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Measurements recorded over monitoring networks often possess spatial and tempo-

ral correlation inducing redundancies in the information provided. For river water

quality monitoring in particular, flow-connected sites may likely provide similar

information. This paper proposes a novel approach to principal components analysis

to investigate reducing dimensionality for spatiotemporal flow-connected network

data in order to identify common spatiotemporal patterns. The method is illus-

trated using monthly observations of total oxidized nitrogen for the Trent catchment

area in England. Common patterns are revealed that are hidden when the river net-

work structure and temporal correlation are not accounted for. Such patterns provide

valuable information for the design of future sampling strategies.
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1 INTRODUCTION

Environmental monitoring networks are often designed with

the aim of providing representative coverage of the spatial

domain of interest and to provide a set of monitoring sites

that can be used to identify variation and change in variables

of interest over time. On a connected network, such as for a

river, monitoring sites may share the same drainage catchment

area and may be connected through river flow. Geochemical

variation between drainage catchment areas induces spatial

correlation in the water quality measurements that may be

related to Euclidean distance and river discharge, with mea-

surements also related over time. Redundancies are, therefore,

introduced in the information provided by samples taken at

such sites, and such correlation can mask identification of

important patterns for determinands of interest within the

network. This paper presents a novel statistical approach to

identify such patterns after accounting for spatial network

structure and temporal correlation.

The Environment Agency (EA) is the competent authority

responsible for monitoring the environment in England, and

one of their key responsibilities is to improve and maintain

river water quality, applying standards defined by regulations

implementing EU directives such as the Water Framework

Directive, (European Parliament, 2000) and Nitrates Direc-

tive (European Parliament, 1991). Compliance with these

directives is achieved in part by sampling the river networks in

England over time and classifying the water quality of rivers

and other waterbodies according to European standards. Iden-

tification of dominant spatial and temporal patterns in river

network data can be used to identify areas where water quality

has remained stable over time or to create groups of moni-

toring sites that exhibit similar temporal patterns. However,

such patterns can be hidden in the presence of multiple layers

of spatial and temporal correlation. Identification of common

patterns could be used to improve the focus and design of

water quality monitoring programs and inform future mon-

itoring strategies, for example, by providing guidance to

the appropriate position for placing automatic monitoring

stations.

One approach to identify dominant spatial and temporal

patterns is to use principal component analysis (PCA, Pear-

son, 1901; Hotelling, 1933), a dimension reduction technique

where the aim is to replace p correlated variables with k < p
uncorrelated variables, or principal components (PCs), that

describe the main modes of variation in the data. The aim of
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this paper is to propose a novel development for PCA in order

to improve identification of dominant spatial and temporal

patterns in a flow-connected network, with specific applica-

tion to river water quality data. This paper proposes incor-

porating weight matrices in PCA methodology that reflect

spatial and temporal autocorrelation and in particular pro-

poses a method to construct a matrix of spatial weights to

reflect the direction of water flow and strength of relationship

between connected monitoring sites. The method is demon-

strated using data collected from a densely monitored river

network in England.

PCA is usually performed on multivariate data where

columns are values of different variables and rows of a

data matrix X are the sample units. For example, for water

quality, rows could be locations on a river network, and col-

umn variables could be different water quality determinands.

Some recent examples can be found in Wilbers, Becker,

Sebesvari, and Renaud (2014); Shrestha, Kazama, and Naka-

mura (2008); Bengraïne and Marhaba (2003); and Petersen,

Bertino, Callies, and Zorita (2001). Alternatively, data for a

single variable might be recorded at several monitoring sites

over time, and PCA can be used here to identify dominant

spatial and temporal patterns. Specifically, Richman (1986)

refers to two approaches: T- and S-mode PCA, and the par-

ticular mode depends on whether the columns of X are time

points (T-mode) or monitoring sites (S-mode).

T-mode PCA aims to identify spatial patterns in the data

and the associated time points at which these spatial pat-

terns occur. The presence of more than one dominant spatial

pattern suggests a change in the spatial pattern over time.

