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Abstract: Controlling radical intermediates and thus catalys-
ing and directing complex radical reactions is a central fea-
ture of S-adensosylmethionine (SAM)-dependent radical en-
zymes. We report ab initio and DFT calculations highlighting
the specific influence of ion complexation, including Mg2 + ,

identified as a key catalytic component on radical stability
and reaction control in 7-carboxy-7-deazaguanine synthase

(QueE). Radical stabilisation energies (RSEs) of key intermedi-
ates and radical clock-like model systems of the enzyme-cat-
alysed rearrangement of 6-carboxytetrahydropterin (CPH4),

reveals a directing role of Mg2 + in destabilising both the
substrate-derived radical and corresponding side reactions,
with the effect that the experimentally-observed rearrange-
ment becomes dominant over possible alternatives. Impor-
tantly, this is achieved with minimal disruption of the ther-

modynamics of the substrate itself, affording a novel mecha-
nism for an enzyme to both maintain binding potential and

accelerate the rearrangement step. Other mono and divalent
ions were probed with only dicationic species achieving the
necessary radical conformation to facilitate the reaction.

Introduction

Reactive radical intermediates are able to achieve complex

chemical conversions that are either inaccessible or extremely
difficult to achieve through alternative approaches. Examples
include C@C bond[1] and thioether bond forming reactions,[2]

insertion reactions,[3] and carbon-skeleton rearrangements.[4]

One major limitation in carrying out radical reactions is that

the benefits incurred by high reactivity are attenuated through
lower selectivity of reaction, potentially leading to unwanted
by-products. Nature has overcome this challenge through de-
veloping careful mechanisms for the control of radical reac-

tions within enzymes.
Enzyme-based radical reactions can take many forms, either

initiated by metals, oxygen, protein-based radicals or organo-
metallic species. Both coenzyme-B12-dependent and radical
SAM (or adomet radical) enzymes initiate radical transforma-

tions through generating an adenosyl methionine (adomet)
carbon-based radical intermediate AdoR, providing a highly-re-

active species to carry out reactions. Systems utilising this in-
termediate, as generated from coenzyme B12, have provided in-

sights into a number of specific mechanisms that can be used

to precisely control reactivity both of the intermediate adomet
radical and radicals formed during the transformations cata-

lysed by the relevant enzymes. Examples include the concept
of electrostatic catalysis[5] through electrostatic effects between
the sugar and the protein and electrostatic stabilisation of

leaving groups, selectivity through negative catalysis[6] prevent-
ing undesired side reactions, examples of (retro) push–pull cat-

alysis and barrier lowering effects by partial proton transfer for
1,2-migration (1,2-shift) reactions,[7] and radical-cage effects.[8]

Radical SAM enzymes provide an even broader spectrum of
chemical transformations than the coenzyme B12-dependent

enzymes, with the radical SAM superfamily catalysing more
than 65 different reactions (corresponding to a search on the
structure–function linkage database).[9] As such, these enzymes
have attracted recent, significant interest in their catalytic
mechanisms (see for example reviews by Dowling et al.[10] and

Broderick et al.[11]), and have the potential to inform us further
on additional chemical mechanisms of radical control that may

be employed by nature.
One such challenging mechanism features the ring-contrac-

tion reaction catalysed by the enzyme 7-carboxy-7-deazagua-

nine (CDG) synthase, or QueE (Scheme 1).[12] This reaction
drives a central step of queosine synthesis and facilitates the

formation of the 7-deazapurine scaffold. Deazapurines are
found to be widely spread in nature and are of particular inter-
est due to their antibacterial, antifungal, antineoplastic and

herbicidal activity.[13]

First structurally described and mechanistically investigated

by Bandarian[12] and Drennan and coworkers,[14] and very re-
cently also investigated theoretically by means of QM/MM cal-

culations,[15] the enzyme’s catalysis shows a rate determining
dependence on Mg2 + that is directly involved in the radical re-
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arrangement as a feature never reported for radical SAM en-

zymes before. The theoretical study by Zhu and Liu,[15] uses
MD snapshot-based QM/MM calculations to rule out one possi-

ble reaction mechanism. They suggest that the predominant
effect of the ion is electrostatic, with its role to hold the sub-

strate in its reactive conformation and that the different coor-
dination to Na+ might be the main reason for different activi-
ties (by making the radical rearrangement step rate determin-

ing), leaving the question open as to what is the distinct effect
of the metal complexation on the radical intermediate and the
reaction as a whole.

We now present a closer look at the radical control of the re-

action, namely whether the metal complexation influences the
radical reactivity of these highly reactive species and how it is

controlled in the enzyme. We have looked at the rearrange-

ment by means of high level ab initio and DFT calculations, fo-
cusing on a deeper understanding of the nature of the radicals

and how both the metal coordination and the enzyme influ-
ence the radical intermediates and guide the catalysis away

from unwanted side reactions. We reveal that these factors act
in complementary ways by keeping the stability of the radicals

and the kinetic barrier of the rearrangement in balance and

preventing side reactions that appear to be favoured outside
the enzyme active site. We relate our findings to common con-

cepts of enzyme catalysis and highlight once again the obser-
vation that there is nothing ‘free’ about ‘free radical intermedi-

ates’ in enzyme catalysis.[13, 16]

Results and Discussion

Informed by the experimental findings of Drennan and co-
workers[14] and the very recent QM/MM studies by Zhu and

Liu,[15] two possible radical rearrangement mechanisms for the
C6 radical (3) of 6-carboxy-5,6,7,8-tetrahydropterin 1 to 10
(Scheme 1) can be envisaged. Isotope-transfer experiments
suggest that the initial hydrogen abstraction from CPH4 occurs
from the C6 carbon[14, 17] and that the radical can then either
undergo a C4a@C6 bond formation to produce the bridged
azacyclopropylcarbinyl intermediate (5) followed by C4a@N5
cleavage to deliver the aza radical 10, or it can initially cleave
the C4a@N5 bond, fragmenting to give the ring-opened imine
intermediate 8 with subsequent recombination to the cyclised
product 10.

