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Abstract

MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of

hundreds of target genes and each to a small degree, but it remains unclear how small

changes in hundreds of target genes are translated into the specific function of a miRNA.

Here, we conducted an integrated analysis of transcriptome and translatome of primary B

cells from mutant mice expressing miR-17~92 at three different levels to address this issue.

We found that target genes exhibit differential sensitivity to miRNA suppression and that

only a small fraction of target genes are actually suppressed by a given concentration of

miRNA under physiological conditions. Transgenic expression and deletion of the same

miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene

expression mainly through translational repression and 5’UTR plays an important role in reg-

ulating target gene sensitivity to miRNA suppression. These findings provide molecular

insights into a model in which miRNAs exert their specific functions through a small number

of key target genes.
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Author summary

MicroRNAs (miRNAs) are small RNAs encoded by our genome. Each miRNA binds hun-

dreds of target mRNAs and performs specific functions. It is thought that miRNAs exert

their function by reducing the expression of all these target genes and each to a small

degree. However, these target genes often have very diverse functions. It has been unclear

how small changes in hundreds of target genes with diverse functions are translated into

the specific function of a miRNA. Here we take advantage of recent technical advances to

globally examine the mRNA and protein levels of 868 target genes regulated by miR-

17~92, the first oncogenic miRNA, in mutant mice with transgenic overexpression or

deletion of this miRNA gene. We show that miR-17~92 regulates target gene expression

mainly at the protein level, with little effect on mRNA. Surprisingly, only a small fraction

of target genes respond to miR-17~92 expression changes. Further studies show that the

sensitivity of target genes to miR-17~92 is determined by a non-coding region of target

mRNA. Our findings demonstrate that not every target gene is equal, and suggest that the

function of a miRNA is mediated by a small number of key target genes.

Introduction

MicroRNAs (miRNAs) are endogenously encoded single stranded RNAs of about 22 nucleo-

tides (nts) in length. They suppress target gene expression by translational repression and pro-

moting mRNA degradation. The relative contribution of these two modes of action to miRNA

regulation of its target gene expression is a matter of ongoing debate [1–3]. It was initially

thought that animal miRNAs repress the protein output of target genes without significantly

effecting mRNA levels [4, 5]. Subsequent genetic studies in C. elegans and zebrafish showed

that miRNAs also promote the degradation of their target mRNAs [6, 7]. To reveal the global

effect of miRNA on target gene mRNA and protein levels, a series of genome-wide studies

applied microarray, RNA-seq, proteomics, and ribosome profiling to mammalian cell lines

transiently transfected with miRNA mimics or inhibitors or primary cells from miRNA mutant

mice. Two early studies showed significant correlations between the mRNA and protein levels

of miRNA target genes, as well as widespread target mRNA degradation [8, 9]. This was fol-

lowed up by a study concluding that mammalian miRNAs predominantly act to decrease target

mRNA levels [10]. However, other studies that employed the same experimental approach,

namely transient transfection of miRNA mimics or inhibitors into in vitro cultured mammalian

cell lines, came to an opposite conclusion. These studies showed that miRNAs affect the expres-

sion of most target genes through translational inhibition [11, 12]. Subsequent studies employ-

ing temporal dissection of miRNA action seemed to have resolved this discrepancy by showing

that translational repression precedes target mRNA deadenylation and decay [13–18]. This

order of events can be interpreted either as evidence that mRNA decay is a consequence of

translational repression [17, 19], or as reflection of the kinetic differences between these two

mechanisms that operate independently from each other [20]. In line with the latter interpreta-

tion, analyses performed either in cultured cells or in vitro extracts showed that miRNA-medi-

ated translational repression can occur in the absence of target mRNA deadenylation and decay

[19, 21–27]. Therefore, it remains an unanswered question whether mRNA degradation is

always the end result of miRNA targeting and whether miRNA-mediated translational repres-

sion and target mRNA degradation are molecularly coupled under physiological conditions [1,

28, 29].
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In contrast to the efforts to search for a unified mechanism of miRNA action, studies of

individual miRNA-target mRNA interactions in miRNA mutant mice are painting a rather

different picture. A recent survey of literature focused on studies in which target gene mRNA

and protein levels were measured concurrently in primary cells and tissues from mutant mice

with genetic ablation or transgenic expression of individual miRNA genes [2]. This survey ana-

lyzed a total of 159 miRNA-target mRNA interactions in 77 strains of miRNA mutant mice.

Among them, 48% target genes are predominantly regulated by translational repression, 29%

are regulated mainly by mRNA degradation, and 23% are regulated by both. This heterogene-

ity in miRNA mechanisms of action has been increasingly recognized as more and more

miRNA mutant mice are generated and analyzed, but what determines the dominant mode of

miRNA action remains unclear. An interesting finding of this survey is that most target genes

identified in developing cells or tissues are regulated by mRNA degradation, whereas target

genes identified in terminally differentiated cells tend to be regulated at the translational level.

It is conceivable that mRNA degradation gets rid of target mRNA in a non-reversible manner

and provides an efficient way for cell fate determination, while translational repression is

immediate, transient and reversible, which is more suitable for differentiated cells to respond

to environmental stimuli [2]. Indeed, previous studies have shown that miRNA regulation of

target gene translation can occur in a rapid and reversible manner under various stress condi-

tions [30, 31]. These studies highlight the importance of cellular context in determining the

dominant mode of miRNA action.

The mode of action can also be miRNA-dependent. Transcriptome analysis of mouse liver

showed that miR-122 and let-7 cause significant target mRNA degradation, whereas miR-21

has little impact on its target gene mRNA levels [32]. Another study of primary cells from

miRNA mutant mice showed that miR-155 in B cells and miR-223 in neutrophils cause signifi-

cant target mRNA degradation, while miR-150 in B cells and miR-21 in neutrophils have abso-

lutely no effect on their target mRNA abundance [14]. Considering the cellular context- and

miRNA-dependency, it is essential to investigate miRNA mechanisms of action in the cellular

contexts where miRNA of interest performs its physiological or pathological functions.

Another controversial issue in miRNA research is about how miRNAs achieve their specific

functions. On one hand, bioinformatic analysis and experimental target gene identification

using the recently established PAR-CLIP and HITS-CLIP methods often find hundreds of tar-

get genes for a miRNA [33–36]. Proteomic analysis of mammalian cell lines transiently trans-

fected with miRNA mimics showed that a miRNA regulates the protein output of hundreds of

target genes, and that the effect on each target gene is often moderate [8, 9]. These studies led

to the conclusion that miRNAs exert their functions by modulating the expression of hundreds

of target genes and each to a small degree [37, 38]. However, when the hundreds of target

genes regulated by a miRNA are closely examined, they often fall into a broad spectrum of

functional categories [36, 39, 40]. How small changes in hundreds of target genes with diverse

functions are translated into specific phenotypic outcomes has been a conceptual conundrum.

On the other hand, recent genetic studies demonstrated that mutation of miRNA binding sites

in a single target gene can phenocopy miRNA deficiency in a cell context-dependent manner

in both mice and worms [41–43]. These results provide strong support to the key target gene

model, which postulates that the function of a miRNA is often mediated by a small number of

key target genes in a given cellular context [44]. We speculated that the discrepancy between

these two types of studies regarding how miRNAs exert their specific functions stems from the

transient transfection approach, which may not recapitulate the actions of endogenous miR-

NAs under physiological conditions [2]. Recent studies showed that transient transfection of

miRNA mimics into in vitro cultured cell lines led to increase of mature miRNAs to supraphy-

siological levels, appearance of high molecular weight RNA species, frequent mutation of
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guide strands of miRNA mimics, accumulation of unnatural passenger strands of miRNA

mimics, and non-specific alterations in gene expression [45–47]. These findings call into ques-

tion the physiological relevance of previous studies employing the transient transfection

approach to investigate the functions and mechanisms of miRNAs. As increasing numbers of

animals harboring gain- and loss-of function mutations for individual miRNA genes are being

generated [2, 48], primary cells from these miRNA mutant animals are better systems for

studying miRNA mechanisms of action under physiological conditions.

