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Congenital adrenal hyperplasia (CAH), resulting from mutations in
CYP11B1, a gene encoding 11β-hydroxylase, represents a rare auto-
somal recessive Mendelian disorder of aberrant sex steroid produc-
tion. Unlike CAH caused by 21-hydroxylase deficiency, the disease is
far more common in the Middle East and North Africa, where con-
sanguinity is common often resulting in identical mutations. Clinically,
affected female newborns are profoundly virilized (Prader score of
4/5), and both genders display significantly advanced bone ages and
are oftentimes hypertensive. We find that 11-deoxycortisol, not fre-
quently measured, is the most robust biochemical marker for diag-
nosing 11β-hydroxylase deficiency. Finally, computational modeling
of 25 missense mutations of CYP11B1 revealed that specific modifica-
tions in the heme-binding (R374W and R448C) or substrate-binding
(W116C) site of 11β-hydroxylase, or alterations in its stability (L299P
and G267S), may predict severe disease. Thus, we report clinical, ge-
netic, hormonal, and structural effects of CYP11B1 gene mutations in
the largest international cohort of 108 patients with steroid 11β-
hydroxylase deficiency CAH.
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Congenital adrenal hyperplasia (CAH) is a Mendelian disor-
der transmitted as an autosomal recessive trait. The most

prevalent form of CAH arises from steroid 21-hydroxylase en-
zyme deficiency, accounting for ∼90–95% of all cases (1, 2). In
contrast, CAH caused by steroid 11β-hydroxylase deficiency is
considerably rare, with a prevalence of 5–8% (3), from which we
estimate an overall frequency of 1 in 100,000 live births.
Two homologous enzymes, 11β-hydroxylase and aldosterone syn-

thase, are encoded by the CYP11B1 andCYP11B2 genes, respectively.
The two genes are 40-kb apart, each comprising nine exons and
mapped to chromosome 8q21-22 (3, 4) (Fig. 1A). In contrast to
CYP21A2 and its CYP21A1P pseudogene, CYP11B1 and CYP11B2
are both active and do not have a pseudogene. The two encoded
homologs, however, have distinct functions in cortisol and aldosterone
synthesis, respectively (3). In the zona fasciculata, 11β-hydroxylase
converts 11-deoxycortisol and 11-deoxycorticosterone to cortisol and
corticosterone, respectively, and is regulated by adrenocorticotro-
pic hormone secreted by the pituitary. In contrast, in the zona
glomerulosa aldosterone synthase converts corticosterone to aldoste-
rone with the intermediate production of 18-hydroxycorticosterone.
These latter conversions are controlled mainly by the renin angio-
tensin II system and serum potassium concentration (3).

Deficiency of 11β-hydroxylase prevents the conversion of 11-
deoxycortisol to cortisol and 11-deoxycorticosterone to corticoste-
rone. This results in high levels of 11-deoxycortisol and 11-deoxy-
corticosterone, respectively, which are shunted into the androgen
synthesis pathway, resulting in high levels of the androgenic steroid,
androstenedione. Female newborns are thus profoundly virilized
and exhibit significant masculinization of the external genitalia (5).
Precocious puberty, rapid somatic growth, and rapid skeletal matura-
tion because of hyperandrogenemia occur in both genders. Accumu-
lation of the potent mineralocorticoid 11-deoxycorticosterone also
leads to hypertension, which is not seen with 21-hydroxylase deficiency.
We recently published evidence for genotype–phenotype concor-

dance in 1,507 families with 21-hydroxylase deficiency; however, 7% of
the patients demonstrated nonconcordance (6). In a separate study,
we used computational modeling to define in silico the structural
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changes that each mutation in the CYP21A2 gene induces in the 21-
hydroxylase enzyme, and by correlating these changes with phenotype,