Alternatively, the identification of a single dominant spatial

pattern would suggest that the spatial distribution of the vari-

able of interest has remained stable over time. Some recent

examples include Zhang et al. (2012) (sea level pressure),

Hidalgo-Muñoz, Argüeso, Gámiz-Fortis, Esteban-Parra, and

Esteban-Parra (2011) (rainfall); and Barreira and Compag-

nucci (2011) (sea ice concentration). S-mode PCA, also

known as empirical orthogonal functions in the climatology

literature, aims to estimate dominant temporal patterns in

the data and to provide an indication of which sites exhibit

similar temporal patterns. This is known as regionalization,

and examples can be found in a variety of applications

such as precipitation (Ehrendorfer, 1987; Neal & Phillips,

2009), surface wind (Jiménez et al. 2008), and streamflow

(Kahya, Kalaycı, & Piechota, 2008). For river networks, if

common temporal patterns can be identified, then this sug-

gests potential redundancy in the monitoring network, and

such information could be used to inform future sampling

campaigns.

PCA utilizes correlation between variables to find structure

in the data but does not explicitly make use of known struc-

ture, which in an environmental context could be spatial or

temporal structure. An early example of adjusting PCA for

known structure can be found in Gabriel and Zamir (1979)

who develop a low-rank approximation of matrices using

weighted least squares for any choice of weights. Tamuz,

Mazeh and Zucker (2005) develop a similar algorithm to

remove known linear systematic effects from photometric

light curves that is suitable for data with heterogeneous errors.

Baldwin, Stephenson, and Jolliffe (2009) describe a gen-

eral weighting scheme to account for known structure among

variables using a diagonal weight matrix, although Allen,

Grosenick, and Taylor (2014) discuss a generalized matrix

decomposition where any symmetric weight matrix reflecting

structure in the observations or variables can be incorporated

into PCA using a weighted singular value decomposition

(SVD).

PCA can be adjusted for spatial structure by combining

PCA with Moran’s I as in Wartenberg (1985); Thioulouse,

Chessel, and Champely (1995); Jombart, Devillard, Dufour,

and Pontier (2008); and Dray, Saïd, and Débias (2008). The

aim in these papers is to find PCs that capture maximal

variance and are spatially correlated. Alternatively, Harris,

Brunsdon, and Charlton (2011); and Harris, Clarke, Jug-

gins, Brunsdon, and Charlton (2015) describe geographically

weighted PCA for areal unit data where PCA is adjusted for

spatial heterogeneity rather than autocorrelation. Cheng et al.

(2011) describe fuzzy masking PCA for image data where

weights are used to constrain the analysis to focus on pix-

els with particular geology of interest. Frichot, Schoville,

Bouchard, and François (2012) use weights based on the

inverse of a spatial covariance matrix to uncover interesting

spatial features previously masked by smooth transitions in

space.

PCA can also be adjusted for temporal structure in the data

such as in Ku, Storer, and Georgakis (1995) who develop

dynamic PCA for statistical process control applications with

temporally autocorrelated data by augmenting the data matrix

with lagged variables. A different approach is taken by

Stahlschmidt, Härdle, and Thome (2015) who adapt PCA for

multivariate spatiotemporal data by applying PCA to a time

averaged spatial covariance matrix.

The aim of this paper is to introduce a novel approach to

PCA that accounts for direction dependent spatial autocorre-

lation and to apply it to a spatiotemporal dataset for a large

river network catchment area in England. Specifically, the

development and inclusion of an asymmetric matrix of spatial

weights reflecting flow direction and strength of connected-

ness in a monitoring network is proposed as a methodological

adaptation to PCA. The new PCA method will result in

dimension reduction of a large dataset, in addition to enabling

features within the data to be revealed that can be hidden

by the presence of temporal and spatial correlation. The data

are described in Section 2, followed by a description of the

method in Section 3. An application of the method to data

from the Trent catchment area is provided with discussion in

Section 4. Section 5 contains a discussion of the new method

with a conclusion provided in Section 6, and Section 7 gives

details of tools developed using R statistical software that can

be used to implement the methods introduced in this paper.
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2 THE DATA

Data were provided by the EA for total oxidized nitrogen

(TON), determined as the sum of nitrate (NO3) and nitrite

(NO2), measured as mg/L, at 566 monitoring sites at approxi-

mately monthly intervals between 1990 and 2010. Nitrate and

nitrite are bio-available forms of the macro-nutrient nitrogen.

Excess nitrogen may lead to eutrophication (excessive algal

growth) that can have many negative environmental impacts.