In this study, we investigated miRNA mechanism of action in lymphocytes by conducting

an integrated analysis of the transcriptomes and translatomes of primary B cells from miR-

17~92 transgenic and knockout mice. The miR-17~92 family consists of three miRNA clusters:

miR-17~92, miR-106a~363, and miR-106b~25 (S1 Fig). Together, these three clusters contain

15 miRNA stem-loops that give rise to 13 distinct mature miRNAs. They fall into four miRNA

subfamilies (miR-17, miR-18, miR-19, and miR-92 subfamilies), with members in each sub-

family sharing the same seed sequence. Germline knockout of miR-17~92 family in mice is

incompatible with life [49]. These miRNAs are essential for the development of lung, heart,

central nervous system, fetal liver, and B lymphocytes [49]. B cell-specific deletion of the miR-

17~92 family (CD19-Cre;miR-17~92fl/fl;miR-106a~363-/-;miR-106b~25-/-, termed TKO mice)

severely impaired antibody responses, while B cell-specific miR-17~92 transgenic (TG) mice

develop lymphomas with high penetrance [40]. This conditional transgene and knock-out

strategy bypasses developmental defects caused by dysregulated miR-17~92 expression during

the early stages of B cell development [50, 51]. We have now performed a comprehensive

molecular analysis of primary B cells expressing miR-17~92 miRNAs at three different levels

(TKO, WT and TG). In this cellular context, we found that target genes exhibit differential sen-

sitivity to miRNA suppression, and that only a small fraction of target genes are actually sup-

pressed by a given concentration of miRNA. Absolute quantification of miRNA and miRNA

binding site revealed there are more miRNA binding sites than miRNA molecules so that only

a small fraction of binding sites are occupied by miRNA molecules at a given time. Moreover,

miR-17~92 controls key target gene expression mainly through translational repression and

5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression.

These findings provide mechanistic insights into the functional specificity of miRNAs.

Results

miR-17~92 regulates functional target gene expression predominantly at

the protein level

We have previously identified 868 target genes harboring a total of 1139 miR-17~92 binding

sites conserved in human and mouse (termed miR-17~92 targets) by PAR-CLIP analysis of B

cells [40]. This list contains most of miR-17~92 target genes validated in previous studies. We

investigated the effect of transgenic miR-17~92 expression and complete deletion of the miR-

17~92 family on the mRNA levels of these target genes during B cell activation. We first gener-

ated a complete list of significantly expressed mRNAs and their absolute molecule numbers by

RNA-seq analysis of WT B cells spiked with a known quantity of ERCC control (ERCC-RNA-

seq, S2A and S3 Figs) [52]. This analysis showed that 8,000 (naïve B cells) to 11,000 (B cells

activated for 25.5h) genes are transcribed in B cells at greater than 0.5 copy per cell (termed

transcribed genes), with median copy numbers of 2.6 (naïve), 10 (13.5h), and 31 (25.5h) (Fig

1A and S1 Table). This general transcriptional upregulation is essential for activation-induced

cell growth and proliferation. Consistent with previous reports, the abundance of significantly

expressed mRNAs spans three to four orders of magnitude (S3A Fig), with 1 RPKM roughly

corresponding to 1 copy per cell (S3B Fig) [53, 54]. The transcribed genes included 85% (743
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Fig 1. The impact of miR-17~92 on target gene mRNA and protein levels. (A) The distribution of mRNA

abundance in naïve and activated B cells as determined by ERCC-RNA-seq analysis. Numbers in
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in naïve B cells) to 90% (780 in 25.5h activated B cells) of miR-17~92 target genes (termed

transcribed targets).

We next performed microarray analysis of TKO, WT and TG B cells before and after activa-

tion (S2B Fig), focusing on the transcribed targets (Fig 1B and 1C). The time frame used in

this study covered both the induction and termination phases of major signaling pathways

involved in B cell activation (S4A Fig). We confirmed that miR-17~92 expression in TG B

cells was 3 fold higher than in WT B cells, and was completely absent in TKO B cells (S4B and

S4C Fig). When miR-17~92 target genes were analyzed, neither transgenic miR-17~92 expres-

sion nor deletion of miR-17~92 family caused significant global changes in their mRNA levels

throughout B cell activation (Fig 1B and 1C and S2 Table). Analysis of target genes regulated

by individual members of the miR-17~92 cluster came to the same conclusion (S5A and S5B

Fig).

We next examined the effect of miR-17~92 on predicted target genes with the highest con-

text++ scores based on the most recent TargetScan 7.0 algorithm (S3 Table) [55]. We selected

128 top target genes for each miRNA subfamily in this cluster, and analyzed the mRNA levels

of these transcribed in B cells at greater than 0.5 copy per cell (S5C and S5D Fig). In a previous

study, transfection of chemically synthesized miRNA mimics into HCT116 cells led to an aver-

age reduction of 19% in the mRNA levels of target genes with the same context scores [55].

During B cell activation, there was indeed an inverse correlation between the expression levels

of miR-17~92 and these target gene mRNAs at all time points examined, but the average

change in target mRNA levels was only 3.7% in TG and 6.6% in TKO B cells (S5C and S5D

Fig). This rather modest global effect of miR-17~92 on the mRNA levels of its target genes is

consistent with the results from previous studies performing transcriptome analysis of T cells,

B lymphoma cells, and embryonic heart and tail bud with genetic ablation of either the whole

miR-17~92 cluster or its individual members [51, 56–58]. We speculate that these subtle

changes in target gene mRNA levels may not explain the dramatic phenotypes observed in TG

and TKO mice. Moreover, most of the small number of target genes that show greater than

1.4-fold changes in mRNA levels have not been previously implicated in lymphoma develop-

ment, cell survival and proliferation, and are unlikely to mediate the functions of miR-17~92

in B cells (S2 Table). Therefore, we investigated the possibility that miR-17~92 regulates the

expression of functionally relevant target genes mainly at the protein level.

We compiled a list of 63 miR-17~92 target genes, which were either validated in previous

studies [59–64], or are novel but functionally relevant to B cell lymphoma development or B cell

immune responses (S4 Table). Among these 63 targets, we were able to detect and quantify 47

by immunoblot, while the other 16 were discarded due to poor antibody quality (S6 Fig). Only

13 of the 47 target genes showed significant reduction in protein levels in TG B cells (S7A Fig),

including several inhibitors of the PI3K (Pten and Phlpp2) and NF-κB (Tnfaip3/A20, Itch,

Rnf11, Tax1bp1, Cyld, and Traf3) pathways previously implicated in miR-17~92-driven B cell

lymphoma development [40, 65], and five additional tumor suppressor genes (Hbp1, Stk38,
Arid4b, Rbbp8 and Ikzf1) [66–69]. Among the other 34 targets, there were no significant changes

in protein levels for 25 targets, time- or isoform-dependent changes for 3 targets, and increased

parenthesis represent the number of unique genes significantly transcribed (greater than 0.5 copy per cell). Y-

axis (counts) indicates the number of genes of a given abundance (X-axis, bin size = 0.2). (B,C) Microarray

analysis of TKO, WT, and TG B cells. Numbers in parenthesis indicate the numbers of transcribed genes and

transcribed miR-17~92 targets analyzed by microarray. (D) The protein and mRNA levels of 13 target genes

showing reduced protein levels in 25.5h activated TG B cells as determined by Immunoblot (n = 5). mRNA

levels were determined by qRT-PCR and microarray (n = 3). Target gene expression levels were normalized

to β-Actin, and their relative expression in WT naïve B cells was arbitrarily set as 1.0.

doi:10.1371/journal.pgen.1006623.g001
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protein levels for 6 targets in TG B cells (S7B and S7C Fig). We further examined the 13 target

genes that exhibited reduced protein levels in TG B cells, focusing on the relative contribution

of translational repression and mRNA degradation (Fig 1D). We validated the microarray data

by qRT-PCR. All of them are regulated either exclusively or significantly at the protein level,

exceptHbp1, which is regulated mainly at the mRNA level (Fig 1D). We also measured the pro-

tein levels of 16 genes that control translation initiation and elongation in a global manner and

completely lack miR-17~92 binding sites in their mRNAs [70]. As shown in S8 Fig, none of

them was significantly downregulated in TG B cells. Taken together, these results demonstrated

that the global impact of miR-17~92 on its target gene mRNA levels is subtle, that only a subset

of functionally relevant target genes are suppressed by transgenic miR-17~92 expression, that

miR-17~92-mediated suppression occurs predominantly at the protein level, and that this sup-

pression is not caused by an altered translational environment in TG B cells.