To obtain a deeper understanding of both the factors influ-

encing the kinetics and the thermodynamics of this radical re-
arrangement reaction we have now investigated both possible

rearrangements with gas phase model calculations at different
levels of theory, comparing them to insights from the enzyme

directly. Special attention has been paid to the role of cation
complexation to the radical intermediate, which plays a crucial

role in the enzymatic catalysis,[14] and the specific nature of the

radicals involved in the rearrangement.
In the context of the radical’s properties, the thermodynamic

stabilisation of the transiently-formed highly reactive radicals
can give insights into how reactive or energized the radicals

are and thus how likely and quickly they could undergo un-
wanted side reactions. The weaker the stabilisation, the more

energized the radicals are and thus the more difficult it is to

control the specificity of the reaction. In enzymatic radical reac-
tions, one significant role of the enzyme is usually to control

the highly reactive intermediates in order to prevent the more
favorable side reactions that would appear in enzyme-free sys-

tems. This concept is often referred to as negative catalysis.[6]

The stabilities of the radicals can be calculated using
a formal hydrogen abstraction between closed shell precursors

(e.g. CPH4) and a reference radical, such as CH3C for carbon
centered radicals (like 3) and NH2C for nitrogen centered radi-
cals (like 10), as given in Equations (1) and (2).

CH3 C þ H@R! CH4 þ RC ð1Þ

NH2C þ H@R! NH3 þ RC ð2Þ

The reaction enthalpy for process (1) is then defined as per
Equation (3):

RSEðRCÞ ¼ H298ðRCÞ þ H298ðCH4Þ@H298ðR@HÞ@H298ðCH3CÞ ð3Þ

and is often referred to as the radical stabilisation energy
(RSE). Comparing RSEs of the compounds involved in the enzy-

matic catalysis can provide details of the thermodynamic as-
pects of the enzymatic catalysis.

The concept of RSE comparison has been used, alongside
a list of studies of RSEs and related relative and absolute bond

dissociation energies (BDEs), for a diverse set of radicals[18] in-
cluding amino acids and peptide model radicals[19] and other

Scheme 1. Reaction catalysed in the enzyme QueE and possible rearrange-
ment pathways shown for the anionic radical of CPH4.
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radicals playing a role in enzymatic catalysis, particularly SAM-
mediated catalysis.[20] These, and further comparative stud-

ies,[21] also present a valuable estimation of the quality of dif-
ferent methods for obtaining reliable radical stabilisation ener-

gies. From the computationally more affordable methods, the
M06-2X[22] and the BMK[23] hybrid functionals turn out to be
best performers for retrieving accurate BDEs and RSEs, when
compared with the results of high level calculations such as
the G3B3 method.[24] Thus, these functional approaches deliver

a good and computationally less expensive alternative.
In this study, geometry optimisations were carried out at the

B3LYP/6-31 + G(d) and the BMK/6-31 + G(2df,p) level of theory,
as the latter is also used with the G4(MP2)-6X method.[25]

Single point calculations at a higher level were additionally car-
ried out on the B3LYP structures and compared to high level

G3B3 calculations for the smaller model systems.

Although B3LYP energies have often been shown to under-
estimate reaction barriers,[26] previously reported work on the

radical reaction in pyruvate formate–lyase, also including a car-
boxylate moiety, showed exactly the opposite effect.[27] In the

present study an overestimation of energy barriers by B3LYP is
observed for both the charged carboxylate systems and for all

relative radical stabilisation energies. Overall, the M06-2X func-

tional showed the best results when compared to G3B3 results,
where available. Thus all relative energies discussed in the text

correspond to the M06-2X results and all interatomic distances
are given for the BMK results. All relative energies calculated

can also be found in the Supporting Information together with
the corresponding absolute energies.

Due to the acidity of the carboxylate group of CPH4, this

molecule is expected to be deprotonated both in solution and
in the protein substrate complex. The crystal structure of QueE

(B. multivorans) further shows that CPH4 is fixed in position by
a salt bridge to an arginine residue (Arg27).[14] This salt bridge

can also provide a partial reprotonation of the bound carboxyl-
ate. Smith and coworkers[27] showed, using the example of pyr-

uvate formate–lyase, how difficult and important it is to assign

the most reasonable protonation state in model gas phase cal-
culations of arginine-bound carboxylates in order to sensibly
predict the reaction path and energies. They concluded that
the neutral carboxylic acid delivers a better approximation to

the salt bridge arrangement than the charged carboxylate.
Due to the special nature of the CPH4 substrate, both protona-

tion states have been tested and the results reported here.

