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Abstract

Fast relaxation of cross-bridge generated force in the myocardium facilitates efficient diastolic 

function. Recently published research studying mechanisms that modulate the relaxation rate has 

focused on molecular factors. Mechanical factors have received less attention since the 1980s 

when seminal work established the theory that reducing afterload accelerates the relaxation rate. 

Clinical trials using afterload reducing drugs, partially based on this theory, have thus far failed to 

improve outcomes for patients with diastolic dysfunction. Therefore, we reevaluated the protocols 

that suggest reducing afterload accelerates the relaxation rate and identified that myocardial 

relengthening was a potential confounding factor. We hypothesized that the speed of myocardial 

relengthening at end systole (end systolic strain rate), and not afterload, modulates relaxation rate 

and tested this hypothesis using electrically-stimulated trabeculae from mice, rats, and humans. 

We used load-clamp techniques to vary afterload and end systolic strain rate independently. Our 

data show that the rate of relaxation increases monotonically with end systolic strain rate but is not 

altered by afterload. Computer simulations mimic this behavior and suggest that fast relengthening 

quickens relaxation by accelerating the detachment of cross-bridges. The relationship between 

relaxation rate and strain rate is novel and upends the prevailing theory that afterload modifies 

relaxation. In conclusion, myocardial relaxation is mechanically modified by the rate of stretch at 

end systole. The rate of myocardial relengthening at end systole may be a new diagnostic indicator 

or target for treatment of diastolic dysfunction.
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INTRODUCTION

Rapid relaxation after ejection is essential for efficient filling of the left ventricle of the heart 

[1]. If the heart relaxes too slowly, there is not enough time for the heart to fill and cardiac 

function is compromised. Clinically, slow relaxation is an independent diagnostic criterion 

for Heart Failure with preserved Ejection Fraction (HFpEF) [2]. Improved understanding of 

the mechanisms that influence the rate of relaxation could lead to better treatments for 

diastolic dysfunction and HFpEF.

Cardiac relaxation ultimately reflects the reduction in the number of myosin heads that are 

bound to actin. This is a very complex process, and several molecular-level mechanisms are 

known to influence the rate of relaxation [3]. For example, myocardial relaxation can be 

quickened by increasing SERCA expression [4] or slowed by decreasing SERCA activity 

[5]. Increasing SERCA expression reduces the intracellular Ca2+ concentration during the 

latter stages of a twitch contraction, which in turn decreases the number of binding sites on 

actin to which myosin heads can attach.

Mechanical factors that influence relaxation have received less attention since the 1980s. 

Seminal work by D. L. Brutsaert and others used isolated intact trabeculae and working 

hearts to establish the theory that reducing afterload accelerates the myocardial relaxation 

rate [6–9]. In part due to the high prevalence of hypertension in patients with Heart Failure 

with preserved Ejection Fraction, clinical trials attempted to treat such patients with anti-

hypertensive therapies such as inhibition of the renin-angiotensin-aldosterone system [10]. 

However, reducing afterload did not improve outcomes in these patients.

We were intrigued by these results and recent reports of reduced myocardial strain rates in 

HFpEF patients [11]. Therefore, we re-evaluated the original protocols used to suggest that 

afterload modifies the relaxation rate [6, 7, 9, 10]. We noted that both afterload and the 

myocardial strain rate at end systole (the speed of muscle relengthening) are simultaneously 

adjusted when using the conditions of the original protocol. However, the simultaneous 

change in afterload and strain rate suggests that strain rate may have been a confounding 

factor in the interpretation of the seminal experiments. The authors concluded that afterload 

was the mechanical modifier of relaxation, even though they noted that relengthening is 

necessary to modify relaxation [6, 9, 12].