Target genes exhibit different sensitivity to changes in miR-17~92

expression

We next assessed the impact of miR-17~92 expression on target genes using ribosome profil-

ing (S2C Fig). This technology directly captures genome-wide maps of protein synthesis (the

translatome) by quantifying ribosome density on each mRNA with high resolution and depth,

but does not measure post-translational changes in gene expression [71, 72]. We quantified

ribosome footprints of 8,271 mRNAs (termed translated genes) in TKO, WT and TG B cells

after 25.5h of activation, corresponding to more than 70% of transcribed genes in these cells

(S5 Table). The ribosome footprint abundance spans six orders of magnitude (S9A Fig),

which is at least two orders of magnitude broader than that of mRNA abundance (S3A Fig), in

agreement with previous global gene expression analysis in mammalian cells [73]. We con-

firmed that ribosome footprint abundance changes highly correlated with protein abundance

changes as determined by immunoblot, therefore excluding significant contribution from

post-translational regulatory mechanisms such as miRNA-dependent nascent polypeptide

destruction (S9B–S9E Fig) [74].

Among the 780 transcribed miR-17~92 targets, 641 were detected by significant numbers

of ribosome footprints (termed translated targets) (S10A Fig). Notably, only 123 (19.2% of

translated targets) showed greater than 1.4-fold reduction in ribosome footprint abundance in

TG B cells (termed ribo-downregulated TG targets), while only 80 (12.5% of translated targets)

were de-repressed by 1.4 fold or more in TKO B cells (termed ribo-upregulated TKO targets)

(S10B and S10D Fig). When the median values of translation changes were compared with

these of mRNA changes, translation changes were dominant at the global level, in both TG

and TKO B cells (S10C and S10E Fig). Therefore, only a small fraction of target genes respond

to changes in miR-17~92 expression levels and miR-17~92 regulates its target gene expression

mainly at the translational level.

We compared the list of target genes de-repressed by miR-17~92 family miRNA deletion

(ribo-upregulated TKO targets) with those suppressed by transgenic miR-17~92 overexpres-

sion (ribo-downregulated TG targets). To our surprise, these two lists overlapped by only 8

genes, including four previously validated targets (CD69, Fbxw7, Egr2, and Caprin2) (Fig 2A)

[75–80]. When ribosome profiling data of TKO, WT, and TG B cells were analyzed together, it

became clear that ribo-upregulated TKO targets as a group showed significant reduction in

ribosome density when miR-17~92 family miRNA expression increased from almost zero in

TKO B cells to WT levels, but did not show further reduction when miRNA expression

increased from WT to TG levels (Fig 2B and S6 Table). In the same analysis, the ribosome

density of ribo-downregulated TG targets did not exhibit any significant changes between

Differential Translational Control of miRNA Targets
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Fig 2. Target genes exhibit different sensitivity to miR-17~92 expression level changes. (A) Minimal overlap between ribo-upregulated TKO targets

and ribo-downregulated TG targets. (B-D) The responses of ribosome density of ribo-upregulated TKO targets (B) and ribo-downregulated TG targets (C)

to three miR-17~92 expression levels. Translated genes lacking miR-17~92 binding sites were used as control (D). Colored bars indicate median values

and error bars represent interquartile ranges. Each dot represents relative ribosome density of a unique gene. Numbers indicate p-values. (E) Different

sensitivity of individual target genes to miR-17~92 expression level changes. Protein levels were determined by immunoblot and normalized to β-Actin (S7

and S11 Figs). Target gene protein levels in WT B cells were arbitrarily set as 1.0 (n�4). Vertical lines indicate error bars. (F) Relative mRNA levels of

individual target genes in TKO, WT and TG B cells as determined by microarray (n = 3). (G) A hypothetical curve depicting target gene protein level

change as a function of miRNA concentration. For a miRNA-target mRNA interaction in a given cellular context, there are a threshold level and a

saturation level of miRNA concentration. miRNA suppresses target gene expression in a dose-dependent manner when miRNA concentration is between

the threshold and saturation levels. Suppression does not occur when miRNA concentration is below the threshold level, while suppression reaches a

Differential Translational Control of miRNA Targets
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TKO and WT B cells, but showed significant reduction when miR-17~92 expression increased

from WT to TG levels (Fig 2C and S6 Table). Translated genes lacking miR-17~92 binding

sites were used as negative control, whose ribosome density showed no significant alterations

in B cells expressing miR-17~92 at three different levels (Fig 2D).

The differential responses of target genes to three different levels of miR-17~92 expression

in TKO, WT and TG B cells were confirmed by immunoblot analysis of individual target

genes (S11 Fig). We first examined TKO B cells for their expression of the 13 targets sup-

pressed in TG B cells (S7A Fig). Six of them (Phlpp2, Rnf11, Arid4b, Tax1bp1, Cyld and Pten)

showed significant de-repression in protein levels, but the degree of de-repression was rela-

tively small (1.2–1.5 fold), while the expression of the other seven was not altered (S11A and

S11B Fig). In contrast, among the 34 targets that were not suppressed in TG B cells (S7B and

S7C Fig), 10 showed significant increase in ribosome footprint abundance in TKO B cells and

belonged to ribo-upregulated TKO targets (Mink1, Phlda3, Fbxw7,Map3k3, Tmem127, Rap-
gef2,Dusp2, Rb1, Sos1 and Lats2) (S6 Table). This was further confirmed by immunoblot anal-

ysis of TKO B cells, which showed up to 3.3-fold increases in protein levels of these genes

(S11C and S11D Fig). When the relative protein levels of these 23 targets in TKO, WT, and

TG B cells were plotted together, it became obvious that different targets exhibit different sen-

sitivity to changes in miR-17~92 expression levels (Fig 2E). Ten targets (termed group 1 tar-

gets) were suppressed when miR-17~92 expression increased from TKO to WT levels, but

showed little suppression in TG B cells. Seven targets (termed group 3 targets) were suppressed

when miR-17~92 expression increased from WT to TG levels, but showed only marginal de-

repression in TKO B cells. The other six targets (termed group 2 targets) showed suppression

when miR-17~92 expression increased from WT to TG levels, and were de-repressed in TKO

B cells (Fig 2E). In contrast to the significant changes in their protein levels, the mRNA levels

for most of them remain the same in TKO, WT, and TG B cells, regardless of target groups

(Fig 2F). We next performed reporter assays in wild type B cells to investigate whether miR-

17~92 exerts its effect on these target genes through its cognate binding sites on target

mRNAs. As shown in S12 Fig, mutation of miR-17~92 binding sites led to increased activity

of a luciferase gene fused to target gene 3’UTRs, therefore demonstrating direct regulation of

these target genes by miR-17~92 in B cells.

Based on these results, we propose the following model of differential sensitivity of target

genes to miRNA suppression. For a miRNA-target mRNA interaction, there is a threshold

level and a saturation level of miRNA concentration (Fig 2G). Target gene expression is sup-

pressed by miRNA in a dose-dependent manner when miRNA concentration is between these

two levels. Below the threshold level, target gene expression cannot be suppressed by miRNA.

Above the saturation level, target gene expression cannot be further suppressed by increasing

concentration of miRNA. The maximal difference in target gene protein levels (termed ampli-

tude) is reached when miRNA concentration increases from the threshold level to the saturation

level. Different target genes exhibit different threshold level, saturation level, and amplitude in

their responses to the same miRNA (or miRNA cluster) (Fig 2H). The differences in threshold

and saturation levels underlie the different sensitivity of group 1, 2, 3 target genes to changes in

miR-17~92 expression levels, while the differences in amplitude explain the various degrees of

suppression or de-repression in TG and TKO B cells, respectively (Fig 2E).

maximal when miRNA concentration is above the saturation level. (H) The hypothetical response curves of group1, group2 and group3 target genes to

miR-17~92 expression level changes. Note that the difference in amplitude for individual target genes is not depicted in this graph.

doi:10.1371/journal.pgen.1006623.g002
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There are more miRNA binding sites than miRNA molecules

A prediction of this model is that not all miRNA binding sites are occupied by miRNA. There-

fore, it is likely that there are less miRNA molecules than miRNA binding sites in WT B cells.