defined structural derangements underpinning the clinical variants of
CAH, namely salt-wasting, simple virilizing, and nonclassic CAH (7).
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Fig. 1. Clinical profile for patients with CAH resulting from 11β-hydroxylase deficiency from 13 nations comprising the International Consortium for Rare
Steroid Disorders. (A) Structure of the human CYP11B1 gene that contains nine exons, showing mutations harbored by 108 patients in this international cohort.
Previously unreported mutations are shown in italics. (B) Worldwide distribution of our cases of 11β-hydroxylase deficiency. The denominator indicates the
number of patients originating from that country with 11β-hydroxylase deficiency. The numerator indicates the number of patients with 11β-hydroxylase de-
ficiency who have been genotyped. All patients who originated from Middle East and European countries have been placed in their respective countries. It is
evident from this map that the majority of patients with 11β-hydroxylase deficiency originate in the Middle East and North Africa. (C) Prader scores of patients
with different genotypes (noted), both as homozygotes and compound heterozygotes. One patient (green) has been treated prenatally with dexamethasone.
(D) Bone age versus chronological age in male (blue) and female (red) patients. The black line represents a slope of 1 (bone age = chronological age). Of note is
that almost all patients show evidence of advanced bone age. (E) Mean arterial pressure (1/3 systolic pressure + 2/3 diastolic pressure) shown for both males and
female patients of various ages. The two lines indicate the age-appropriate upper and lower limits of the normal range. (F) Measurements of 11-deoxycortisol
(red) and 11-deoxycorticosterone (green) in our patient cohort. Shown also are normal reference ranges for both hormones (horizontal lines; Esoterix).
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Studies reporting the clinical and hormonal phenotype of 11β-
hydroxylase deficiency have been restricted because of small
patient numbers, consistent with the rarity of this disease. As the
International Consortium of Rare Steroid Disorders, we now
provide extensive data on the demographics, genotype, pheno-
type, and hormonal profile of CAH patients with 11β-hydroxylase
deficiency. Although we had 220 patients reported to us with
clinical data, only 108 patients had been genotyped and are
reported herein.
Our dataset confirms ethnic and geographical predominance

of 11β-hydroxylase deficiency in Middle East and North African
nations, in contrast to 21-hydroxylase deficiency that affects
mainly Eastern Europeans of Jewish descent, with 1 in 27 pa-
tients having mild, nonclassic CAH (8). Our data also show that
mostly all CAH patients with 11β-hydroxylase deficiency display
rapid skeletal maturation, with their bone age exceeding chro-
nological age; show higher Prader scores than newborns with
21-hydroxylase deficiency; and commonly suffer from hypertension.
Computational modeling indicates that, as with 21-hydroxylase
deficiency, mutation-induced changes in the heme- or substrate
binding regions of 11β-hydroxylase and mutations affecting enzyme
stability cause severe CAH.

Results
CAH resulting from 11β-hydroxylase deficiency is a rare disorder
with reported prevalence of 1 in 100,000 live births (2, 3). In our
international cohort, the disease was confined mainly to Middle
East and North African nations, where consanguinity is common.
Of note, 58% of patients were from consanguineous marriages
(Table 1) (9–13). The median age of diagnosis was 1.08 y (range:
0–17 y), with 80% of females being diagnosed because of am-
biguous genitalia at birth. In contrast, 84% of males presented
later with precocious puberty, and the remaining cases were di-
agnosed upon screening triggered by hypertension, hyperpig-
mentation, or family history. Of the 14 46, XX patients who were
assigned as males at birth, 10 were subsequently reassigned to
the female sex.
Fig. 1A shows that, in our cohort of 108 patients, there were 31

missense, 5 nonsense, 1 insertion, and 9 frameshift mutations of
the CYP11B1 gene, as well as 4 splice-site mutations. Country
distribution of these patients is shown in Fig. 1B. Mutations in
56 patients have been published in smaller collaborative stud-
ies (14–21). In our current cohort, 30 patients with the G379V/
G379V mutation were Arab Berbers from Tunisia, 4 with G446V/
G446V were from Egypt, and 4 with Q19Afs*21/Q19Afs*21 were
from Saudi Arabia. Only five patients with the genotype A331V/
A331V were Sephardic Jews living in the United States (Table 1).
Fig. 1 and Table S1 provide detailed clinical and hormonal

evaluations. Of the 108 patients studied, 55 were females, but
Prader scores were reported for 39 patients. Of these, eight
females had a Prader score of 5 (21%) (Fig. 1C). Notably, their
external genitalia displayed significant masculinization, with
the urethra opening at the tip of the phallus. Of the 39 females,
18 had Prader scores of 4 (46%). In a different subset of 70

patients, all had advanced bone age, with males significantly
exceeding females (bone age/chronological age; males: 2 ± 0.82,
n = 40; females: 1.43 ± 0.44, n = 30) (P = 0.0008) (Fig. 1D).
Measurement of baseline mean arterial pressures (MAP) in