Under European legislation, the highest acceptable concen-

tration of nitrate in drinking water is 50 mg/L (European

Parliament, 2000; 1991; 1975). Nitrate concentrations tend

to be higher in areas designated as nitrate vulnerable zones

where the main contributor to elevated nitrate levels is runoff

from intensive agricultural practices, a form of diffuse source

pollution (EEA, 2015). Nitrate levels are also affected by

point source pollution such as sewage waste in areas of high

urbanization and the spatial distribution of nitrates from such

sources will be affected by river network topology.

Observations of TON were collected at different sampling

frequencies at each of 566 monitoring sites within the Trent

catchment area, shown in Figure 1 (left and middle). A nat-

ural log transformation of TON observations was taken to

stabilize the variance over time and across the network (Hen-

derson, 2006); original values differed across the catchment

area by two orders of magnitude. Two data sets were derived

from the observations: datawin and dataall. Datawin contain

annual winter average log TON from 1995 till 2007 for 481

monitoring sites, which provide a time period and site com-

bination with complete data. Datawin are of specific interest

because levels of TON are typically higher in the winter and

therefore more likely to exceed legal limits. Dataall contain

observations for all 566 monitoring sites with monthly aver-

aged log TON from 1990 to 2010. Because PCA requires a

complete data set, missing values (approximately 30%) were

imputed by implementing the method described in Josse and

Husson (2012) using the R package missMDA. This imputa-

tion method makes use of correlation in the data to estimate

missing values. Missing values are imputed by first applying

standard PCA to the incomplete data where missing values

are initially replaced with column means. Data are then

reconstructed from a specified number of PC’s, and PCA is

repeated but with missing values replaced using estimates

from the reconstructed data. This process is repeated until

convergence, and the missing values in the original data are

replaced with values estimated from the last PCA data recon-

struction. This approach has been selected here to provide

an imputation for the missing values that is within the same

framework of the statistical modelling being introduced. The

method assumes the data are missing at random or missing

completely at random, which can be difficult to truly assess

for environmental data. However, the aim here is to provide

an estimate of PCs and assess the variability of the results

due to missing values, rather than getting the best estimates of

missing values. This imputation method is based on the EM

algorithm, but is regularized to prevent overfitting, and allows

estimation of the variability of the PCs axes due to missing

values (Josse & Husson, 2012).

Seven PC’s were used to impute missing values in dataall,

and this number was selected using k-fold cross validation.

3 METHODOLOGY

3.1 Principal components analysis

PCA can be performed using SVD of the column mean

centered n × p data matrix X such that

X = UDV⊤

where U and V are the left and right singular vectors of X
respectively and D is a diagonal matrix containing the singu-

lar values. Each PC is a linear combination of the original p
variables, and the weights used to calculate the PC’s are called

loadings. In SVD, the loadings are found in the columns of V,

and the PCs can be calculated as either UD or XV.

Assuming X̂ = centered data reconstructed from k < p PCs

then

X = X̂ + 𝜺rec (1)

FIGURE 1 River network in Trent catchment area (gray lines) with 566 monitoring sites (black dots), (left). Location of Trent catchment area in England

and Wales (middle). Diagram of simple river network with three monitoring sites and corresponding proportional influence (PI) values for upstream segments

(right)
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where 𝜺rec, the reconstruction error, is the second term on the

right side of (2), V1:k indicates the first k columns of V, and

Vk + 1:p indicates the last p − k columns. 𝜺rec can also be cal-

culated as the sum of squared differences between X and X̂.

X = XV1∶kV⊤
1∶k + XVk+1∶pV⊤

k+1∶p (2)

3.2 Weighted PCA

Adjusting PCA for network structure and temporal autocor-

relation can be achieved using appropriate row and column

weights. A p × p column weight matrix 𝛀 and n × n row

weight matrix 𝚽 can be constructed so that PCA is applied to

X̃ = 𝚽X𝛀 = ŨD̃Ṽ⊤.

However, the PCs and loadings are related to X̃ rather than

X. Baldwin et al. (2009) and Allen et al. (2014) show that

loadings and PCs can be calculated for X using a suitable back

transformation, and call this the “general solution.” The back

transformation can be defined by first considering (3) where

the first term on the right is X̃ reconstructed using k PC’s and

the second term on the right is 𝜀rec.

𝚽X𝛀 = 𝚽X𝛀Ṽ1∶kṼ⊤
1∶k +𝚽X𝛀Ṽk+1∶pṼ⊤

k+1∶p (3)

The loadings and PCs can be backtransformed by

pre-multiplying the terms in (3) by𝚽 − 1 and post-multiplying

by 𝛀 − 1 to give

X = X𝛀Ṽ1∶kṼ⊤
1∶k𝛀

−1 + X𝛀Ṽk+1∶pṼ⊤
k+1∶p𝛀

−1 (4)

The PCs are therefore X𝛀Ṽ, and the loadings are 𝛀−1⊤Ṽ.