To test this, we determined the copy numbers of miR-17~92 miRNA molecules and miR-

17~92 binding sites present in B cells during activation. The miRNA molecule numbers in WT

B cells were determined by quantitative Northern blot analysis of WT B cells and TKO B cells

spiked with graded amounts of chemically synthesized mature miR-17~92 family miRNAs

(Fig 3A–3C and S7 Table). By combining the mRNA molecule numbers determined by

ERCC-RNA-seq (S1A Fig) and conserved miR-17~92 binding sites determined by PAR-CLIP

[40], we calculated the number of conserved miR-17~92 binding sites in a B cell (Fig 3D and

S8 Table). Our calculation showed that each naïve B cell expresses 900–1,800 molecules of

miR-17, miR-19, and miR-92 subfamily miRNAs, and 80 molecules of miR-18 subfamily miR-

NAs (Fig 3B and 3C and S7 Table). The ratios between conserved miR-17~92 binding sites

and miRNA molecules range from 0.5 (miR-92 subfamily) to 4.6 (miR-18 subfamily) in naïve

B cells (Fig 3E). Upon activation, both miR-17~92 miRNAs and their target mRNAs are up-

regulated (Fig 3C and 3D), but the fold increase of the latter outpaces the former, thereby

increasing the ratios between conserved binding sites and miRNA molecules to 2.8 (miR-92

family) and 8.7 (miR-18 family) in 25.5h activated B cells (Fig 3E). Moreover, the PAR-CLIP

analysis identified 2.4-fold more non-conserved binding sites than conserved ones [40]. Previ-

ous studies showed that non-conserved binding sites can also be occupied by RISC [36]. Tak-

ing non-conserved binding sites into account, potential miR-17~92 binding sites outnumber

miRNA molecules even further, by as much as 20-fold. These estimations are consistent with

results from previous studies measuring the molecule numbers of miRNAs and their binding

site numbers on target mRNAs in hepatocytes and stem cells [81, 82]. Therefore, we conclude

that only a fraction of potential binding sites are occupied by miR-17~92 miRNAs at any given

time.

miRNAs reduce ribosome occupancy on a fraction of target mRNA

molecules

We next investigated how miRNAs regulate target gene translation using polysome profiling

(S2D Fig) [23, 83]. While ribosome profiling measures ribosome footprint abundance, which

is a sum of mRNA abundance and translation rate [72], polysome profiling directly measures

the number of ribosome associated with a mRNA molecule, independent of mRNA expression

level (S13 Fig) [84]. We first confirmed that miRNA gene mutations had little impact on the

global polysome profile (S14 Fig). We then investigated the distribution of individual miRNAs

and mRNAs in the sucrose gradient. miR-21, one of a few miRNAs enriched in monosome

fractions [32, 85], and highly abundant in B cells [86], was used as control. In contrast to miR-

21, miR-17~92 miRNAs were mainly associated with light polysomes (Fig 4A and 4B). This

suggests that miR-17~92 miRNAs are predominantly associated with target mRNAs undergo-

ing slow translation. Next we measured the distribution of target mRNAs in the sucrose gradi-

ent. While the β-Actin mRNA (Actb) was enriched in heavy polysome fractions, mRNAs of all

validated miR-17~92 target genes exhibited a bimodal distribution (Fig 4C). The first peak

was located at fractions 10–11, corresponding to mRNAs associated with 3–4 ribosomes, while

the second peak was located at fractions 14–16, corresponding to mRNAs associated with

more than 7 ribosomes (Fig 4C). Our quantification of miR-17~92 family miRNA molecules

and their potential binding sites on target mRNAs in B cells suggested that only a fraction of

target mRNA molecules are occupied by these miRNAs (Fig 3E). In addition, the distribution

of miR-17~92 family miRNAs largely overlapped with the first peak of their target mRNAs
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(Fig 4B and 4C). Taken together, these results suggest that target mRNAs are compartmental-

ized: target mRNAs in the first peak are associated with miR-17~92 family miRNAs and

undergo slow translation, while target mRNAs in the second peak are largely free of miR-

17~92 family miRNAs and undergo more active translation. Transgenic miR-17~92 expres-

sion shifted a fraction of target mRNAs from the second peak into the first peak (Fig 4C),

thereby reducing the overall translation rate and protein output (S7A Fig). Consistent with the

previous observations that miR-17~92 regulation ofHbp1 occurs mainly at the mRNA level

(Fig 1D and S9E Fig), the distribution of theHbp1mRNA in the sucrose gradient showed little

change (Fig 4C).

We conducted the same analyses for another well-studied lymphocyte-specific miRNA,

miR-155 [87], to see whether our observation is a general phenomenon. This included absolute

quantification of miR-155 and its binding sites in WT B cells and ribosome profiling analysis

of miR-155-deficient (155KO) B cells. Our results showed that there are 7-fold more conserved

miR-155 binding sites than miR-155 molecules (S15A Fig), that miR-155 was enriched in light

polysome fractions (S15B Fig), and that deletion of miR-155 caused a significant shift of

Fig 3. Quantification of miR-17~92 miRNAs and binding sites in primary B cells. (A,B) Quantitative Northern blot to determine miR-17~92 miRNA

copy numbers. Indicated amounts of synthetic miR-17, miR-18a, miR-19b and miR-92 were added to naïve and activated TKO B cells before RNA

extraction. The copy numbers of each miRNA subfamily were determined by Northern blot comparing WT B cells and TKO B cells with graded amounts of

spike-in synthetic miRNAs, using a mixture of probes corresponding to all members of a miRNA subfamily (also see S7 Table). Naïve B cells were

activated with LPS and IL-4 for indicated amounts of time (h, hour). (C-E) Summary of miR-17~92 family miRNA copy numbers (C), conserved miR-17~92

family miRNA binding sites (D) (also see S8 Table), and ratios of conserved miR-17~92 family miRNA binding sites to miRNAs (E) in naïve and activated B

cells.

doi:10.1371/journal.pgen.1006623.g003
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mRNAs of previously validated target genes (Aicda, Sfpi1, Jarid2 and Peli1) from light to heavy

polysomes (S15C Fig) [88–91].

To independently confirm these results, we took an un-biased approach to assess changes

of target mRNA distribution in the sucrose gradient (Poly-RNA-seq, S16A Fig). We per-

formed RNA-seq analysis of total RNA purified from polysome fractions 10–11 and 14–16,

corresponding to the first and second peaks of target mRNA distribution in the sucrose gradi-

ent, and calculated the relative abundance of target mRNA of interest in these two peaks in B

cells from mice of different genotypes. This analysis produced results consistent with polysome

profiling analysis, showing that miR-17~92 target mRNAs were enriched in fractions 10–11

while depleted in fractions 14–16 in TG B cells, and miR-155 target mRNAs were depleted in

fraction 10–11 while enriched in fractions 14–16 in miR-155 KO B cells (S16B and S16C Fig).

Taken together, our polysome profiling analysis of individual target gene mRNAs demon-

strated that miRNAs suppress target gene expression by reducing ribosome occupancy on a

fraction of target mRNA molecules.

Ribosome accumulation in the 5’UTR correlates with translational

repression

We sought to understand what determines target gene sensitivity to miRNA-mediated transla-

tional repression. While the contribution of seed types and other cis-factors has been exten-

sively investigated in the cellular contexts in which miRNAs predominantly act to decrease

target mRNA levels [8, 92], the factors that regulate miRNA-mediated translational repression

remain largely unknown. We systematically investigated the length of 5’UTR, coding region

(CDS) and 3’UTR, numbers of conserved miR-17~92 binding sites, enrichment of specific

seed types, and locations of binding sites. We found mRNAs with miR-17~92 binding sites

tend to have longer 5’UTR, CDS, and 3’UTR, but their length did not predict target gene sensi-

tivity. None of the other features correlates with target gene sensitivity globally (S17 Fig). As

our results showed that miR-17~92 suppresses target gene expression mainly through transla-

tional repression, we then focused on molecular features implicated in translational regulation

[93]. Ribosome footprint distribution analysis showed that there were ribosome footprints in

5’UTRs of miR-17~92 target genes, though their abundance was lower than ribosome foot-

print abundance in CDS (S18 Fig). A close examination revealed a significant accumulation of

ribosome footprints in 5’UTRs of ribo-upregulated TKO targets in WT B cells as compared to

TKO B cells (Fig 5A). This suggested that miR-17~92 represses translation initiation of these

target genes through their 5’UTRs (See discussion). Consistently, ribosome footprint abun-

dance in 5’UTRs of ribo-downregulated TG targets was increased when miR-17~92 expression

increased from WT to TG levels (Fig 5B), while other non-responsive target genes did not

show significant changes in ribosome footprint abundance in their 5’UTRs in TKO, WT or

TG B cells (Fig 5C). Moreover, local ribosome occupancy in 5’UTRs inversely correlated with

overall ribosome density, which is a good indicator of translation rate and protein output. This

suggests a role of ribosome hindrance in 5’UTR in suppressing translation initiation (Fig 5D).