Anionic radical model

The relative energies for the rearrangement of the anionic

CPH4 radical are listed in Table 1. We focused on the rear-
rangement of the R-enantiomer relevant in the biological path-

way of Queuosine synthesis. Two low energy conformers

(Figure 1) were identified for the anionic CPH4, which differ in
the carbon atom pointing out of the plane of the heterocycle.

In 1 a the C7 carbon adopts an endo conformation, and 1 b
represents the C6 endo conformation, leading to the carboxyl-

ate group pointing axial out of the ring plane. The conformer
1 b is similar to the one found in the crystal structure of

QueE[14] and is slightly less stable by 7.8 kJ mol@1 than the cor-

responding conformer 1 a. Upon radical formation, the radical
center assumes a planar conformation.

Table 1. Calculated relative energies for the radical rearrangement of the
anionic CPH4 radical.

BMK/6-31
+ G(2df,p)[a]

B3LYP/
6-31 + G(d)[a]

MP2[b] M06-2X[b]

1 a 0.0 0.0 0.0 0.0
1 b 10.6 11.4 6.8 7.8
3 0.0 0.0 0.0 0.0
4* 142.0 158.1 160.0 144.6
5 115.4 136.9 110.4 110.5
6* 134.0 151.5 149.3 139.8
7* 195.2 185.4 199.5 183.2
8 139.7 127.8 116.6 125.4
9* 205.5 193.0 206.1 194.1
10 72.5 80.0 55.0 74.4
11* 92.9 78.4 61.3 85.6
12 35.7 24.7 48.8 29.7

[a] All relative energies are given in kJ mol@1; absolute energies are given
in the supporting information; B3LYP, MP2, M06-2X energies are correct-
ed with unscaled B3LYP/6-31 + G(d) zero-point energies, BMK values with
BMK/6-31 + G(2df,p) zero-point energies respectively. [b] 6-311 + +

G(3df,3p) basis set.

Figure 1. BMK/6-31 + G(2df,p) optimised structures of the deprotonated
form of CPH4 (1 a, 1 b) and subsequent radical rearrangement of anionic rad-
ical model (3). Interatomic distances given in angstroms.
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The subsequent radical rearrangement affords very high
energy barriers for both pathways (see Figure 2 and Table 1).

The rearrangement through the azacyclopropylcarbinyl inter-
mediate (5) has a C@C bond formation barrier of 144.6 kJ mol@1

in the transition state 4* and a subsequent ring opening barri-
er of 29.3 kJ mol@1 in the corresponding transition state 6*. The
ring opening/closing reaction through this latter pathway is
not competitive with even higher barriers of 183.2 (7*) and
68.7 kJ mol@1 (9*). Moreover, the overall reaction energy ap-

pears to be highly endothermic by 74.4 kJ mol@1. On the other
hand, the ring opening through homolytic cleavage of the
N8@C7 bond to form the amino acrylate-based radical species
(12) only has a transition barrier of 85.6 kJ mol@1 (11*) and also

a much lower endothermicity. Thus, it appears that this ring
opening—which is not followed by a subsequent rearrange-

ment—is kinetically and thermodynamically favoured in gas

phase.

Neutral radical model

For the radical rearrangement of the neutral model, several dif-
ferent orientations of the carboxylate hydrogen atom are pos-

sible. We have investigated the two possible syn-planar carbox-
ylic acid conformations, 3 Hcis and 3 Htrans, with the carboxylic
hydroxyl in a cis or trans conformation, respectively, relative to
N5 (see also Scheme S1 in the Supporting Information). We

have neglected the anti-planar conformations since they
would be less favourable for building the crystallographically
identified salt bridge to the arginine in the active site of QueE.
The relative energies of the rearrangements are listed in
Table 2.

The cis and trans isomers are almost identical in energy and
both show higher and very similar rearrangement barriers in

comparison to the anionic model. The barriers for the azacyclo-
propylcarbinyl ring opening are 162.7 (4 H*

cis) and
164.8 kJ mol@1 (4 H*

trans), respectively, with a further increase in

the endothermic character of the rearrangement. The ring
opening mechanism is not competitive, with a barrier of

259.7 kJ mol@1 for 7 H*
trans. Structurally, the neutral radicals do

not show significant differences when compared with the

anionic radicals, except from an increase in the bond breaking

and forming distances in the transition states (see Supporting
Information Table S4 for details).

A closer examination of the intermediate (3, 3 H) shows that
it incorporates a substituted 2-aziridinylcarbinyl radical

(Scheme 2, top) motif, which equates to a hetero-substituted

cyclopropylcarbinyl radical. The ring opening reactions of such
radicals are one of the fastest class of unimolecular reactions

known.[28] This group of extremely fast radical rearrangements
have also been used extensively as radical clocks,[29] since they

can be used as diagnostic probes for radical reactions of un-
known rate in chemical and biochemical systems.[30] As such,

they have been targets of various theoretical studies[31] includ-

ing investigations on the effect of complexed ions on the
clock’s kinetics.[32]

High-level theoretical calculations by Smith et al.[31i] on the
unsubstituted aziridinylcarbinyl radical clock have shown that

the possible ring opening to the allylaza radical (DH*(CBS-
RAD) = 15.4 kJ mol@1), corresponding to the CPH4 radical 3, and

Figure 2. Schematic energy diagram for the rearrangement of the charged
CPH4 radical 3 at the M06-2X level.

Table 2. Calculated relative energies for the radical rearrangements of
the neutral substrate 3 H and model 13 H.