another subset of 70 patients showed that 38 were hypertensive,
with MAPs exceeding the upper limit of normal for age (Fig. 1E).
There was no significant difference in MAP between males (n =
34) and females (n = 36). There was a trend for higher MAPs in
older children, but sporadic high MAPs were noted even in
younger patients. Adrenal steroid hormones were measured by
mass spectrometry in the local laboratory of the country. Serum
11-deoxycortisol and 11-deoxycorticosterone levels were all
elevated, consistent with 11β-hydroxylase deficiency (Fig. 1F
and Table S1).
To understand whether the clinical phenotype of 11β-hydroxylase

deficiency could be predicted by examining changes in enzyme
structure induced by a given CYP11B1 mutation, we performed in
silico analytics using the human CYP11B1 model constructed using
the homologous CYP11B2 crystal structure as a template (PDB ID
code 4DVQ), which exhibited 93% sequence similarity over 478
residues. We have previously shown that the clinical phenotype of
patients with 21-hydroxylase deficiency correlates with the extent of
functional loss induced by a given mutation (7). For example,
missense mutations within 5 Å of the heme- or substrate-binding
region or those affecting stability of 21-hydroxylase resulted in se-
vere salt-wasting CAH, whereas mutations disrupting conserved
hydrophobic patches or transmembrane interactions caused the less
severe, simple virilizing disease (7). Our model for CYP11B1
exhibited structural features of a classic steroid-synthesizing cyto-
chrome, with a triangular prism structure containing 16 α-helices
and 9 β-sheets (Fig. 2 A and B and Fig. S1).
We analyzed each mutation in relation to its severity in terms

of causing advanced bone age, poor Prader scores, and elevated
MAPs. Patients with mutations of R374 showed high Prader
scores of 4, advanced bone age, and severe hypertension.
Structural analysis showed that R374, a conserved residue across
the cytochrome family, creates an ion-pair interaction with E371
at the end of the K-helix. The helix continues into a loop that
forms a part of the heme-binding site. The ion pair R374-E371 is
responsible for maintaining the heme-binding site, and its mu-
tation is therefore predicted to be disruptive (Fig. 2C).
However, unlike the CYP21A2 gene, not all mutations within

the heme-binding site of CYP11B1 yield a severe phenotype. For
example, residue R448, located on a loop between the meander
region and L-helix, forms a part of the heme-binding site. It cre-
ates hydrogen bonds with the propionate tail of heme, the back-
bone atoms of L132, and the side chain of N133 (Fig. 2 D–F).
However, whereas its mutation is expected to result in a loss of
these hydrogen bonds, the clinical phenotype depends on whether
the mutant residue is Cys, His, or Pro. The R448C mutation was
associated with profoundly advanced bone age and severe hyper-
tension, and the Prader scores of the R448C and R448H were 4/5.
In contrast, mutation to Pro, which has a rigid backbone structure,
preserves the local structure around the propionate tails. Thus,
R448P was very mild, with a Prader score of 1.
Certain mutations were also found to adversely affect enzyme

stability, and were therefore not well tolerated. L299 is a conserved
residue located on the turn between the H- and J-helices, and its
mutation to a more rigid Pro side chain was found to decrease
flexibility of the turn, thus impairing enzyme stability (Fig. 2G). Pa-
tients homozygous for this mutation showed Prader scores between 4
and 5, advanced bone ages, and high MAPs. Another mutation,
G267S, likewise produced severe virilization (Prader score 5) and
marked increases in bone age (MAPs not available). The residue
G267S is located on the G-helix, and its mutation to Ser resulted in
lost flexibility, as side chains of the bulkier Ser did not fit between the
G- and J-helices. This caused steric clashes with residues on J-helix,
significantly impairing enzyme stability (Fig. 2H).

Table 1. Number of patients with congenital adrenal
hyperplasia because of steroid 11β hydroxylase deficiency in
Tunisia, Iran, Egypt, Turkey, and Saudi Arabia

Country Patients
Population,

million
Consanguinity,

% (ref.)