We searched the 5’UTRs of ribo-upregulated TKO targets for potential enrichment of specific

sequence motifs but did not find any. Instead, we found high GC content in these 5’UTRs, and

Fig 4. Transgenic miR-17~92 expression shifts target mRNAs from heavy to light polysomes. (A) A representative

polysome profile of activated B cells, from two biological replicates for each genotype. Numbers inside the graph indicate

the number of ribosomes associated with mRNA. (B) Distribution of miR-21 and miR-17~92 in the sucrose gradient in WT B

cells. (C) Distribution of miR-17~92 target mRNAs in the sucrose gradient in WT and TG B cells. β-Actin mRNA (Actb) is

enriched in heavy polysome fractions and is used as an internal control.

doi:10.1371/journal.pgen.1006623.g004
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the position of the GC content peak correlated with the position of the ribosome footprint

peak (Fig 5A and 5E). The translation efficiency of mammalian mRNAs is highly sensitive to

GC content of 5’UTR, as high GC content often indicates the presence of secondary structures.

A previous study showed that an increase in 5’UTR GC content from 52% to 62% led to a

2-fold decrease in translation efficiency [94]. In line with this, recent bioinformatic analyses

implied that local structures in 5’UTRs contribute to efficient miRNA-mediated gene regula-

tion via translational repression [19, 95]. Moreover, our reporter assay experiments confirmed

Fig 5. Ribosome accumulation in 5’UTR correlates with translational repression of target genes. (A-C) Ribosome

accumulation in 5’UTRs of ribo-upregulated TKO targets in WT B cells (A), ribo-downregulated TG targets in TG B cells (B),

but not in 5’UTRs of other targets (C). Ribosome occupancy in 5’UTR was normalized to the overall ribosome footprint

abundance of the same gene [96]. The first nucleotide of start codon is set as position 0 (grey dashed line). (D) Inverse

correlation between ribosome occupancy in 5’UTR and the overall ribosome density on target mRNA in WT B cells. (E) High

GC content in 5’UTRs of ribo-upregulated TKO targets.

doi:10.1371/journal.pgen.1006623.g005
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direct regulation of group 1 targets by miR-17~92 in wild type B cells, but the degree of de-

repression in reporter activity caused by binding site mutation was often less than the degree

of de-repression in target gene protein levels in TKO B cells (Fig 2E and S12 Fig). This sug-

gests that cis-elements beyond miRNA binding sites in 3’UTRs contribute to the amplitude of

target gene regulation. Taken together, we surmised that ribosome hindrance mediated by sec-

ondary structures in 5’UTRs contribute to target gene sensitivity to miRNA suppression at the

translation initiation stage.

5’UTR regulates target gene sensitivity to miRNA suppression

We explored this idea further by focusing on CD69, the most sensitive target gene among the 24

validated by immunoblot (Fig 2E). CD69 has a relatively short 5’UTR (84nt), which harbors no

internal ribosome entry sites (IRES) or 18s rRNA binding regions that may enhance cap-indepen-

dent translation [97–99]. Instead, there are two sub-optimal start codons (AUC and GUG) and

a potential hairpin [100, 101] (Fig 6A and S19 Fig). Consistent with the global analysis of ribo-

upregulated TKO targets (Fig 5A), there was an accumulation of ribosome footprints in CD69
5’UTR in WT B cells (Fig 6B). The ribosome footprint is 31 nt long, corresponding to the width

of a single ribosome. Interestingly, the ribosome footprint overlaps with the two sub-optimal start

codons and the 5’ arm of the putative hairpin, while its abundance shows positive correlation with

miR-17~92 expression levels and negative correlation with CD69 expression (Figs 6B and 2E).

We hypothesized that the two sub-optimal start codons and the hairpin work together to slow

down translational initiation, thereby rendering CD69mRNA sensitive to translational repression.

Indeed, polysome profiling analysis confirmed that miR-17~92 represses CD69 expression at the

translation level (Fig 6C), and deletion of the miR-17~92 family miRNAs led to a 4.5-fold increase

in cell surface expression of CD69 in TKO B cells, with only marginal effect on its mRNA level

(Fig 6D).

We investigated the functional contribution of CD69 5’UTR to its regulation by miR-17~92

using a modified form of the dual luciferase reporter psiCheck-2 (Fig 7A) [102]. In this plas-

mid (termed psiCheck-2-pd), the firefly luciferase gene (Fluc) controlled by the human thymi-

dine kinase (TK) gene promoter is used as an internal reference for transfection efficiency. We

placed the CD69 3’UTR downstream of the renilla luciferase gene (hRluc). The wild type CD69
3’UTR (wt) contains three binding sites for miR-17~92 miRNAs (one for miR-17 subfamily

and two for miR-92 subfamily). We introduced 3nt mutations into these binding sites to abol-

ish their interactions with miR-17~92 miRNAs to generate a mutated form of CD69 3’UTR

(mut). A comparison of the renilla/firefly luciferase activity ratio (hRluc/Fluc) between psi-

Check-2-pd containing wt and mut CD69 3’UTR should reveal the sensitivity of the renilla

luciferase mRNA to miR-17~92-mediated suppression.

To examine the role of CD69 5’UTR in regulating translation rate and sensitivity to miRNA

suppression, we inserted CD69 5’UTR between the transcription start site of (TSS) of the SV40

promoter and the Kozak sequence of the renilla luciferase gene (Fig 7A). The β-Actin 5’UTR

contains no obvious secondary structures, exhibited minimal accumulation of ribosome foot-

prints in TKO, WT, and TG B cells (Fig 6B), and was used as a control. We performed dual-

luciferase reporter assays in in vitro activated WT B cells to closely imitate the experimental

conditions of ribosome profiling and polysome profiling (Fig 7B). As expected, the firefly

luciferase activity remained as a constant (Fig 7C). The renilla luciferase reporter containing

CD69 5’UTR showed a 4.4 fold de-repression when miR-17~92 binding sites in its 3’UTR were

mutated, very similar to the fold de-repression of the endogenous CD69 gene in TKO B cells

(Figs 6D and 7C). Replacing CD69 5’UTR with β-Actin 5’UTR significantly reduced the sensi-

tivity of the renilla luciferase reporter gene to miR-17~92 suppression (Fig 7C). qRT-PCR

Differential Translational Control of miRNA Targets

PLOS Genetics | DOI:10.1371/journal.pgen.1006623 February 27, 2017 15 / 38



analysis of renilla and firefly luciferase mRNAs showed that the ratio between these two

mRNAs was not affected by changes in 5’UTR or 3’UTR, excluding any substantial contribu-

tions from mRNA changes (Fig 7D). We next performed similar reporter assays in TG, WT,

and TKO B cells, using the psiCheck-2-pd reporter with wild type CD69 5’UTR and 3’UTR.

Consistent with CD69 expression in B cells of these three genotypes (Fig 2E), the expression of

renilla luciferase was more sensitive to miR-17~92 depletion than overexpression (S20A Fig).

Fig 6. Secondary structures in 5’UTR correlate with translational repression of target genes. (A) A hairpin structure in the CD69

5’UTR. (B) Ribosome accumulation in CD69 5’UTR correlated with miR-17~92 family miRNA expression levels. Note that the hairpin

structure co-localizes with the ribosome footprint peak in the CD69 5’UTR. Actb was used as control. (C) Deletion of the miR-17~92

family miRNAs shifted CD69 mRNA from light to heavy polysomes. (D) Increased CD69 expression in TKO B cells was mainly due to

translation de-repression. Experiments in B-D were performed with 25.5h activated B cells.

doi:10.1371/journal.pgen.1006623.g006
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To understand the functional contribution of the putative hairpin and two sub-optimal

start codons in CD69 5’UTR to the sensitivity of CD69mRNA to miR-17~92 suppression, we

deleted the left arm of the hairpin (ΔHP) or mutated these two sub-optimal start codons (Mut-

uORF), and performed reporter assays in WT B cells. Deletion of the left arm of the hairpin

reduced the sensitivity of renilla luciferase to miR-17~92 suppression, but no significant effect

was observed for mutating the two sub-optimal start codons (S20B Fig). Taken together, these

Fig 7. Regulation of target gene sensitivity to miRNA suppression by 5’UTR. (A) An engineered psiCheck2 vector (psiCheck-2-pd) for investigating

the effect of 5’UTR and 3’UTR on reporter gene expression. TSS, transcription start site. (B) Experimental scheme of reporter assays in primary B cells.

FACS plots show electroporation efficiency using a GFP-expressing plasmid. (C,D) Dual luciferase reporter assay to determine the effect of 5’UTR and

3’UTR on the reporter gene protein (luciferase activity) (C) and mRNA (qRT-PCR) levels (D). Closed and open circles indicate reporters with wild-type (wt)

and mutated (mut) CD69 3’UTR, respectively. A comparison of renilla luciferase activity normalized to firefly luciferase activity (hRluc/Fluc) between

psiCheck-2-pd containing mut and wt CD69 3’UTR reveals the sensitivity of the renilla luciferase mRNA (hRluc) to miR-17~92-mediated suppression.