This manuscript describes new experiments that we developed to isolate the role of 

myocardial strain rate from afterload. Specifically, we independently modified afterload and 

end-systolic strain-rate in experiments using electrically simulated trabeculae from mice, 

rats, and humans. We also used computer simulations to investigate the relationship between 

fast stretch and cross-bridge detachment. Our data shows a novel relationship between 

relaxation rate and end systolic strain rate and the likely molecular mechanism is enhanced 

cross-bridge detachment.
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METHODS

ISOLATION OF RODENT VENTRICULAR TRABECULA

Female Sprague-Dawley or wild-type (mixed Sprague-Dawley/F344/Brown Norway) rats 

[13] and male C57BL/6 mice were used in this study. Animal use was approved by the 

Institutional Animal Use and Care Committees of the University of Kentucky and Wayne 

State University.

Each animal was anesthetized via an IP injection of sodium pentobarbital (50 mg kg−1) or 

inhalation of 3% isoflurane and heparinized via an IP administration of sodium heparin 

(1000 U kg−1). The animal was subsequently euthanized by exsanguination, and its heart 

was rapidly excised and rinsed in a cold (4°C), oxygenated (>10 ppm) perfusion solution (in 

mM: 113 NaCl, 4.7 KCl, 0.6 KH2PO4, 1.2 MgSO4, 12 NaHCO3, 10 KHCO3, 10 2-[4-2-

hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), 30 Taurine, 5.5 glucose, 10 2,3-

butanedione monoxine (BDM)). Additional perfusion solution was then flushed through the 

heart via an aortic cannula to remove any remaining blood. The heart was then placed in a 

dissecting dish that was coated with Sylgard (Dow Corning, Midland MI) and filled with 

cold perfusion solution. After opening the ventricles, the endocardial surfaces were 

inspected for free-standing trabeculae, including cylindrical papillary muscles. Potential 

preparations were removed from the heart by cutting a cuboid section of ventricular wall at 

each end of the trabecula. Contact with the trabecula itself was minimized to reduce the 

probability of induced damage.

ISOLATION OF HUMAN VENTRICULAR TRABECULA

One set of experiments was performed using a trabecula isolated from the right ventricle, 

between the mid-wall and apex, of an organ donor (60 year old female). The organ was not 

transplantable due to the donor’s history of left coronary artery disease. This experiment was 

approved by the Institutional Review Board of the University of Kentucky.

During the organ procurement, the heart was perfused with cardioplegia solution. The 

ventricles were subsequently excised and provided to the research team submerged in 

cardioplegia solution. A free-standing trabecula was located on the endocardial surface of 

the right ventricular free wall and carefully isolated from the organ.

INTACT TRABECULA MECHANICS

Each trabecula was transferred from the dissecting dish to the experimental chamber inside a 

bulb pipette using perfusion solution to maintain hydration. This prevented the trabecula 

from dehydrating during the transfer procedure. The experimental chamber had a volume of 

350 μL and was continuously perfused with oxygenated Tyrode’s Solution (in mM: 140 

NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose) at 25°C or in one case 

increased to 37°C. One end of the trabecula was hooked to a high-speed length motor 

(Model 312C or 315C, Aurora Scientific, Aurora, Ontario, Canada) while the other end was 

secured to a force transducer (Model 403, Aurora Scientific). The trabecula was paced at 0.5 

Hz using bipolar excitation approximately 1.2 times the threshold voltage and stretched to 

L0, the length where the maximal force was developed during isometric contractions. L0 and 
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the cross sectional area were measured by video microscopy. The cross-sectional area was 

calculated by averaging the diameter of the trabecula at 4 positions along its length and 

assuming a cylindrical geometry. It was allowed to equilibrate for approximately 1 hr before 

data acquisition began.

Experiments were performed using SLControl software [14] and a newly written real-time 

control algorithm. The trabecula was held isometric except for the experimental load-

clamped twitches that were performed at least 4 seconds apart to prevent history-dependent 

effects [15]. During a load-clamp trial, the trabecula isometrically contracted until force 

reached a predefined set-point (the afterload). Force was then isotonically maintained at the 

chosen afterload by adjusting the motor position to shorten and then relengthen the muscle 

in real-time using the control algorithm. If the load-clamp was stopped and the muscle was 

held isometric before the minimum length was achieved, additional systolic force was 

generated before the muscle could relax (Supplemental Figure S1). To focus on the 