Tunisia 60 11 20.1–39.3 (9)
Iran 44 77 38.6 (10)
Egypt 26 82 28.96 (11)
Turkey 28 75 33.9 (12)
Saudi Arabia 11 29 52 (13)
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In addition to mutations affecting the heme-binding region or
enzyme stability, we also identified a mutation, W116C, which
affects substrate-binding. W116 is located on B′-helix, with its
aromatic indole side chain surrounded by the aromatic side
chains of F130, F231, W260, F487, and hydrophobic side chain of
L113. These residues together form the roof of the binding site
of the aromatic substrate, and a mutation to Cys was found to

disrupt the substrate-binding site (Fig. 2I). CAH patients with
this mutation had Prader scores of 4 and were severely hyper-
tensive, but one patient had an unexplained normal bone age.
We also identified mutations that were not as severe, wherein

11β-hydroxylase structure was not as adversely affected in silico.
For example, we found that the end of the J-helix contained a
conserved residue, A331, which when mutated to Val, clashed
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more rigid Pro side chain decreases flexibility of the turn, thus impairing enzyme stability (G). G267S is located on the G-helix, and its mutation to Ser results in lost
flexibility, as side chains of the bulkier Ser does not fit between G- and J-helices, causing steric clashes with residues on J-helix, significantly impairing enzyme stability
(H). W116 is located on B′-helix, with its aromatic indole side chain surrounded by the aromatic side chains of F130, F231, W260, F287, and hydrophobic side chain of
L113; these residues form the roof of the binding site of the aromatic substrate. A mutation to Cys disrupts the substrate-binding site (I). (J) The change (ΔΔG kcal/mol)
in protein stability uponmutation of each residue. A positive energy value indicates that themutation is likely to be disruptive. The disks represent the pairwise atomic
van der Waals radii overlap. Green disks represent almost in contact or slightly overlapping and red disks represent significant overlap.
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sterically with residues on the β5-sheet (Fig. 3A). Patients with
A331V displayed Prader scores between 2 and 4, modest in-
creases in bone age, and normal MAPs. Another relatively
“mild” mutation was G206V, in which patients had Prader scores
of 3 but with normal MAPs. The highly conserved and flexible
residue G206 is located at the end of the E-helix. When mutated
to Val, the side chains clashed sterically with F205 and T287, but
only mildly impairing enzyme stability (Fig. 3B).
We also investigated mutations for which severity of the three

clinical parameters, namely Prader scores, bone age, and MAP,
did not correlate with the structural disruption caused by mu-
tations. Mutation of T318, a highly conserved residue located on
the J-helix, to Met resulted in a Prader score of 4, but with
normal bone age and mild hypertension. Computationally, the
hydrophobic side chains clashed sterically with heme to obstruct
the ligand-binding site, but the enzyme appeared by and large
intact and stable (Fig. 3C). In contrast, G379, located on a loop
between the K-helix and β4-sheet, is positioned adjacent to the
substrate-binding site. The isopropyl side chain of the mutated
residue Val was found to obstruct and thus misalign the sub-
strate, again without severely affecting the enzyme (Fig. 3D).
Clinically, this mutation was associated with advanced bone age
but relatively mild hypertension.
Two Prader 4 mutations, namely P94L and T318R, for which

we have limited clinical information in our cohort, also deserve
mention. The P94 residue is located on the B-helix. When mu-
tated to Leu, the hydrophobic side chain clashes sterically with
the loop between the α17- and α18-helices. The rigid amino acid
side chain also maintains the structural conformation between
the B′-helix and β2-sheet (Fig. 3E). In case of the T318R mu-
tation, the charged guanidinium side chains of Lys clashed ste-
rically with heme to obstruct the ligand-binding site (Fig. 3F).
Fig. 4 is a compendium of structural changes induced by

mutations that constitute compound heterozygote genotypes.
The overall phenotypic severity in compound heterozygotes will
depend on the relative contribution of each mutated protein. We
also provide details of structural changes induced by mutations
published by others (Figs. S2 and S3). Finally, two nonsense
mutations, wherein the protein produced should be truncated,
namely homozygous R141X and W260X mutations, were found
to be associated with expectedly high Prader scores of 4/5.
Similarly, patients with truncated frameshift mutations, namely
F406Pfs*19 and Q19Afs*21, also had high Prader scores ranging
from 3 to 5. However, the noted MAPs for all four genotypes
were surprisingly normal.

Discussion
This study provides a detailed description of the largest inter-
national, heterogeneous cohort of 108 CAH patients with 11β-
hydroxylase deficiency from 11 countries (Fig. 1B). In contrast
to CAH resulting from 21-hydroxylase deficiency, the prevalence
of which is particularly high in Eastern European Jews, 11β-
hydroxylase deficiency is common in the Middle East and North
Africa. We report a spectrum of clinical severities across muta-
tion types. Because performing in vitro expression studies for this
large number of mutations is an enormous effort, we instead
attempted, using computational modeling, to correlate the in-
duced in silico changes in 11β-hydroxylase structure with clinical
phenotype, which is predictive, not confirmatory.
We found that 41 compound heterozygotes or homozygotes for