3.3 Defining spatial weights for river networks

A matrix of spatial weights describing the flow direction

and strength of relationship between monitoring sites on a

river network can be incorporated into PCA methodology as

either row or column weights, depending on the PCA mode

of interest. Peterson and ver Hoef (2010) show how spatial

weights reflecting the influence of upstream monitoring sites

on downstream sites can be calculated based on discharge or

proxy values for discharge such as watershed area (the area of

land draining directly to a stream segment).

Figure 1 (right) shows a simple river network with three

stream segments and three monitoring sites, as well as the

proportional influence (PI) of two stream segments, joining

at a confluence, on the downstream segment. PI∈[0, 1] and

PIa + PIb = 1. Spatial weights are constructed by first cal-

culating the product of all PI values between each stream

segment and the stream segment whose most downstream

point is the outlet. This product is called the additive func-

tion (AF), and monitoring sites are assigned the AF value for

the segment on which they are located. Next, weights 𝜋su,sd

reflecting the relative influence of an upstream monitoring

site su on a downstream monitoring site sd, where su and sd are

connected by the flow direction of the river, can be calculated

as 𝜋su,sd =
√

AF(su)
AF(sd)

. AF(·) is the AF value for a monitoring

site. Finally, a p × p matrix of spatial weights for p monitor-

ing sites can be constructed by calculating 𝜋su,sd for all pairs of

flow-connected monitoring sites and the values entered into a

matrix S, where columns are indexed by the upstream site ID

and rows are indexed by the downstream site ID.

For weighted PCA, an asymmetric matrix of spatial weights

can be calculated following the steps described in detail in

Peterson and ver Hoef (2010), with the exception that the

matrix is not forced to symmetry in the final step. For S-mode

PCA, X is arranged so that each column (variable) represents

a monitoring site and each row (observation) represents the

ordered time points. S must therefore be constructed so that

rows represent upstream sites and columns represent down-

stream sites (i.e., water flows from rows to columns). This

means that the diagonal elements of XS are a linear combi-

nation of the variance at each monitoring site and some pro-

portion of variance from all flow-connected upstream sites.

The combination of an asymmetric weight matrix with this

particular orientation of X and S preserves the flow direc-

tion of the river network. A symmetric weight matrix such as

that used in Peterson, Theobald, and ver Hoef (2007) would

result in the variance at a single site being a linear combi-

nation of the variances at all flow-connected sites in both

upstream and downstream directions, and it does not make

physical sense that the variance at a monitoring site would

be affected by the variance at sites downstream. For T-mode

PCA, X is arranged so that rows are monitoring sites and the

matrix of spatial weights S must therefore be calculated such

that water flows from columns to rows. This means that for

T-mode PCA the columns of the matrix of spatial weights

represent upstream monitoring sites, and the rows are down-

stream sites. The orientation of S relative to X is crucial so

that the direction of flow is correctly represented. See Peter-

son and ver Hoef (2010) for a simple diagram illustrating

the process.

Once S has been calculated and is correctly oriented, PCA

can be adjusted for known spatial structure using the inverse

of the matrix square root such that S=ss, and therefore, the

matrix of spatial weights is s−
1

2 . The matrix square root can

be calculated using the expm package (Goulet et al., 2014)

in R. The use of the inverse square root of S to remove

the effect of autocorrelation is in agreement with the dis-

cussions in Wartenberg (1985), Baldwin et al. (2009), and

Allen et al. (2014). Frichot et al. (2012) also use inverse

weights in a weighted factor analysis with the aim of uncov-

ering interesting spatial features previously masked by spatial

autocorrelation.

3.4 Defining temporal weights for river networks

A weight matrix T for temporal structure can be constructed

such that T is an n × n symmetric matrix. In this work, T
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contains the elements 𝜌|i − j| where 𝜌 is the strength of corre-

lation between observations at time points 1,… ,n − 1 and

2,… ,n and i = 1,..,n; j = 1,… ,n. This weight matrix there-

fore reflects temporal correlation with an AR(1) structure.