mechanical behaviors of relaxation, the load-clamp was terminated and the muscle allowed 

to relax isometrically after one of three events. These events were: 1) the trabecula 

relengthened back to its original length, 2) the trabecula began to relengthen (i.e, the 

trabecula was held at the minimum attained length), or 3) the trabecula relengthened by a 

pre-set amount. Different termination criteria were used in successive trials to investigate 

different mechanical behaviors. Once the load-clamp was terminated, the trabecula was 

allowed to relax under isometric conditions at that length. If necessary, the trabecula was 

returned to its original length after the trial was complete. Load-clamps using different 

termination conditions were repeated at various afterloads (typically between 25–75% of the 

maximum isotonic force). Experiments were stopped if the developed isometric force 

decreased by >20% from the equilibrated maximal force at L0, which typically occurred >6 

hours after the muscle was equilibrated.

Data were analyzed offline using custom scripts written in MATLAB (The MathWorks, 

Natick, MA). Force records were smoothed using a Savitzky-Golay filter and normalized to 

the measured cross-sectional area. Data were aligned using either the stimulus pulse or a 

threshold force when the stimulus was not available for technical reasons. Changes in 

muscle strain were calculated from the muscle length and the position of the motor. No 

corrections were made to allow for series compliance in the attachments to the experimental 

apparatus. For load-clamp twitches, the onset of relaxation was defined as the time-point at 

which the motor stopped moving. The relaxation rate was determined using the Glantz 

Method calculated in the pressure-phase plane [16, 17]. The rate is defined as 1/tau, where 

tau is the typical time constant of isovolumic relaxation.

MATHEMATICAL MODELING

Twitch contractions were simulated using a mathematical model consisting of a single half-

sarcomere connected in series to an elastic spring. The half-sarcomere was represented by a 

population of cross-bridges cycling through a 2-state scheme and a parallel elastic 

component that produced the system’s passive resting tension. Strain dependent myosin 

kinetics were included in the model. The series elastic spring was non-linear and mimicked 

the compliance in the trabecula’s attachments to the experimental apparatus. All calculations 
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were performed using freely-available MyoSim software [18] that can be downloaded from 

http://www.myosim.org. The data files necessary to reproduce these simulations are included 

as Supplementary Material.

The half-sarcomere was activated in every simulation by an identical idealized Ca2+ 

transient of the form

where  as described by Rice et al [19].τ1=0.029 s and 

τ2=0.17 s were chosen to match calcium transient parameters obtained from rat 

cardiomyocytes isolated from age and gender matched rats [20].

A test suite of 5 representative force records was selected from the experimental data. These 

records correspond to: an isometric twitch and 4 load-clamped twitches (25% or 50% 

afterload, with zero or full relengthening). Multidimensional optimization was then used to 

deduce model parameters that produced the best attainable fit to the experimental data.

The resulting model was then used to simulate the mechanical behavior during 30 different 

combinations of afterload and relengthening. Twitches with relaxation rates less than 100 s−1 

were subsequently analyzed using the same methods as described above for the experimental 

data.

RESULTS

LOAD-CLAMP EXPERIMENTS

Figure 1 shows the mechanical behavior of a single rat trabecula during isometric twitches 

and different load-clamp conditions. The left panels show a single isometric trial and 5 load-

clamp trials in which the trabecula shortened and was then re-stretched to its starting length 

(L0) before relaxing isometrically. The theory that reduced afterload leads to faster 

relaxation is based on this protocol [6, 21]. The trabecula relaxed faster after it contracted 

against a low afterload. However, the magnitude and speed of relengthening also varied with 

afterload.

The middle panels show additional trials in which the load-clamp was terminated as soon as 

the control algorithm indicated that the trabecula needed to relengthen. The trabecula 

therefore relaxed isometrically at the minimum length that it attained while contracting 

against the set afterload. The bottom panel shows that the rate of relaxation was not affected 

by afterload under these conditions, which suggests that relengthening is necessary to 

modify relaxation rate.