BMK/6-31
+ G(2df,p)[a]

B3LYP/
6-31 + G(d)[a]

MP2[b] M06-2X[b] G3B3

3 Hcis 0.0 0.0 0.0 0.0
4 H*

cis 177.5 178.0 173.0 162.7
5 Hcis 176.4 158.9 166.6 156.2
6 H*

cis 185.0 169.2 178.7 173.5
10 Hcis 119.0 109.1 96.3 111.8
3 Htrans 0.5 0.5 @2.6 0.2 0.0
4 H*

trans 162.6 180.4 173.5 164.8 159.2
5 Htrans 162.6 179.3 184.2 158.3 151.3
6 H*

trans 170.9 187.2 181.1 175.3 150.9
7 H*

trans 271.5 250.5 298.2 259.7 151.3[c]

10 Htrans 112.4 121.7 96.7 113.7 92.5
13 Htrans 0.0 0.0 0.0 0.0 0.0
14 H*

trans 145.0 145.8 110.8 128.7 123.1
15 Htrans 115.5 140.3 65.9 105.9 104.8
16 H*

trans 119.3 143.3 67.9 107.9 106.9
17 Htrans 107.0 117.7 77.1. 102.6 111.4

[a] All relative energies are given in kJ mol@1; absolute energies are given
in the supporting information; B3LYP, ROMP2, M06-2X energies are cor-
rected with unscaled B3LYP/6-31 + G(d) zero-point energies, BMK values
with BMK/6-31 + G(2df,p) zero-point energies respectively. [b] 6-311 + +

G(3df,3p) basis set. [C] nimag = 0.

Scheme 2. 2-Aziridinylcarbinyl ring opening reaction (top). Rearrangement
of model 13 (bottom).
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the opening to the vinylazamethyl radical (DH*(CBS-RAD) =

40.8 kJ mol@1), corresponding to 10, differ significantly in their

rearrangement barriers (see Figure 3). Our results found that
the rearrangement of 3 shows the same trend with barriers of

29.3 and 34.1 kJ mol@1, respectively, with an increased barrier

for the allylaza radical formation. However, looking at the neu-
tral model this trend is reversed with barriers of 17.0 (via

6 H*
trans) and 6.5 kJ mol@1 (via 4 H*

trans) (see Table 2). Thus, the
barrier for the vinylazamethyl radical formation almost vanish-

es. Although the substitution and structural constraints of the
CPH4 system seem not to significantly influence the kinetic re-

arrangement behavior of the charged system, it does reverse

the kinetics for the neutral system, illustrating how significant
substitution effects can be. Also the relative stabilities of the

endpoints to each other and also to the radical clock inter-
mediate differ significantly. The calculated energy differences

between intermediate 5 and radicals 3 and 10, respectively,
are almost twice as high as those calculated for the corre-

sponding radicals in the radical clock investigated by Smith

et al. (38.1 kJ mol@1)[31i] which highlights once again the strong
effect of substituents on the stability of the radicals.

Radical stabilisation

The thermodynamic difference for the rearrangement of the

differently substituted aziridinylcarbinyl radical clocks is high-

lighted by the stabilisation of the CPH4 radical (see Table 3).
The neutral radical 3 Hcis has an extremely high RSE of

@139.6 kJ mol@1 (@133.2 kJ mol@1 for 3 Htrans), whereas the car-
boxylate 3 is comparatively less stable with an RSE of

@86.2 kJ mol@1, although still very stable. The origin of this
high stability lies in several contributions. One major contribu-

tor arises from captodative stabilisation[19b, 33] of the radical

center by the p-electron-donating (HNR) and p-electron-ac-
cepting (COOH) substituents. This captodative effect is signifi-

cantly lower when the carboxylic acid is deprotonated. The
other stabilising influence is based on the delocalisation of the

unpaired electron within the ring-system of CPH4. The sub-
strate radicals show a relatively high delocalisation, indicated

by relatively low Mulliken unpaired spin densities on the radi-

cal centers of 0.65 for 3 and 0.48 for 3 H, respectively (see Sup-
porting Information Table S5 for details). The spin delocalisa-

tion increases in the intermediate, before localising almost

completely in the N-centered product radical 10.
The energy barriers and RSEs for the model radical 13 (see

Scheme 2) have been calculated to identify possible ring strain
effects and explore the role of spin delocalisation. The rear-

rangement barrier of 128.7 kJ mol@1 for the intermediate
14 H*

trans is roughly 36 kJ mol@1 lower in comparison to its

CPH4 counterpart, with the radical stabilisation reduced by

20 kJ mol@1. The spin density is also delocalised in the substrate
radical. However, although the delocalisation for the CPH4 rad-

ical 3 was spread in the ring system, including N5 for the neu-
tral species, it is shared predominantly between C6 and C8a

for the radicals 13/13 H. In contrast to the CPH4 rearrange-
ment, the unpaired spin density is highly localised on the C8a

atom for the intermediate 15/15 H. Still, the rearrangement ap-

pears to be slightly more favorable for the model system.
In comparison to other radical SAM enzymes, the obtained

RSE values for the substrate radical appear to be extremely
high even in comparison to Ca-amino acid radicals generated

by the important rSAM family subclass of glycyl radical activat-
ing enzymes (GRAE),[34] which can achieve a very similar capto-

dative stabilisation.
Theoretical studies on Ca-amino acid radicals[19e,f, 35] and pep-

tide models[19a,b] have revealed that a thermodynamic reason

for the choice of glycyl peptide radicals lies in their more
stable nature in comparison to other amino acid radicals.[19a]