select missense or nonsense mutations—namely P49L, R141Q,
W260X, G267S, L299P, T318M, T318R, A331V, Q356X, A368D,
R374Q, V441G, G444D, G446V, and R448H—present with mod-
erate to severe classic CAH because of 11β-hydroxylase, confirming
prior results (3, 14–17, 22–24). These patients were mainly from
Croatia, Tunisia, Africa, Turkey, and Saudi Arabia. Prader scores for
females were consistently 4 or 5, but serum 11-deoxycorticosterone,
11-deoxycortisol, and androstenedione levels, albeit elevated, were

highly variable. Bone age was advanced in most cases, but hyper-
tension was diagnosed only in ∼59% of patients.
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Fig. 3. Modeling of CYP11B1 mutations that do not yield a severe phenotype.
A331 is a conserved residue at the end of the J-helix. When mutated to Val, it
clashes sterically with residues on β5 sheet (A). G206 is located at the end of the
E-helix. When mutated to Val, the side chains clash sterically with F205 and T287,
but only mildly impairing enzyme stability (B). Both mutations yielded mild phe-
notypes. With certain mutations the three clinical parameters, Prader scores, bone
age, and MAP, did not match. T318 is a highly conserved residue located on the
J-helix. Hydrophobic side chains of the mutated Met residue sterically clash with
heme to obstruct the ligand-binding site (C). G379, located on a loop between
K-helix and β4-sheet, is positioned adjacent to the substrate-binding site. The iso-
propyl side chain of the mutated residue Val obstructs and thus misaligns the
substrate (D). P94, located on the B-helix, when mutated to Leu, causes the hy-
drophobic side chain to clash sterically with the loop between the α17- and α18-
helices. The rigid amino acid side chain also maintains the structural conformation
between B′-helix and β2-sheet (E). With the T318R mutation, the charged guani-
dinium side chains of Lys clash sterically with heme to obstruct the ligand-binding
site (F). (G) The change (ΔΔG kcal/mol) in protein stability upon mutation of each
residue. The disks represent the pairwise atomic van derWaals radii overlap. Green
disks represent almost in contact or slightly overlapping, and red disks represent
significant overlap.
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Even with the concordance noted above, we failed to estab-
lish a previously documented phenotype in the N133H/T319M
mutation (3, 25). Based on in vitro data, advanced bone age,
and a Tanner score of 2, a N133H/T319M female was previously
assigned a diagnosis of nonclassic CAH because of 11β-hydroxylase.

We found instead that three patients of Egyptian origin, two
males and one female with the identical genotype N133H/
T319M, present with classic disease, which we have docu-
mented both clinically and hormonally. Each patient had
grossly elevated serum 11-deoxycortisol and androstenedione
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levels and advanced bone age. The one female had Prader
score 4, and one patient had hypertension.
Comparison of our International Consortium on Rare Steroid

Disorders with our mainly United States-based, 1,507-patient, 21-
hydroxylase deficiency cohort (6) reveals fundamental differences in
clinical phenotype. First, 11β-hydroxylase deficiency is far less
common, and is localized to the Middle East and North Africa.
Second, females with 11β-hydroxylase deficiency are more virilized
than those with 21-hydroxylase deficiency. A Prader score of 5,
indicating complete masculinization of the external genitalia, in-
cluding a urethral opening at the tip of the phallus, is more frequent
in 11β-hydroxylase deficiency than in 21 hydroxylase deficiency. The
extent of masculinization, however, correlates poorly with the ac-
companying gross hyperandrogenemia. Third, and related to virili-
zation, it is more common that a 46, XX 11β-hydroxylase–deficient
newborn female is assigned a male gender. In our cohort, most such
46, XX females, misassigned to the male gender at birth, were
reared as males, although some were subsequently reassigned to
the female gender. Fourth, 21-hydroxylase deficiency is not as-
sociated with hypertension, whereas 59% of 11β-hydroxylase–
deficient patients in whom blood pressures were measured were
hypertensive (26, 27). Correlations between 11-deoxycorticosterone
and hypertension were nonetheless poor. Fifth, whereas 17-hydrox-
yprogesterone is a gold standard for the biochemical diagnosis of
21-hydroxylase deficiency (1), we find that the most robust serum
marker for 11β-hydroxylase deficiency is the accumulated substrate
11-deoxycortisol. However, as this steroid is not routinely measured,
we predict that 11β-hydroxylase deficiency is underdiagnosed.
Finally, one patient with full blown CAH was interestingly a het-
erozygote with a common mutation G379V. Possibilities for dis-
ease in this patient include a genotyping error, a cryptic intronic
mutation, or a dominant-negative effect.
To study genotype–structure–phenotype concordance, we exam-