There are many environmental examples where an AR(1)

correlation structure is sufficient to model temporal cor-

relation (Clement, Thas, Vanrolleghem, & Ottoy, 2006; or

Andrés Houseman, 2005, for example). As with the matrix

of spatial weights S,T− 1

2 is used to adjust PCA for temporal

autocorrelation.

4 APPLICATION TO THE TRENT
CATCHMENT AREA

This section will first describe the calculation of weights

reflecting spatial and temporal structure in the Trent catch-

ment area. This will be followed by the application of PCA

adjusted for spatial and temporal structure in both T-mode and

S-mode.

4.1 Spatial weights

The PI values were calculated for the Trent catchment area

using area of land draining to a stream segment (km2).

Drainage land area is a proxy for discharge, which assumes

rainfall is relatively constant over the entire catchment area

(Peterson et al., 2007; Peterson & ver Hoef, 2010), and val-

ues for each stream segment were obtained using the STARS

toolkit (Peterson & Ver Hoef, 2014) in ArcGIS v9.3.

4.2 Temporal weights

The value for 𝜌 in the Trent catchment area was estimated by

fitting an additive model (Hastie & Tibshirani, 1990) to each

of the 566 monitoring sites in the Trent catchment area sepa-

rately to remove trend and seasonality from each time series,

after which correlation between complete pairs of residuals

was calculated for observations at time t and t − 1. The median

correlation value from 566 sites was 0.27 with an interquartile

range of 0.2–0.35, and so, 𝜌 = 0.27 was used to construct T.

4.3 T-mode PCA results

Firstly, it was of interest to investigate common spatial pat-

terns over time. An unweighted T-mode PCA (TPCAuw) was

performed on mean centered annual winter data (datawin), and

this was followed by a row weighted T-mode PCA (TPCAr)

where PCA was adjusted for river network structure among

observations using spatial weights as defined in Section 4.1.

For TPCAuw, the first two PC’s accounted for 89% and 3% of

the variance in the data, respectively. The loadings for the first

component are all of the same sign and of similar magnitude,

and therefore, this PC represents the average spatial pattern

over all years. Because the second PC accounted for only 3%

of the variance in the data, it can be concluded that one PC is

sufficient to describe the spatial pattern of winter log(TON)

in the Trent catchment area. This means that the spatial pat-

tern of winter TON has remained stable between 1995 and

2007. For TPCAr, the first two components accounted for

85% and 4%. Therefore, adjusting for spatial structure among

the observations has led to a small reduction in the variance

explained by the first PC. PCA uses correlation in the data

to estimate PCs accounting for maximal variance. If data are

independent, then each PC accounts for 100*1/p% of total

variance, whereas if data are completely correlated, then 1

PC will account for 100% of the variance. Adjusting PCA for

spatial correlation using inverse weights means that some of

the correlation is removed, and hence, the first weighted PC

accounts for a smaller percentage of the variance than the first

unweighted PC. This can help tease out patterns, particularly

where data are highly correlated in space (Frichot et al., 2012).

Figure 2 shows that differences in the principal compo-

nents between TPCAuw and TPCAr are most evident for the

FIGURE 2 Principal component scores for TPCAuw (unweighted PCA) and TPCAr (spatially weighted PCA), for PCs 1 (left), 2 (middle), and 13 (right).

Note: plots are on different scales
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PCs that explain the smallest proportion of the variance in

the data, corresponding to the noise structure. This makes

sense because the row weights reflect spatial network correla-

tion in what remains after removing trend, and so the biggest

differences between TPCAuw and TPCAr are found beyond

the first few PCs. Frichot et al. (2012) also noticed that dif-

ferences between standard PCA and PCA adjusted for spatial

correlation among observations using inverse weights were

more prominent in the second and third PCs rather than the

first PC. Additional plots of the results can be found in the

Supporting Information.

The results of incorporating the spatial weights here are as

expected but are small for this simple example of complete

annual winter data. T-mode PCA both with and without the

adjustment for spatial correlation illustrated that the spatial

pattern of winter log(TON) has remained stable over time. It

appears that the highest levels of log(TON) were found in the

East and South-east of the river network, and log(TON) has

remained low and stable over time in the North-west. Such

results could potentially be used to concentrate future mon-

itoring in the areas where log(TON) is highest. The areas

with high levels of log(TON) have remained stable over time.

However, these areas must still be monitored to ensure that

the 50 mg/L limit is not exceeded. Maps of the PCs from

TPCAuw and TPCAr showing areas where log(TON) has

remained low/high over time can be found in the Supporting

Information.