This higher stability prevents fast side reactions in which hy-
drogen atoms might be otherwise abstracted from adjacent

residues. Similarly, the higher stability of glycyl radicals with re-

spect to other amino acid radicals, is balanced by additional
factors. Even though stabilisation of the radical by electron-do-

nating substitutents at the Ca position is achieved, the higher
conformational freedom and thus larger accessible conforma-

tional space for glycyl radicals free of steric interactions seems
to mitigate this effect.[19a]

Figure 3. Schematic energy diagram depicting the substituent effect for the
radical rearrangement barrier of the aziridinylcarbinyl radical clock. Data for
the allylaza radical clock adopted for comparison from Smith et al.[31i]

Table 3. Calculated radical stabilisation enthalpies at 298.15 K.

BMK/
6-31 + G(2df,p)[a]

B3LYP/
6-31 + G(d)[a]

MP2[b] M06-2X[b] G3B3

3 @95.6 @104.9 @49.0 @86.2 @86.9
3 Hcis @148.7 @157.6 @117.2 @139.6
3 Htrans @141.3 @152.1 @113.0 @133.2 -@120.7
10 @51.2 @53.2 @24.3 @43.1
10 Hcis @36.4 @37.4 @22.4 @30.3
10 Htrans @29.0 @30.5 @16.8 @23.6 @20.9
8 46.4 25.7 70.3 41.9
13 @92.2 @99.7 @42.0 @81.1 @73.2
13 Htrans @116.0 @126.9 @68.4 @110.6 @100.8
17 @35.3 @44.1 6.8 @24.4
17 Htrans @22.4 @33.3 @6.6 @26.4 @20.8

[a] All radical energies are given in kJ mol@1; absolute energies are given
in the supporting information; B3LYP, ROMP2, M06-2X energies are cor-
rected with B3LYP/6-31 + G(d) enthalpy corrections (BMK values with
BMK/6-31 + G(2df,p) enthalpy corrections respectively). [b] 6-311 + +

G(3df,3p) basis set.

Chem. Eur. J. 2017, 23, 953 – 962 www.chemeurj.org T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim957

Full Paper

http://www.chemeurj.org


Counterion-complexed radical models

The energetics of the radical rearrangement change significant-
ly once the substrate is complexed by a counterion. Table 4

shows the results for the complexation of CPH4 radical to
a magnesium ion and water molecules. There is a lowering of

the activation barrier, relative to the uncomplexed species, by
more than one half, to 71.2 kJ mol@1 for the model with four
water molecules (3 Mg4H2O), 67.9 kJ mol@1 in complex with

three waters, and 80.8 kJ mol@1 in the charge-neutral model
with two bound waters and one hydroxyl group. Thus, the bar-
rier-lowering effect is not significantly influenced by the com-
plexation geometry of the magnesium ion and the calculations

seem not to be influenced by the charge of the system. The in-
termediate (5 Mg) is much more difficult to locate, as its poten-

tial energy well is much shallower. The thermodynamics of the
rearrangement, once complexed, change from a strongly en-

dothermic reaction to a slightly exothermic/endothermic reac-
tion with reaction energies between @2.8 and + 7.3 kJ mol@1

for the different models.
Similar to the findings in the crystal structure[14] the magne-

sium ion is complexed to the C4 carbonyl oxygen and one car-
boxylate oxygen (see Figure 4), which brings the substrate rad-
ical into the conformation represented by structure 1 b (note

that without additional water molecules the complexation also
includes the N5 nitrogen). However, although the energy dif-

ference for the two substrate conformations 1 a and 1 b is
minor, there is a very significant effect on the stability of the
radical.

The RSE values for the complexes listed in Table 5 show that,

along with the reaction barrier, the radical stabilisation ener-
gies of the substrates decrease significantly by roughly two
thirds. The RSEs of the substrate radicals (3 Mg) have been re-
duced to values between @28.6 and @35.3 kJ mol@1 and are
now much closer to those of the product radicals (10 Mg), with

Table 4. Calculated relative energies for the radical rearrangements com-
plexed with Mg2+ .

BMK/
6-31 + G(2df,p)[a]

B3LYP/
6-31 + G(d)[a]

MP2[b] M06-2Xb]

3 Mg4H2O 0.0 0.0 0.0 0.0
4 Mg4H2O

* 54.7 76.8 76.4 71.2
5 Mg4H2O 46.7 64.5 55.8 54.2
6 Mg4H2O

* 48.7 67.3 69.5 63.1
10 Mg4H2O @14.5 @1.3 @9.6 @2.8
3 Mg3H2O 0.0 0.0 0.0 0.0
4 Mg3H2O

* 54.3 74.0 75.5 67.9
5 Mg3H2O 41.8 60.7 51.5 48.9
6 Mg3H2O

* 45.3 64.5 67.2 59.5
10 Mg3H2O @14.3 @0.6 @10.2 @2.7
11 Mg3H2O

* 136.7 110.4 170.8 137.6
12 Mg3H2O 72.0 51.9 124.0 70.2
3 Mg2H2O@@OH 0.0 0.0 0.0 0.0
4 Mg2H2O@@OH

* 60.2 81.8 86.0 80.8
5 Mg2H2O@@OH 41.2 63.1 66.6 55.7
6 Mg2H2O@@OH

* 48.6 69.4 63.0 71.1
10 Mg2H2O@@OH @11.9 3.5 @5.3 7.3

[a] All relative energies are given in kJ mol@1; absolute energies are given
in the supporting information; B3LYP, MP2, M06-2X energies are correct-
ed with unscaled B3LYP/6-31 + G(d) zero-point energies, BMK values with
BMK/6-31 + G(2df,p) zero-point energies respectively. [b] 6-311 + +

G(3df,3p) basis set.