Results of normalized hRlcu/Fluc (n = 10) are from three independent experiments. Each experiment contained 3–4 replicates.

doi:10.1371/journal.pgen.1006623.g007
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results demonstrate that structural components in 5’UTR play an important role in regulating

the sensitivity of target mRNA to translational repression by miRNAs.

Discussion

Target gene sensitivity and the key target gene model

This study provides mechanistic insights into the functional specificity of miRNAs and the key

target gene model, which postulates that miRNAs exert their specific functions by suppressing

the expression of a small number of key target genes [44]. Our findings, together with previ-

ously published studies [41–43], suggest that key target genes emerge from a pool of hundreds

of target genes viamultiple mechanisms. That is, there are mechanisms that regulate miRNA

binding to target mRNAs, the consequences of miRNA binding, and cellular responses to

reduced target gene protein levels (S21 Fig).

First, there are more binding sites than miRNA molecules and only a fraction of binding

sites are occupied by miRNA-containing RISC complexes at any given time. Target mRNAs

often associate with RNA-binding proteins (RBPs) and exhibit certain secondary and tertiary

structures, which interfere with the recruitment of RISC and result in differential accessibility

and affinity to miRNA [30, 103–106]. When hundreds of target mRNA species compete for a

limited amount of miRNA molecules, binding sites with easy accessibility and high affinity are

preferentially occupied. Increasing the cellular concentration of miRNA molecules leads to sat-

uration of the most favorable binding sites and occupation of additional binding sites with

lower accessibility and affinity. Consistent with our view, a previous study demonstrated that

target accessibility is a critical determinant of miRNA-mediated translational repression in the

cellular context where miRNAs do not cause target mRNA degradation [107]. Therefore, the

accessibility and affinity of binding sites, as well as the presence of competing target mRNA

species, establish the threshold and saturation levels of miRNA for a given target mRNA (Fig

2G).

Second, miRNA binding does not necessarily warrant functional consequence. There are

mechanisms that determine whether miRNA binding leads to changes in target gene protein

levels. This study shows that 5’UTR is a part of the mechanisms regulating target gene sensitiv-

ity to miRNA suppression at the translation initiation stage.

Third, there are mechanisms that regulate cellular responses to changes in target gene pro-

tein levels. We speculate that changes in the protein levels of many target genes brought about

by a miRNA are functionally inconsequential, as shown by many examples of genetic mutant

mice with no observable phenotypes [108]. Nevertheless, there are a small number of target

genes that are functionally sensitive to reduced protein levels in a given cellular context, as doc-

umented by the pathologies arising from haploinsufficiency [109–111]. These dosage sensitive

target genes likely serve as critical mediators of miRNA functions and are the key target genes

in that particular cellular context (S21 Fig).

A quantitative perspective of the key target gene model

How many key targets are there to mediate the function of a miRNA in a given cellular con-

text? Our global analysis of miR-17~92 target genes in primary B cells provide insights into

this question. Among the 868 experimentally identified targets with conserved miR-17~92

binding sites [40], 780 are significantly transcribed and 641 are significantly translated. When

the cutoff is set at 1.4 fold change in ribosome footprint abundance, only 80 of them are sup-

pressed by the WT levels of miR-17~92 and qualify as responsive targets, amounting to 9% of

experimentally identified targets. As discussed above, it is likely that only a fraction of these 80

target genes are relevant for the function of miR-17~92 in B cells. Therefore, the number of
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key target genes is further reduced to a few percent of the 868 targets. For miRNA genes

encoding a single mature miRNA, which often has 100–200 putative target genes, this would

translate into only a few key targets for a given cellular context (S21 Fig). Consistent with this

estimation, recent genetic studies showed that mutation of miRNA binding sites in a single tar-

get gene phenocopied defects caused by miRNA deficiency in a cell context-dependent man-

ner, demonstrating that individual miRNA-target mRNA interactions can play critical roles in

mediating the function of miRNAs in animals [41–43].

5’UTR contributes to translational repression by miRNAs

For most mRNAs, translation initiation occurs by a cap-dependent scanning mechanism,

which requires the binding of the trimeric complex eIF4F (comprised of eIF4E, eIF4A, and

eIF4G) to the m7G cap structure, followed by recruitment of the preinitiation complex (PIC)

and scanning of PIC to the first AUG codon positioned within a good context [112] (S22A

Fig). The secondary structures in their 5’UTRs play important roles in regulating translation

initiation [113]. Scanning through these secondary structures require additional factors and

ATP, and this requirement depends on the position and stability of secondary structures [114,

115]. RNA helicases such as eIF4A are required for unwinding these secondary structures and

for facilitating the scanning of PIC [116].

Recent studies suggested that miRNAs require eIF4As to regulate translation of their target

mRNAs [19, 117, 118]. While two studies demonstrated miRNAs repress target gene transla-

tion by facilitating dissociation of eIF4As from target mRNAs [117, 118], a third one proposed

they repress target mRNAs by recruiting eIF4AII [19]. Even though the detailed molecular

mechanisms by which eIF4As mediate miRNA function are contradictory in these reports, the

requirement of eIF4As in miRNA function during PIC scanning is consistent with other stud-

ies that utilized reporter constructs whose translational initiation bypasses the PIC scanning

process. These reporter genes were immune to miRNA-mediated repression, suggesting that

miRNA repression takes place during PIC scanning [23, 119]. It should also be noted that

other studies demonstrated that miRISC and the CCR4-NOT complex can silence target

mRNA in an eIF4A-independent manner, suggesting the eIF4A dependency can be context-

specific [120].

Our study suggests that the most sensitive targets (such as ribo-upregulated TKO targets)

contain more structured 5’UTRs. In the absence of miR-17~92 family miRNAs (in TKO B

cells), eIF4As or other RNA helicases facilitate the unwinding of these secondary structures,

allowing PIC to scan through and to initiate translation. In the presence of WT levels of miR-

17~92 family miRNAs, RISC complexes are recruited to these target mRNAs through their

cognate binding sites in the 3’UTRs, and dissociate RNA helicases from the 5’UTRs. This

results in stabilization of secondary structures and accumulation of PIC (and ribosome foot-

prints in ribosome profiling experiments) in the 5’UTRs, repression of translation initiation,

and a reduction in protein output (S22B Fig). When miR-17~92 expression is further

increased to the TG levels, less sensitive targets (such as ribo-downregulated TG targets) that

do not respond to WT levels of miR-17~92 become responsive at this higher level. Our

reporter assays demonstrate that specific structural components in 5’UTR indeed regulate

miRNA-mediated translational repression, but the detailed molecular interactions between

miRNA, 5’UTR, and the translation initiation machinery warrant future investigation.

Functional implications of differential target gene sensitivity

Our findings also provide a straightforward explanation for the recent observations that dele-

tion and overexpression of the same miRNA gene can lead to unrelated phenotypes [121, 122].
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As a representative example, early studies have shown that overexpression of members of the

miR-34 family miRNAs has potent tumor suppressor function downstream of p53 [121]. How-

ever, mice carrying target deletion of all miR-34 genes display normal p53 responses to a vari-

ety of cellular insults, including ionizing radiation and oncogenic stress [123]. Another study

reported that mice deficient of all the six miRNAs in the miR-34/449 family exhibited postnatal

mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clear-

ance, resulting from a significant decrease in cilia length and number [122]. Our study suggests

that different functions of miR-34 family miRNAs in these overexpression and deletion studies

can be explained by different sensitivity of target genes to miR-34 suppression. When these

miRNAs are expressed at WT levels, target genes regulating cilia assembly (i.e. Cp110) are

among the most sensitive and their expression is suppressed. Deletion of all miR-34/449 family

genes results in de-repression of these genes and impaired cilia assembly [122]. When miR-34

family miRNAs are overexpressed at levels much higher than WT levels, another group of tar-

get genes, which are less sensitive and only respond to higher than WT levels of miR-34, are

suppressed. This group contains positive regulators of cell cycle and DNA-damage responses

(i.e. Cdk4, Ccne2, andMet), whose suppression bestows anti-tumor functions to miR-34 family

miRNAs [121]. Therefore, different sensitivity of these two groups of target genes, one regulat-

ing cilia assembly and the other regulating cell cycle and DNA damage response, to miR-34

suppression underlies the different phenotypic consequences brought about by overexpression

and deletion of this family of miRNAs.

miRNA tips the balance between translationally active and inactive

target mRNAs

A recent study investigating real-time translation of single mRNA molecules in live mammalian

cells revealed surprising heterogeneity in the translation of individual mRNAs from the same

gene within the same cell, including rapid and reversible transitions between translationally

active and inactive states [124]. The same study showed that the long form 5’UTR of the Emi1
gene, when placed upstream of a GFP reporter gene, caused a 40-fold reduction in the GFP pro-

tein level. While a great majority of GFP mRNAs containing the long form 5’UTR of the Emi1
gene were strongly translationally repressed, a small subset of these mRNAs still escaped repres-

sion and underwent robust translation. These results suggest that cis-elements in the long form

5’UTR of the Emi1 gene drastically shifted, but did not completely shut off, the GFP mRNAs

from translationally active states into inactive states. This is quite similar to our polysome profil-

ing analysis of miR-17~92 target genes in WT and TG B cells, which showed that transgenic

miR-17~92 expression shifted only a fraction of its target mRNAs from rapid translation states

into slow translation states. A previous study investigating the effect of endogenous Let-7

miRNA on a reporter target gene in HeLa cells came to similar conclusions [23]. The authors

further proposed that the translationally repressed reporter mRNAs, as well as Let-7 miRNAs,

are localized in processing bodies, a subcellular structure for mRNA storage or degradation.