4.4 S-mode PCA results

The simple T-mode PCA example was provided to illustrate

the methods. However, S-mode PCA will now be applied on

the full spatiotemporal data, dataall, after missing values have

been imputed. An unweighted S-mode PCA (SPCAuw) was

applied to monthly observations dataall for the 566 monitoring

sites in the Trent catchment area, to investigate sites with com-

mon temporal patterns. Following this, a column weighted

PCA (SPCAc) was applied to adjust for known spatial net-

work structure among sites and a row and column weighted

PCA (SPCArc) was also applied to additionally adjust PCA

for temporal structure among the observations.

Table 1 gives the results from SPCAuw, SPCAc, and

SPCArc. For SPCAuw, the first component explains 42% of

the variance in the data. Adjusting for spatial structure means

TABLE 1 Results from SPCAuw(unweighted PCA), SPCAc(spatial
weights), and SPCArc(spatial and temporal weights)

PCA PC1 (%) PC2 (%) PC3 (%) var3 (%) k vark (%) 𝜺rec

SPCAuw 42 9 6 57 8 70.8 9,069

SPCAc 38 9 5 52 12 70.5 8,354

SPCArc 31 7 5 43 23 70.1 6,910

PC1-3 contains % variability explained for each of the PCs, respectively; var3 is

the % variability explained by the first three principal components; k is the number

of principal components retained to explain at least 70% of the variance of the

data; vark is the amount of variance explained by k principal components; 𝜺rec is

the reconstruction error from k principal components.

this reduces to 38%, and adjusting for both spatial and tem-

poral structure means that the first PC accounts for 31% of

the variance in the data. The first three components (var3 in

Table 1) for SPCAuw, SPCAc, and SPCArc account for 57%,

52%, and 43% of the variance, respectively.

In S-mode PCA, maps of the loadings can be used to

show which monitoring sites exhibit similar temporal pat-

terns (Ehrendorfer, 1987) where two sites are “similar” if their

loadings are of the same sign and similar magnitude. For a

single-monitoring site, a high loading (of either sign) means

that the temporal pattern described by the PC with which

the loading is related is found at that site. Figure 3 displays

a zoomed in portion of glyph maps (Harris et al., 2011) of

the loadings for the first three PCs from SPCAuw (top) and

SPCArc (bottom) for a small section of the monitoring sites

on the Trent network. The top panel displays results from

standard PCA (SPCAuw) and suggests that, moving North to

South along the east branch of the displayed network, the

seven southernmost monitoring sites are similar in relation to

the third PC. However, the bottom panel displays results for

SPCA corrected for both spatial river network structure and

FIGURE 3 Glyph plots with loadings for the first three principal compo-

nents from SPCAuw (top – no weights) and SPCArc (bottom – weights for

discharge and time) for a zoomed in section of the network. (Red indicates

negative values, and blue indicates positive values, in online version).

Length of line indicates relative magnitude of loading. Starting at the 12

o’clock position, the length of the line reflects the magnitude of the loading

for the first PC, and moving clockwise, the other lines represent the loadings

for subsequent PCs
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temporal correlation and shows that the four southernmost

sites on the east branch are different from the northern sites.

The variance along this stretch of river appears to be largely

driven by the fifth and sixth sites from the bottom, and the

fourth site from the bottom has small loadings for all three

PCs and therefore contributes little to the variance on this

river. The upper panel (standard PCA) suggested that all eight

sites contribute equally to the variance along the river, and so,

adjusting for spatial and temporal correlation means that the

most and least influential monitoring sites can be identified

after the masking effect of autocorrelation has been removed.

Further plots of the results can be found in the Supporting

Information.

In order to explain at least 70% of the variance (vark in

Table 1), SPCAuw requires eight components, and k increases

to 12 for SPCAc and 23 for SPCArc. Although a larger number

of PCs are required after accounting for flow-connectedness

and temporal correlation here, the reconstruction error in (1),

calculated using k retained PCs (𝜺rec in Table 1), decreases

by 24% when PCA is adjusted for both spatial and tempo-

ral structure for the same % of variability explained, and it is

clear from Figure 3 that sites contributing to explaining the

temporal patterns for each PC can be more easily identifed.

S-mode PCA has shown that at least eight PC’s are required

to explain a large ( > 70%) amount of the variance in the data.