Table 5. Calculated radical stabilisation enthalpies at 298.15 K.

BMK/
6-31 + G(2df,p)[a]

B3LYP/
6-31 + G(d)[a]

MP2[b] M06-2X[b]

3 Mg4H2O @33.0 @46.9 @16.3 @28.6
10 Mg4H2O @32.4 @34.2 @20.6 @27.3
3 Mg3H2O @37.0 @52.0 @17.3 @33.4
10 Mg3H2O @30.0 @30.5 @17.7 @24.0
12 Mg3H2O 36.8 2.4 109.2 39.3
3 Mg2H2O@@OH @40.3 @53.5 @17.0 @35.3
10 Mg2H2O@@OH @36.8 @38.0 @23.9 @37.9
13 Mg4H2O @68.8 @80.2 @30.8 @64.8
17 Mg4H2O @26.8 @25.0 @30.0 @25.8
10 72.5 80.0 55.0 74.4
11* 92.9 78.4 61.3 85.6
12 35.7 24.7 48.8 29.7

[a] All radical energies are given in kJ mol@1; absolute energies are given
in the supporting information; B3LYP, ROMP2, M06-2X energies are cor-
rected with B3LYP/6-31 + G(d) enthalpy corrections, BMK values with
BMK/6-31 + G(2df,p) enthalpy corrections respectively.[b] 6-311 + +

G(3df,3p) basis set.

Figure 4. BMK/6-31 + G(2df,p) optimised structures of the rearrangement of the anionic CPH4 radical complexed by Mg2 + (top) and CPH4 radical complexed
to other cations (bottom).
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values between @24.0 and @37.9 kJ mol@1. The product radicals
(10 Mg) also experience a slight destabilisation upon complex-

ation.
The reason for the reduction in radical stability lies in the

distortion of the planarity of the radical center, which in turn
lessens the captodative stabilisation, by poorer alignment of

the orbitals required for delocalisation of the unpaired electron
density. This less pronounced spin delocalisation is reflected by

the higher spin densities observed for the C6 carbon atom of

around 0.78 for 3 MgXH2O and 0.82 for 3 Mg2H2O@OH, respectively
(see Supporting Information for details).

As a consequence of the magnesium binding, the substrate
is brought into a conformation leading to a much less stable
radical substrate closer to the conformation of the transition
state, in turn leading to a significant barrier lowering effect.

This is consistent with the classical view of catalysis by transi-

tion state stabilisation. Such an increase in reactivity, which
comes with the decrease in stability, is less expected for a selec-

tive radical reaction, in which side reactions need to be mini-
mised. The driving force in this case seems to come from the

need to break the planarity of the radical centre in order to
proceed through the ring contraction, which comes with

a very high energy barrier.

Alternatively, the ring can be opened between atom C7
and N8. The energy barrier of this ring opening increases

in complex with Mg2+ by roughly 42 kJ mol@1 to
137.7 kJ mol@1(11 Mg3H2O

*), making this reaction kinetically less

favourable. This means that the unwanted side reaction, which
is favoured in gas phase, is also prevented by magnesium

complexation.

The reaction of the model system affords an energetic land-
scape similar to, but not as pronounced as that for the CPH4

rearrangement (see Table 6). The rearrangement barrier drops
to 69.4 kJ mol@1 (14 Mg4H2O

*) on complexation and now is

aligned with the corresponding rearrangement barrier for the
CPH4 radical. However, the reaction is still very endothermic
(51.7 kJ mol@1). This change in comparison to the CPH4 system

can also be extracted from the RSE values (Table 5), which indi-
cate increased stability for the complexed radical 13 Mg4H2O

and lower stability for radical 17 Mg4H2O, compared with the
radicals 3 Mg4H2O and 10 Mg4H2O, respectively.

Effects of other ions

The model calculations already reveal a catalysing effect for
the ring contraction effected by Mg2+ complexation, without

needing further support by the protein active site. However,
from the enzyme studies, an increased reaction rate was found

in the presence of Mg2 + ions, but not in the presence of other
ions.[17] The rearrangement in complex with other ions was cal-
culated and the resulting energy barriers and net reaction en-

ergies can be found in Figure 5.

Out of the set of chosen ions, the rearrangement barrier is
lowest for magnesium complexation. The two divalent ions,

manganese and calcium show a slight barrier increase, where-
as the two monovalent alkaline ions Na+ and K+ show a high

barrier. A closer look at the complexation geometry (see
Figure 4) reveals that the divalent ions are able to complex
both the carbonyl and the carboxylate oxygen, bringing the

radical into the bent conformation. The monovalent ions are
only able to complex both oxygens in the product radical, but
not in the substrate. Thus, the radical can stay in its preferred
planar conformation, which leads to a much better radical sta-

bilisation, at the cost of a high rearrangement barrier. Note
also, that the model system with Na+ only has three water

molecules bound. A similar model containing four water mole-
cules shows an even higher rearrangement barrier, but pushes
one of the water molecules into the second solvation shell.