Considering our study together with these other studies, it is likely that miRNAs repress target

gene expression by tipping the dynamic balance between translationally active and inactive

states.

Translational repression versus target mRNA degradation

Similar to the heterogeneity in the translation of individual mRNAs from the same gene within

the same cell, emerging evidence suggests that mechanisms of miRNA action are also hetero-

geneous. A recent survey of studies investigating miRNA effect on functionally important tar-

get genes in 77 strains of miRNA mutant mice found that miRNA-target interaction can lead
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to translational repression, target mRNA degradation, or both [2]. It remains unclear what

determines the relative contribution of these two modes of miRNA action to target gene sup-

pression. Previous studies suggest that this could be both cellular context- and miRNA-depen-

dent [1, 2, 125]. In this study, we showed that most functional target genes of miR-17~92 are

suppressed at the translational level, but some target genes are suppressed by mRNA degrada-

tion, either completely or partially. This target gene-dependency became more clear when we

applied the same transcriptome and translatome analyses to miR-155-deficient B cells. Our

unpublished results showed that in the same cellular context, miR-155 suppresses its target

gene expression by translational repression, mRNA degradation, or both, and this is

completely target-gene dependent. Future investigation is warranted to identify cellular fac-

tors, as well as cis-elements in both miRNAs and target mRNAs, that determine the molecular

consequence of individual miRNA-target mRNA interactions.

In summary, we conducted an integrated analysis of miR-17~92 family miRNAs, their tar-

get genes, and the functional consequences of these miRNA-target gene interactions in pri-

mary B cells expressing miR-17~92 family miRNAs at three different physiological levels. We

present evidence showing that there are more binding sites than miRNA molecules, that target

genes exhibit differential sensitivity to miRNA suppression, and that only a small fraction of

target genes are actually suppressed by a given concentration of miRNA. Transgenic expres-

sion and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-

17~92 regulates functional target gene expression mainly through translational repression in

activated B cells and 5’UTR plays an important role in regulating target gene sensitivity to

miRNA suppression. These findings provide mechanistic insights into the key target gene

model in which the specific function of a miRNA is achieved by regulating a small number of

key target genes.

Materials and methods

Ethics statement

All mice were used in accordance with guidelines from the Institutional Animal Care and Use

Committees of The Scripps Research Institute and Xiamen University.

Mice

The generation of miR-17~92 Tg (Jax stock 008517), miR-17~92fl/fl (Jax stock 008458), miR-

106a~363-/- mice (Jax stock 008461), miR-106b~25-/- mice (Jax stock 008460), CD19-Cre (Jax

stock 006785) was previously reported [49, 126, 127]. MiR-17~92 Tg mice were crossed with

CD19-Cre mice to generate miR-17~92 Tg/Tg;CD19Cre (TG) mice [40]. miR-17~92fl/fl mice

were crossed with miR-106a~363-/- mice, miR-106b~25-/- mice and CD19-Cre mice to gener-

ate miR-17~92fl/fl;miR-106a~363-/-;miR-106b~25-/-;CD19-Cre (TKO) mice. miR-155-/- were

obtained from The Jackson Laboratory (Jax stock 007745) [87].

Purification of primary B cells and in vitro stimulation

Spleen and peripheral lymph nodes were collected from 2~3 month old TG, TKO and wild

type (WT) mice. WT and TG B cells were purified by depleting cells positive for AA4.1

(CD93), CD43 and CD5, while TKO B cells were purified by depleting cells positive for AA4.1

(CD93), CD43 and CD9 using MACS LD columns (Miltenyi Biotec) following manufacturer’s

instructions. Purified B cells were cultured at a density of 5x106 cells/ml for indicated amounts

of time in B cell medium plus LPS (25μg/ml) and IL-4 (5ng/ml) in 37˚C incubator, unless indi-

cated otherwise. At the time of harvest, live cells were purified by Ficoll (GE Healthcare, 17-
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1440-02) to achieve a purity of>90% live cells and>98% B220+CD19+ B cells before further

analysis. B cell medium was made of DMEM GlutaMAX (Gibco 10569) plus 10%v/v FCS, 1x

non-essential amino acids (Corning, 25-025-CI), 10mM HEPES (Gibco, 15630), 50μM β-ME

(Gibco, 21985), 1x Penn/Strep.

Statistics

P values were determined by using two-tailed Student’s t-test. Statistical significance is dis-

played as �P < 0.05, ��P< 0.01 and ���P < 0.001.

Ribosome profiling, ERCC-RNA-seq, polysome profiling and microarray

Detailed procedures and analysis methods are present as a supplementary material. Please see

“S1 Methods”

Accession numbers

Microarray, RNA-Seq, and ribosome profiling data are available at NCBI Gene Expression

Omnibus through the accession numbers GSE56379, GSE83734, and GSE83684.

Supporting information

S1 Fig. Genomic organization of the miR-17~92 family miRNAs in mice. Colors denote

miRNA subfamilies. Members in each subfamily share the same seed region. Chr, chromo-

some.

(PDF)

S2 Fig. Experimental approaches used in this study to investigate B cell transcriptome and

translatome. (A) ERCC-RNA-seq to determine mRNA copy numbers. Pre-determined

amounts of ERCC control RNA [52] and WT B cells were mixed together before RNA extrac-

tion and RNA-seq analysis. Normalized read counts (RPKM) of each mRNA species were com-

pared to those of ERCC control RNA to calculate their copy numbers per cell. (B) Microarray

to determine the impact of miR-17~92 on target transcriptome. Genes were analyzed only

when they are significantly expressed (greater that 0.5 copy per cell) based on ERCC-RNA-seq

results. (C) Schematic representation of ribosome profiling analysis of the translatome of acti-

vated B cells. (D) Schematic representation of polysome profiling analysis of activated B cells.

The cytosolic compartment of activated B cells was separated into 20 fractions on a sucrose gra-

dient (15%~45%), and the distribution of miRNAs and target mRNAs in these fractions was

determined by qRT-PCR. Numbers in the graph indicate that number of ribosomes associated

with mRNA. (C-D) B cells were activated for 25.5h. Fr, fraction number. CHX, cycloheximide.

(PDF)

S3 Fig. Absolute quantification of mRNA abundance in B cells. (A-B) WT B cells were stim-

ulated with LPS and IL-4 for indicated amounts of time (Naïve, 13.5h and 25.5h), spiked in

with pre-determined amounts of ERCC control RNAs, and analyzed by RNA-seq. RPKM val-

ues of biological replicates were plotted against each other to show the high reproducibility of

datasets (A). Each dot represents a unique gene. RPKM values of ERCC control RNAs were

plotted against their copy numbers per cells (B). Blue lines indicate the linear regression, while

gray areas represent the range of standard error. Note that the abundance of ERCC RNAs

spans six orders of magnitude and is sufficient to cover the dynamic range of all endogenous

mRNAs.

(PDF)
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S4 Fig. miR-17~92 expression levels and activities of major signaling pathways during B

cell activation. (A) The induction and termination of the MAP kinase (indicated by pErk) and

PI3K (indicated by pS6) pathways during B cell activation by 2μg/ml anti-IgM. (B,C) Northern

blot analysis of miR-17~92 family miRNA expression in WT, TG, and TKO B cells. Purified B

cells were stimulated with LPS and IL-4 for indicated amounts of time.