The right-hand panels show trials where the trabecula contracted against a fixed afterload 

but was allowed to re-stretch by different amounts before relaxing. The rate of relaxation 
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increased from 8.1 to 23.6 s−1 as the re-stretch varied from zero to full relengthening. These 

data suggest that relengthening itself is sufficient to modify relaxation rate regardless of 

afterload.

Figure 2 shows twitch force and muscle length data from mouse, rat, and human trabeculae 

and Supplemental Figure S2 shows collated data from 6 additional trabeculae, each from 

individual rats. Supplemental Figure S3 shows that relaxation rate is dependent on end 

systolic strain rate at physiologic temperatures. These data show that the relaxation rate is 

not well correlated with afterload, but relaxation rate increased monotonically with end 

systolic strain rate. (We use the term end systolic strain rate because the load-clamp mimics 

ejection: e.g. the end of the clamp is similar to aortic valve closure at end systole.)

MATHEMATICAL MODELING

We investigated the molecular mechanisms underlying the relationship between end systolic 

strain rate and relaxation rate by simulating load-clamped twitch contractions using MyoSim 

software. We started this process by fitting a two-state cross-bridge model to a representative 

set of 5 experimental records (isometric twitch plus records with full and no relengthening at 

two different afterloads) (Supplemental Fig. S4).

The model was then used to predict the mechanical response of a trabecula to 30 different 

combinations of afterload and relengthening. These simulations exhibited similar trends to 

the experimental data (Fig. 3), specifically: (1) The rate of myocardial relaxation scaled 

inversely with afterload when the muscle relengthened fully before relaxation. (2) 

Relaxation rate was essentially constant when the muscle did not relengthen. (3) The rate of 

relaxation increased monotonically with the end-systolic strain rate.

In these simulations, the magnitude of myocardial relengthening (strain) was related to the 

speed of relengthening (strain rate). Both parameters predicted the rate of relaxation but the 

relationship between relaxation rate and strain rate was more linear (Supplemental Fig. S5). 

These data suggest that strain rate, not strain, is a strong predictor of the relaxation rate.

These simulations also suggest that ~6.8% of myosin heads are bound to actin at the peak of 

an isometric twitch (Fig. 4). If the trabecula was load-clamped at half the peak isometric 

force, the rapid shortening during the initial stages of the clamp lowered the proportion of 

bound cross-bridges to ~4.5%. If the trabecula relaxed at the minimum length after a load-

clamp, the cross-bridge detachment rate was similar to the purely isometric twitch (10.8 s−1 

vs. 10.2 s−1), leading to a relatively slow rate of force decline (8.4 s−1) that is similar to that 

of the isometric contraction (6.8 s−1). In contrast, if the load-clamp was maintained until the 

trabecula had retained its original length, the quick re-stretch detached the bound cross-

bridges up to ~30.0 s−1 and accelerated the rate of force decline dramatically (23.4 s−1). The 

monotonic relationship between relaxation rate and end systolic strain rate (Fig. 4C) is 

mimicked by the relationship between the rate of decline in bound cross-bridges and the end 

systolic strain rate (Fig. 4D).
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DISCUSSION

Our data show that in cardiac trabeculae from mice, rats, and humans, the rate of relaxation 

scales with the strain rate at end systole but is not independently modulated by afterload. 

This result contrasts with the standard, clinically-accepted theory that afterload is the 

modifying mechanism [6, 9, 10]. Computer simulations reproduce this behavior and suggest 

that fast relengthening at end systole quickens relaxation by accelerating the detachment of 

bound cross-bridges.

MECHANICAL CONTROL OF RELAXATION

Reduced afterload was reported to accelerate myocardial relaxation at least as early as 1968 

[22]. To our knowledge, the ex vivo studies that support this theory [6, 7, 21, 23] used a 

protocol that included relengthening of the muscle, similar to the one shown in Figure 1 

(left). Superficially, these data show that trabeculae relax faster if they have previously 

contracted against a low afterload. However, the end systolic strain rate produced by 

relengthening increased as afterload was reduced.