The results for this system can be found in the Supporting In-
formation.

The low rearrangement barrier for the magnesium-com-
plexed CPH4 radical is also in agreement with the recent QM/

MM study by Zhu and Lu on this ring contraction in QueE[15] in

which they concluded that the radical rearrangement is not
rate limiting when CPH4 is complexed to Mg2+ in the active

site, but it becomes rate limiting when Na+ is present in the
active site. Their observed barrier lowering 57 kJ mol@1 is simi-

lar in magnitude to our findings, opening up the question of
the protein’s contribution to this step of the reaction.

Table 6. Calculated relative energies for the radical rearrangements of 14
complexed with Mg2 + .

BMK/
6-31 + G(2df,p)[a]

B3LYP/
6-31 + G(d)[a]

MP2[b] M06-2X[b]

13 Mg4H2O 0.0 0.0 0.0 0.0
14 Mg4H2O

* 62.1 83.5 53.4 69.4
15 Mg4H2O 53.9 78.5 18.6 50.2
16 Mg4H2O

* 96.6 109.2 97.0 100.3
17 Mg4H2O 18.8 31.7 22.7 51.7

[a] All relative energies are given in kJ mol@1; absolute energies are given
in the supporting information; B3LYP, ROMP2, M06-2X energies are cor-
rected with unscaled B3LYP/6-31 + G(d) zero-point energies (BMK values
with BMK/6-31 + G(2df,p) zero-point energies respectively).[b] basis set 6-
311+ + G(3df,3p).

Figure 5. Rearrangement barriers (Ea), reaction energies (dE) and RSE values
for 3 and 10 in complex with different ions. Energies at the M06-2X level are
corrected with unscaled B3LYP/6-31 + G(d) zero-point energies. RSE values
are corrected with the corresponding enthalpy correction at 298.15 K.
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The experimental findings suggest an increased activity be-
tween 3-fold (QueE from B. multivorans) and 10-fold (QueE

from B. subtilis) of the enzyme in presence of an excess of
Mg2 + .[14, 17] Further, the crystal structures of QueE from B. multi-

vorans also indicate that the coordination environment of the
counter-ion and the hydrogen bonding network of the water

molecules and the protein differs for different ions, particularly
highlighting the ability of Mg2 + to coordinate the carbonyl
and the carboxyl moiety of CPH4.[14] Importantly, it should also

been noted that no ions were found in the active site when
the substrate analogue 6-carboxypterin is bound. Thus, the au-
thors concluded, that substrate binding generates the metal
binding site.[14, 17] This finding in principle indicates that the

metal binding site is not a permanent metal binding site,
which in turn suggests that the ions are likely to already be in

complex with the substrate upon binding.

Our findings suggest that the catalysis of the rearrangement
would also be slower with calcium or manganese ions (ne-

glecting possible effects of the ions on other reaction steps),
however not to the extent to which the experimental results

indicate. Together with the observation of different magni-
tudes of increased activity with Mg2 + in different QueE en-

zymes, it could be a matter of how well a specific QueE

enzyme can incorporate the substrate in complex with other
ions like Ca2 + . This most importantly includes the ability of the

enzyme to position the substrate adequately for the initial hy-
drogen abstraction. The role of dynamics in the catalysis is

until now not clarified, especially how it may be different for
different ions.

Effect of ion complexation on thermodynamic rearrange-
ment profile

As highlighted above, the gas phase model cannot adequately

reflect the kinetics for the rearrangement of CPH4 to CDG. The
reaction pathway is strongly affected by magnesium complexa-

tion and comparing our results to QM/MM studies[15] suggests

that this effect is not further enhanced by the protein itself. On
the other hand both the gas phase and the ion complexed

model cannot inform about the energy barriers of hydrogen
abstraction and re-abstraction steps. Those are dictated by the
enzyme’s active site and especially through the ability of the
protein to position the substrate in the perfect manner for this
selective attack.

The model calculations can still be used to assess the ther-
modynamics of the radical rearrangement and look at the in-

fluence of metal binding. This can give us insights into the
mechanistic limits for the reaction or, in other words, the feasi-

bility of the rearrangement in general, whether it needs to
overcome an energetically demanding path, and whether this

could be the rate limiting factor of the whole catalysis. This
kind of thermodynamic analysis has been carried out for a set

of reactions of different SAM enzymes by Hioe and Zipse.[20]

using the deoxyadenosyl radical (dAdoR) deoxyadensolyl
(dAdoH) system as a model reference (see Scheme 3). In this
way the reaction enthalpies can be calculated through calcu-
lating the corresponding RSE values and combining them with
experimental measured bond dissociation energies for H@CH3

(439.3 kJ mol@1) and H@NH2 (450.1 kJ mol@1).[36]

For the initial hydrogen abstraction of the gas phase reac-

tion, an RSE-based analysis yields a strongly exothermic reac-
tion with DH298 =@86.2 kJ mol@1 for 3 and even higher for

3 Htrans. The re-abstraction of the hydrogen from 10, in con-
trast, has an endothermic reaction enthalpy of 25.4 kJ mol@1. In

comparison to Zipse’s findings, the exothermic character of
the initial H-abstraction is much higher than in any other previ-

ously examined case.