The temporal pattern of monthly log(TON) over a 21-year

period appears to have been highly variable because the first

PC represented less than half the variance in the data, for

weighted and unweighted S-mode PCA. Adjusting S-mode

PCA for spatial and temporal autocorrelation highlighted that

more than 70% of the variance in the data could be explained

by 23 PCs, and so, the temporal evolution of log(TON) across

the whole monitoring network of 566 monitoring sites can be

understood using only 23 temporal patterns, rather than indi-

vidually inspecting 566 separate temporal patterns. Adjusting

for spatial and temporal autocorrelation meant that the most

(and least) influential sites could be more clearly identified

as these were previously masked by smooth transitions along

the river network.

5 DISCUSSION

Flow-directed PCA that accounts for temporal correlation

can efficiently identify spatiotemporal patterns across a net-

work removing the masking effects of multiple layers of

correlation. Adjusting T- and S-mode PCA for spatial and/or

temporal autocorrelation meant that the amount of variance

explained by the first PC decreased. This is because the vari-

ance across space at each time point and the variance over

time at each monitoring site is not independent of other time

points/monitoring sites. For example, in S-mode PCA, the

diagonal of the covariance matrix represents the variance

over time at each monitoring site, but each diagonal ele-

ment will include the variance contributions from monitoring

sites further upstream. Using inverse weights based on auto-

correlation means that variance contributions from upstream

sites are removed, and in flow-weighted PCA, the reduced

amount of total variance explained by the first PC can be

thought of as the amount of variance explained once depen-

dencies based on the river network structure are removed. In

the case of river networks, this means that correlation related

to land use or other Euclidean distance-based relationships

becomes the focus of the analysis, and it is therefore possible

to tease apart different forms of spatial relationships among

monitoring sites on a river network.

The strength of spatial and temporal autocorrelation in the

data affects the additional insight that can be gained by apply-

ing spatiotemporally weighted PCA. Allen et al. (2014) found

that in the case of high frequency data with strong temporal

correlation, adjusting PCA for temporal correlation resulted

in the identification of temporal patterns that were clearly sep-

arated from noise. Temporal correlation was weak (𝜌 = 0.27)

in the example presented here, and so, it is to be expected

that the temporal patterns estimated using S-mode PCA were

quite similar before and after adjusting for temporal corre-

lation. However, adjusting for spatial network structure in

the Trent example highlighted the most influential monitor-

ing sites in the network, after applying spatially weighted

S-mode PCA, which were masked by the effects of spatial

autocorrelation when standard PCA was applied. Frichot et al.

(2012) also showed that it is possible to identify features pre-

viously masked by spatial autocorrelation using the inverse

of weights representing spatial autocorrelation. The effect of

incorporating the flow-connected weights will depend on the

contribution of the measured determinand that a monitoring

site receives from upstream and that which drains to the site

from the immediate surrounding waterbody.

Currently, regulatory agencies are investigating where effi-

ciencies can be made in the monitoring budgets for river

networks. In the Trent example, adjusting PCA for spatial

and temporal autocorrelation, in particular SPCArc, more

clearly identified the most and least influential sites in the

network and such knowledge, could be used to better focus

the monitoring in space. The methods proposed in this paper

can be generalized to account for different temporal correla-

tion structures and to define spatial weights using alternative

determinands (if available) such as observed (or interpolated)

rainfall or discharge.

6 CONCLUSION

Flow-directed PCA is a novel approach proposed here to

investigate reducing dimensionality of spatiotemporal net-

work data and identify common patterns. A novel adaptation

of the T- and S-mode PCA methodology was proposed to

incorporate an asymmetric weight matrix reflecting spatial

structure in the data, where spatial structure reflects flow

direction and strength of connectedness in the monitoring
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network. The orientation of the asymmetric weight matrix

in relation to the data matrix is crucial so that direction

dependent relationships between monitoring sites are cor-

rectly represented. This methodology improves identification

of dominant temporal patterns and interesting spatial features

previously masked by autocorrelation. Improving the estima-

tion of common temporal patterns in the data can provide

regulatory agencies with evidence to inform future sampling

strategies.

Although this work is motivated by an application to river

networks, it is expected that the method developed here could

be applied to data from any direction dependent monitored

network.

7 SOFTWARE

R code (R Core Team, 2016) to implement the analyses

in this paper can be accessed at https://doi.org/10.5525/gla.

researchdata.277. A demonstration dataset is available with

this package.
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