Since strain rate could be a potential confounding factor we developed new protocols that 

allowed us to vary afterload and strain-rate independently. These new experiments showed 

that the rate of relaxation did not depend on afterload if the muscle was prevented from 

relengthening (Fig 1, center). Of note, Brutsaert et al coined the term “relaxation loading” to 

describe the relengthening period and concluded that the lengthening “allows load-

dependent relaxation to become manifest” [12, 23]. This statement and our data suggest that 

relengthening is necessary to mechanically modify the relaxation rate. Moreover, the rate of 

relaxation increased monotonically with end-systolic strain rate for different combinations of 

afterload and relengthening (Fig 1, right). These data suggest that relengthening is sufficient 

to modify the relaxation rate, regardless of afterload.

Both our experimental data and computational modeling data suggests that a tight 

relationship between strain and strain rate exists during the load-clamp. However, small 

strains are insufficient to modify relaxation rate, while relaxation appears to be quite 

sensitive to even small strain rates (Supplemental Fig. S5). The strong monotonic 

relationship between relaxation rate and strain rate has not been previously described. In 

summary, relengthening is not only necessary but it is sufficient to mechanically modify the 

relaxation rate, which is dependent on the strain rate.

MOLECULAR CONTROL OF RELAXATION

Myocardial relaxation occurs as the number of bound cross-bridges falls. It is known that the 

population of bound cross-bridges is affected by changes in protein isoforms and post-

translational modifications that modify calcium reuptake, thin filament deactivation, and/or 

cross-bridge detachment kinetics [3, 24].

Our mathematical model corroborates experimental work that suggests changes in strain can 

also play a critical role in determining how quickly cross-bridges detach [25]. Calcium 

activated skinned myofibril (and tetanically stimulated intact skeletal muscle) experiments 

exhibit a biphasic relaxation after calcium is removed [26–28]. Muscle force first relaxes in 
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a slow linear phase that suddenly transitions to a fast decay, which is thought to be a strain-

induced rapid detachment of cross-bridges [29, 30]. Importantly, externally inducing a strain 

by stretching the preparation soon after activating calcium is removed will accelerate the 

rapid detachment of cross-bridges and initiate the fast phase of relaxation [27]. In intact 

cardiac muscle, Janssen and colleagues showed that oscillating stretches during the late 

systolic phase reduced tension, with higher frequencies generating a greater reduction [31].

The transition between slow and fast relaxation in a myofibril coincides with a sudden 

yielding (relengthening) of a single half sarcomere [32] and chaotic intra-fiber movement 

[28, 33] in the otherwise isometric preparation. Brutsaert noted that non-uniformity in 

sarcomere lengths can enhance relaxation [6, 9]. This effect, along with potentially damaged 

sarcomeres [34] and elastic chordae near the fiber ends are simplified in our model as a 

series elastic element that generates series compliance. A recent study showed that such a 

series elastic element is required to model the experimentally measured force decay pattern 

[35]. Regardless of utilizing individual sarcomeres or a series elastic element, the rapid 

decline in force is related to rapid detachment of cross-bridges upon a change in strain 

within the myofibril or myofiber.

The simulations presented in this work suggest that similar mechanisms also influence the 

relaxation of electrically stimulated trabeculae. As shown in Fig 4A, the rapid shortening at 

the onset of the load-clamp decreased the proportion of cross-bridges that were bound 

between the filaments [24]. This decrease occurred because the interfilamentary movement 

displaced bound heads from their equilibrium positions, increasing their mean detachment 

rate. However, as long as the thin filament activation level remained high, many of the heads 

that detached were quickly replaced by newly attaching cross-bridges [12, 24]. The high 

level of activation also allowed the proportion of bound heads to remain relatively stable 

throughout the shortening phase of the load-clamp. (The high level of thin filament 

activation also explains why additional force is developed if a load-clamp is stopped prior to 

reaching minimum length (Supplementary Figure S1).)