The impact of metal complexation on the radical stabilisa-
tion energies is emphasised by examination of the thermody-

namic reaction profile. As can be seen in Figure 6, the reaction
profile changes upon ion complexation. The exothermic char-

acter of the first H-abstraction is reduced to a value of
@28.6 kJ mol@1 (3 Mg4H2O) and the endothermic character of the

Scheme 3. Model for H-abstraction from deprotonated CPH4 (1 a/1 b) and re-abstraction from product radical 10.

Figure 6. Activation energies (Ea) and thermochemical energy changes of
both H-abstraction steps at the M06-2X level using dAdoH/dAdoR as refer-
ence.

Chem. Eur. J. 2017, 23, 953 – 962 www.chemeurj.org T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim960

Full Paper

http://www.chemeurj.org


second H-abstraction is reduced to 9.6 kJ mol@1 (10 Mg4H2O).
Thus, the metal complexation tunes the thermodynamic char-

acter of the reaction by preventing the substrate radical from
falling into a very stable energetic well, with no easy way to

escape. This trap is avoided by the enzyme by combining reac-
tion catalysis with a conformational distortion of the radical in-

termediate in a way that provides a substantial enough desta-
bilisation to allow the reaction to proceed. In effect it makes

the energy profile smoother and easier to overcome.

Conclusion

The radical ring contraction step catalysed by the enzyme

QueE provides a perfect example of the different approaches
that may be utilised to control the reactivity of radical species
in order to perform a single distinct reaction and to prevent

unwanted side reactions.
Ab initio and DFT calculations on gas-phase model systems

to assess the kinetic barriers of the radical rearrangement with
calculations of radical stabilisation energies offer an attractive

way to assess the stability of highly reactive radicals and the

thermodynamics of their reactions. The results reveal that the
major contributor to catalysing the rearrangement lies in the

complexation of a magnesium ion to CPH4. Consistent with
the conclusions of Zhu and Liu’s QMMM study,[15] the magnesi-

um effect is mainly electrostatic and brings the substrate into
the preferred reactive conformation. Our results reveal that

this reactive conformation shows only a minor energy differ-

ence for the substrate, but a very severe one for the radical
and that it is this strong effect on the radical that is control-

ling, directing and accelerating the radical reaction during cat-
alysis.

The Mg2+ complexation not only brings the substrate into
the reactive conformation but also, once a hydrogen atom is

abstracted from the substrate, holds the resultant intermediate

radical in a highly strained conformation.
The distortion of planarity at the radical center reduces the

radical delocalisation, decreasing the stability of the radical sig-
nificantly. The bent conformation also mimics the structure of

the transition state more closely, illustrative of classical catalysis
by lowering the relative energy of transition state. This finding
is slightly surprising, since controlling free radicals in enzymes
is often attributed to negative catalysis,[6] through stabilisation

of the desired intermediate radical in order to prevent further
stabilising side reactions. Indeed, the ring opening side reac-
tion to form the ring-opened radical 12 is prevented. This reac-

tion would normally be energetically favoured in the gas
phase, and is blocked by complexation of the magnesium ion.

Other divalent ions investigated are not hugely inferior to
Mg2 + in its ability to complex the substrate and thus lower the

rearrangement barrier. The alkaline ions Na+ and K+ , however,

are not able to stabilise the strained substrate radical confor-
mation required for catalysis. Together with experimental find-

ings showing variation in the magnitude by which an excess
of Mg2+ ion speeds up the kinetics of different QueE enzymes,

our results imply that slight differences in the ion binding sites
of the different QueEs could account for their differing ability

to facilitate the catalysis for CPH4 when complexed with other
ions.

Finally, this study also illustrates the effectiveness of radical
stabilisation energies for the evaluation of the thermodynamics
of radical reactions in enzymes, provided that the roles of any
cofactors and special structural features are already under-

stood. If the catalysis of the radical rearrangement includes
a non-naturally occurring radical conformation—like in this

case—assessing correct thermodynamics is not possible by
single molecule calculations without additional structural data.
Thus, for such systems model systems need to be chosen care-
fully, for which detailed kinetic and/or structural information
from biological studies needs to be present.

Computational Methods

All DFT calculations reported were carried out with the Gaussi-
an suite of programs.[37] All geometry optimisations and fre-

quency calculations of the open-shell systems were performed

at the UB3LYP[38]/6-31 + G(d) and the UBMK[23]/6-31 + G(2df,p)
levels, including diffuse functions,[39] and on their restricted

counterparts for the closed-shell systems. Minima and transi-
tion states were confirmed by calculating their normal vibra-

tions at the corresponding level of theory. Higher level single
point calculations were performed on all B3LYP geometries at

the MP2[40]/6-311 + + G (3df,3p) and M06-2X[22]/6-311 + +

G(3df,3p) level. All relative energies were corrected with un-
scaled zero-point energies on the level of their geometry opti-

misation. The results were compared for the smaller model sys-
tems with calculations at the more accurate G3B3[24] approach.

Radical stabilisation energies were calculated according to the
procedure outlined above. The energies are calculated apply-

ing thermal corrections to enthalpies at 298.15 K at the level of

their geometry optimisation. The choice of this enthalpic cor-
rection supports an easier comparison with previously report-

ed RSE data. All absolute energies are also reported in the sup-
porting information, together with relevant interatomic distan-

ces and spin densities.
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