLAB using the EyeLink toolbox and analyzed using in-house
scripts. Missing data (due to blinks or eye movements away from the screen)
were ignored (i.e., set to NaN) in all analyses. Eye movement traces were cut off
at reaction time for all analyses described above. All of our analyses assume that
the eye-tracker faithfully estimates the pixel position of the gaze on the screen.

Analysis. We analyzed the eye-tracking data using both a combination of
conventionalmethods (e.g., identifying the location and dwell time of individual
fixations) and a technique that treated the stimulus array as a topography of
decision information that was sampled continuously with the gaze (landscape
analysis). We describe this method in detail in SI Methods (Fig. S1). The methods
associated with other analyses are detailed in accompanying supplementary
sections that are referenced in the main text (Figs. S3, S6, and S7).

Weighting of Decision Information on Choice. Probit regression was used to
predict human choices (higher or lower than reference) as a function of three
sets of predictors: (i) the decision values of each number ranked from lowest
to highest, (ii) QT for each number QTk (once again, with k ranked from
lowest to highest), and (iii) the interaction between these two quantities.
The QT for each number QTk was computed as the sum of the integral under
an element-specific QT landscape—that is, a landscape constructed using
each element in isolation (with the height of the Gaussian set to 1)—up to
the response time (Fig. S1). QTk is then proportional to the time spent
sampling element k.

The regression model we used was as follows, where in each case:

pðhighÞ=ϕ

"
b+
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X8
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#
,

where ϕ denotes the cumulative normal distribution, k the sample number,
and t the time point of the QT vector. For the data shown in Fig. 4 A–C, we
dropped the indexing by t and used the sum of QT for all time points up to
the response.
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