As the muscle deactivated and the number of available binding sites declined, the behavior 

in the simulations became more complex. If the muscle relaxed isometrically at its shortest 

attainable length, bound heads remained close to their equilibrium positions and relaxation 

was relatively slow. Conversely, rapid re-stretch displaced cross-bridges and caused them to 

detach from the thin filament. The newly vacated binding sites on actin quickly deactivated 

because the Ca2+ concentration had declined. This binding site closure prevented detached 

heads from being replaced as they had during the activation phase. This induced further 

strain in each remaining myosin head and initiated a positive feedback loop that quickly 

detached additional bound heads. Brutsaert had previously suggested that fast lengthening 

would induce “back-rotation and detachment of force generating cross bridges” [9]. Our 

simulations confirm that mechanical control of relaxation is induced by detachment of cross-

bridges, likely due to strain-dependent myosin kinetics. Furthermore, our simulations 

represent the first evidence that end systolic strain rate modifies the cross-bridge detachment 

rate in the same manner it modifies the relaxation rate (Fig. 4B,C).
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IN VIVO PHYSIOLOGY AND RELENGTHENING

One may assume that relengthening does not occur during systole because the ventricular 

volume does not increase before aortic valve closure. However, myocardial strain is not 

identical to volume. In healthy hearts, a small amount relengthening or untwist is observed 

at the end of systole using echocardiography and magnetic resonance imaging techniques 

[36–40]. The theory that reduced afterload accelerates relaxation rate was supported by data 

from intact heart and in vivo studies where myocardial strain rate was not measured [7]. 

Figure 5 shows the effect of a modest but quick relengthening, which mimics the in vivo 

condition [38], in a trabecula at two different afterloads. These data suggest that a brief 

relengthening before aortic valve closure explains why reducing the afterload increased the 

relaxation rate in intact hearts and in vivo. Although further work is required to confirm that 

end systolic relengthening accelerates relaxation rate in vivo, it is interesting to note strain 

rates are reduced [11] and end systolic relengthening is lost [41] in patients with HFpEF and 

subjects with hypertension or hypertrophy, who typically exhibit slow isovolumic relaxation.

Our in vitro system used a servo motor to drive the relengthening, but internal forces must 

relengthen the myocardium in vivo. It is already hypothesized that elastic elements such as 

titin and collagen help drive the myocardium to lengthen during filling [42, 43]. These 

molecular elastic elements are likely to have stored strain during ejection and shortening, 

which provides a driving force for the myocardium to relengthen before aortic valve closure 

in normal hearts.

Furthermore, the molecular mechanisms described here may also provide insight into why 

slow isovolumic relaxation has been correlated with impaired relaxation during early filling 

[44–46]. In healthy myocardium with end systolic relengthening, cross-bridges are more 

rapidly detached, minimizing their influence on filling. In patients with HFpEF whose 

myocardial strain rate is reduced [11], a larger population of bound cross-bridges needs to be 

detached during early filling.

LIMITATIONS

Like the previous work of Brutsaert and others [6, 7, 9], this work also utilized muscle fiber 

length control instead of sarcomere length control, which is difficult in muscle fibers. As 

noted above, our model includes non-uniform sarcomere lengths as part of a lumped series 

elastic element, whose compliance is dictated by damaged sarcomeres, averaging of multiple 

sarcomeres, and/or elastic chordae attached to the ends of the muscle. Experiment [27], 

recent computational models [35], and our current data suggests that local changes in 

sarcomere lengths are necessary to modify the relaxation rate. This is reflected in 

sarcomeres moving against the series elastic element or an overall change in muscle length.

Detailed evaluation of sarcomere length is of interest because cross-bridge kinetics appear to 

differ when sarcomere length is controlled instead of muscle length [34]. However, 

sarcomere length control induces muscle length changes that are not physiologic. A study 

using sarcomere length control instead of muscle length control suggested that minimum 

sarcomere length, not afterload, modified the relaxation rate [47]. While they speculated that 

the molecular mechanisms were similar (cross-bridge detachment), maintaining sarcomere 
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length in the center of their preparation required muscle lengthening during the ejection 

phase and muscle shortening during relaxation. This is inconsistent with normal in vivo 

myocardial strain, where fibers typically shorten during ejection and relengthen during 

isovolumic relaxation [37]. Since muscle length, not sarcomere length, is most translatable 

to clinical cardiac imaging showing reduced strain rates in patients with diastolic 

dysfunction [11, 37–39, 41], we believe muscle length is the most appropriate index for this 

study.