ined whether mutations in the CYP11B1 gene could induce specific
changes in 11β-hydroxylase that would correlate with CAH severity.
We have recently used computational modeling to establish structural
aberrations in 21-hydroxylase induced by mutations that explained
distinct phenotypes, namely salt-wasting, simple virilizing, and non-
classic CAH (7). Most notably, missense mutations that affected
residues within 5 Å of the heme- or substrate-binding site or altered
protein stability led to salt-wasting CAH, whereas mutations affecting
conserved hydrophobic patches or altering the transmembrane region
caused simple virilizing disease. Mild nonclassic CAH resulted from
interference in oxidoreductase interactions, salt-bridge and hydrogen-
bonding networks, and nonconserved hydrophobic clusters.
Here, a similar evaluation using a CYP11B1 model, derived from

the crystal structure of CYP11B2, revealed three groups of muta-
tions that caused severe disease. Mutations that altered the heme-
binding site, such as R374W and R448H/C, resulted in high Prader
scores (4/5), severe hypertension, and profoundly advanced bone
age. Similar clinical manifestations arose from mutations that af-
fected enzyme stability, such as L299P and G267S, or interfered with

substrate-binding, notably W116C. With that said, there were mu-
tations where the three key clinical parameters, Prader scores, bone
age, and MAP, did not correlate with structural disruption caused by
mutations. For example, the T318M mutation was associated with a
Prader score of 4, but with normal bone age and mild hypertension.
Similarly, G379V appeared to be associated with advanced bone age
but relatively mild hypertension.
In summary, we report that CAH caused by 11β-hydroxylase

deficiency is far less frequent than that arising from 21-hroxylase
deficiency, thus requiring an international collaborative cohort to
obtain sufficient number of patients for analysis. The disease was
most prevalent in Tunisia (60 patients in a population of 11 mil-
lion), where consanguinity is common (Table 1). However, as
11-deoxycortisol is rarely measured, the overall prevalence could
in fact be an underestimate. Our cohort of 108 patients none-
theless revealed greater morbidity than 21-hydroxylase deficiency.
There was profound masculinization, significant early growth ar-
rest, and overt hypertension. Finally, although we were able to
correlate structural changes of certain highly disruptive mutations
of 11β-hydroxylase with the severity of CAH, unlike 21-hydroxy-
lase deficiency, this strategy could not be applied universally.

Methods
The studies were approved by the Icahn School of Medicine’s Institutional
Review Board (IRB) (PI: M.I.N), and by local hospital IRBs, as confirmed by on-
site investigators comprising the International Consortium of Rare Steroid
Disorders. Informed consent was obtained. To those who agreed to be part
of the Consortium, we sent data entry forms, asking for information on
demographics, consanguinity, clinical presentation, adrenal steroid hormone
levels, and CYP11B1 mutations, at the time of diagnosis. We also requested
information on bone age, Prader scores, and baseline blood pressure mea-
surements. We received entry forms from investigators from 13 nations with
data on 108 patients with CYP11B1 mutations confirming 11β-hydroxylase
deficiency (Fig. 1B and Table S1). Of these, 66 patients have complete
datasets. Leading endocrinologists in Australia, Canada, Chile, Dominican
Republic, Finland, France, Greece, Italy, Japan, Qatar, Spain, Sweden,
Switzerland, United Arab Emirates, and United Kingdom reported no CAH
patients with 11β-hydroxylase deficiency. Similarly and to our surprise, seven
leading endocrinologists in California, Connecticut, Michigan, New York,
Pennsylvania, and Texas did not have a single patient.

Each mutation was analyzed for its ability to disrupt the CYP11B1 enzyme
using molecular dynamics modeling (SI Methods). The change (ΔΔG kcal/mol)
in protein stability upon mutation of a single residue was calculated using
the Molsoft ICM-Pro software (www.molsoft.com). The free energy of the
unfolded and misfolded states is approximated by a sum of the residue-
specific energies that were derived empirically using experimental data.
Mutation of a given residue was followed by Monte Carlo simulations with
flexible side chains for the mutated residue and its neighboring residues.
The rest of the protein structure was considered rigid. A positive energy
value thus indicates that the mutation is likely to be destabilizing (28).
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