While the general time course of our simulation data mimics the experimental data, the 

model over-estimates the relaxation rate. This may be due to the mathematical model, which 

represents the muscle system as a single half-sarcomere connected in series with a spring. 

Such a model omits a number of factors, such as inter-cell and inter-half-sarcomere 

heterogeneity. However, this simplification seems to provide useful data and mimics the 

function of our trabeculae, as it has previously for myofibrils [35].

CONCLUSION

This study is the first to establish that fast stretch (end systolic strain rate), not reduced 

afterload, is both necessary and sufficient to mechanically accelerate the myocardial 

relaxation rate. Rapid relengthening leads to enhanced cross-bridge detachment, which 

relates the mechanical and molecular mechanisms. The relationship between end systolic 

strain rate and relaxation rate may be important to clinical treatment or diagnosis of diastolic 

diseases such as HFpEF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Intact cardiac trabeculae were used to study cardiac relaxation.

• Relaxation rate is not directly modified by afterload.

• Relaxation rate is directly related to fast myocardial relengthening at end 

systole.

• Relengthening detaches myosin-actin cross-bridges.
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Figure 1. 
Load-clamp protocols indicate that relaxation rate depends on the end systolic strain rate, 

not afterload. Top: Force and length versus time traces; Middle: Relationship between 

relaxation rate and afterload; Bottom: Relationship between relaxation rate and end systolic 

strain rate. Left (blue): overlay of 6 twitches that were load-clamped at various afterloads; 

the muscle was relengthened back to its original length before being allowed to relax. Center 

(red): overlay of 6 twitches; the muscle relaxed while being held at the minimum attained 

length. Right: overlay of 9 twitches that were load-clamped at ~50% of the peak isometric 

force; the load-clamp was stopped with variable amounts of relengthening before being 

allowed to relax. Muscle relengthening was necessary to obtain an inverse relationship 

between relaxation rate and afterload. Relengthening alone (without modifying afterload) 

was sufficient to modify the relaxation rate. All data in this figure measured from the same 

rat trabecula.
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Figure 2. 
Relaxation rate is dependent on the end systolic strain rate in mouse, rat, and human 

myocardial trabeculae. Top: Force and length versus time traces. Bottom: Relationship 

between relaxation rate and end systolic strain rate. Each column shows multiple afterload-

clamped twitches overlaid from a single mouse trabecula (53 twitches), rat trabecula (62 

twitches), and human (25 twitches) trabecula. Six additional rat trabeculae shown in 

Supplementary Figure S2.
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Figure 3. 
Model simulation mimics load-clamp experiments from a rat cardiac trabecula. Top: 

Mathematical modeling simulated force and length versus time traces; Middle: Relationship 

between relaxation rate and afterload, and bottom: Relationship between relaxation rate and 

end systolic strain rate observed in simulated data. These data show that relaxation rate is 1) 

only dependent on afterload only when the muscle relengthens and 2) dependent on the end 

systolic strain rate.
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Figure 4. 
Mathematical modeling reveals molecular mechanisms. A) Model predicted force, length, 

and acto-myosin binding site status as a function of time. Black: isometric twitch. Red: load-

clamped twitch held at minimum length. Blue: load-clamp twitch allowed to fully relengthen 

before relaxation. B) Relaxation rate versus end systolic strain rate and C) cross-bridge 

detachment rate versus end systolic strain rate for multiple simulated twitches. This 

modeling data set shows that cross-bridge detachment rates are slow unless a fast stretch is 

applied before relaxation.

Chung et al. Page 17

J Mol Cell Cardiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
A short, quick relengthening explains why relaxation rate can be faster at reduced afterloads. 

Force, length, and strain rate versus time for two twitches load-clamped at different 

afterloads but allowed to relengthen for equal durations. Afterload may have been mistaken 

for the mechanical factor that modified relaxation rate in intact hearts because strain and 

strain rate were not measured.
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