(PDF)

S5 Fig. Microarray analysis of TKO, WT and TG B cells with target genes subsetted accord-

ing to individual subfamily of miR-17~92. (A-B) PAR-CLIP identified miR-17~92 targets

[40] were subsetted according to individual subfamily of miR-17~92. Results from different

time points of activation of TG vs WT (A) and TKO vs WT (B) B cells were presented. Only

significantly transcribed genes were analyzed. (C-D) Investigation of the top predicted target

genes based on context++ scores from TargetScan 7.0 [55]. 128 top target genes were selected

for each miRNA miR-17~92 subfamily, and the ones transcribed at greater than 0.5 copy per

cell were analyzed. Numbers in parenthesis indicate the numbers of genes analyzed.

(PDF)

S6 Fig. A summary of immunoblot analysis of miR-17~92 target genes in TG B cells.

Among the 63 targets examined, quality immunoblots were obtained and quantified for 47 tar-

gets, while the other 16 were discarded due to poor antibody quality. Among the 47 targets

quantified, only 13 showed reduced protein levels in TG B cells (S7A Fig), while the other 34

targets were either up-regulated or showed no change (S7B and S7C Fig). Notably, the major-

ity of targets investigated has been previously validated as direct miR-17~92 targets in various

cellular contexts (S4 Table). The 13 downregulated targets include negative regulators of the

PI3K and NF-κB pathways, as well as five additional tumor suppressor genes. This is consistent

with the previous observation that TG mice spontaneously developed B cell lymphoma with

high penetrance [40].

(PDF)

S7 Fig. Immunoblot analysis of 47 target gene protein levels in TG B cells. (A) The protein

levels of 13 target genes showing reduced protein levels in TG B cells as determined by immu-

noblot. (B,C) The impact of transgenic miR-17~92 expression on the protein levels of the

other 34 target genes. 28 targets showed little or time- and isoform dependent changes in their

protein levels (B), while 6 targets were up-regulated in TG B cells (c). Note that Bcl2l11 (Bim)

and E2f3were suppressed in naïve but not activated B cells [40]. Two Fbxw7 isoforms were

detected and they were differentially regulated. Cell surface expression of Tgfbr2was quantified

by FACS. Target gene protein levels were normalized to β-Actin, and their protein level in WT

naïve B cells was arbitrarily set as 1.0. n.s., non-specific band.

(PDF)

S8 Fig. Immunoblot analysis of 16 translation regulators that lack miR-17~92 binding

sites. (A) Immunoblot analysis of 16 translation regulators in TG B cells. β-Actin was used as

an internal control. (B) Quantification of protein and mRNA levels as measured by immuno-

blot and microarray, respectively.

(PDF)

S9 Fig. Changes in ribosome footprint abundance highly correlates with changes in protein

abundance. (A) Scatter plots evaluating the reproducibility of biological replicates of ribosome

profiling. (B,C) Changes in protein expression of 47 miR-17~92 targets as determined by

immunoblot (S7 Fig) were compared to changes in ribosome footprint abundance (B) and

mRNA abundance (C). Note that changes in ribosome footprint abundance correlate with
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changes in protein abundance significantly better than with changes in mRNA abundance.

Targets with significant protein reduction in TG B cells (13 targets from S7A Fig) were plotted

as green dots, while other targets with no change or up-regulated in TG B cells (34 targets

from S7B and S7C Fig) were plotted as open circles. The 6 targets whose protein levels were

up-regulated in TG B cells (S7C Fig) were marked with gene names. (D-E) Changes in ribo-

some footprint abundance, protein and mRNA of the 13 targets suppressed in TG B cells

(green dots in panel B) were further examined by ribosome profiling, immunoblot, and micro-

array. The relative contribution of translational repression and mRNA degradation to miR-

17~92 regulation of these 13 target genes was approximately 4:1. CD19 and Actb were used as

positive and negative control, respectively. Linear regression (red lines) is constrained to inter-

sect the negative control Actb. Slope of the linear regression is indicated in figures. TG mice

are heterozygous for CD19 and TG B cells express reduced levels of CD19 mRNA and protein

[127].

(PDF)

S10 Fig. Global analysis of the impact of miR-17~92 on target gene expression. (A) Tran-

scribed and translated targets were determined by ERCC-RNA-seq and ribosome profiling

analysis of 25.5h activated B cells. (B) Only a fraction of translated miR-17~92 targets were

suppressed by transgenic miR-17~92 expression by 1.4 fold or more, as determined by changes

in ribosome footprint abundance (termed ribo-downregulated TG targets). (C) The global

impact of transgenic miR-17~92 expression on the mRNA levels and translation rates of trans-

lated targets. Dashed gray lines indicate median value of all translated targets, while red lines

indicate median value of ribo-downregulated TG targets. (D) Only a fraction of translated

miR-17~92 targets were suppressed by WT levels of miR-17~92 family miRNAs by 1.4 fold or

more, as determined by changes in ribosome footprint abundance (termed ribo-upregulated

TKO targets). (E) The global impact of miR-17~92 family miRNA deletion on mRNA levels

and translation rates of translated targets. Dashed-gray lines indicate median value of all trans-

lated targets, while red lines indicate median value of ribo-upregulated TKO targets.

(PDF)

S11 Fig. The impact of miR-17~92 family miRNA deletion on the target gene protein

levels. (A) Immunoblot analysis of 13 targets suppressed in TG B cells (S7A Fig). (B) Quantifi-

cation of the protein and mRNA levels of the 13 targets suppressed in TG B cells. (C) Immuno-

blot analysis of 10 targets de-repressed in TKO B cells. (D) Quantification of the protein and

mRNA levels of the 10 targets de-repressed in TKO B cells. A summary is presented in Fig 2E

and 2F. β-Actin was used as an internal control.

(PDF)

S12 Fig. Direct regulation of group 1 target genes by miR-17~92 in wild type B cells. (A)

Experimental scheme of reporter assays in primary B cells. (B) psiCheck-2 reporters with wild

type 3’UTR or miR-17~92 binding site mutated 3’UTR were transfected into wild type B cells

by electroporation and luciferase assay was performed as described in Fig 7B. Luciferase activ-

ity was normalized to psiCheck-2 reporters with wild type 3’UTR. When multiple miR-17~92

binding sites (BS) are present in a target gene 3’UTR and are far away from each other, multi-

ple reporter constructs were generated, with each construct harboring one binding site. These

reporter constructs were tested separately.

(PDF)

S13 Fig. Polysome profiling directly captures changes in translational rate. A summary of

currently available methods to assess the relative contribution of translational repression and

mRNA degradation to miRNA regulation of target gene expression. The overall effect of
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miRNA on target gene expression can be divided into mRNA degradation (black arrow) and

translational repression (red arrow). While the contribution of translational repression can be

estimated by subtracting mRNA changes from protein changes, polysome profiling directly

captures translational changes independent of mRNA changes.

(PDF)

S14 Fig. Polysome profiles of WT and miRNA mutant B cells. Polysome profiles of activated

B cells of indicated genotypes. Note that the overall A254 profiles of TKO, WT, TG, and miR-

155 KO B cells were almost identical.

(PDF)

S15 Fig. Absolute quantification of miR-155 and its binding sites, and polysome profiling

analysis of miR-155 KO B cells. (A) Quantitative Northern blot to determine miR-155 copy

number in 25.5h activated B cells. A summary of miR-155 copy number and the number of

conserved miR-155 binding sites. Note that there are 7-fold more miR-155 binding sites than

miR-155 molecules. The miR-155 binding sites were defined from previous PAR-CLIP analy-

sis [128]. (B) Distribution of miR-155 and miR-21 in the sucrose gradient. Note that miR-21

was enriched in monosomes [32, 85], while miR-155 was enriched in light polysomes. (C) Dis-

tribution of previously validated miR-155 (AID, PU.1, Jarid2 and Peli1) and miR-17~92 target

mRNAs in the sucrose gradient [88–91]. Deletion of miR-155 shifted miR-155 target mRNAs

from fractions 10–11 to fractions 14–16, but had almost no significant effect on the distribu-

tion Actb and miR-17~92 target mRNAs.

(PDF)

S16 Fig. Poly-RNA-seq analysis miR-17~92 targets in TG B cells and miR-155 targets in

miR-155 KO B cells (A) Schematic representation of poly-RNA-seq analysis of activated B

cells. Experimental approach is equivalent to that of polysome profiling, but collected specific

fractions (Fr.10-11 and Fr. 14–16) for downstream RNA-seq analysis. (B-C) Consistent with

polysome profiling results (Fig 4 and S15 Fig), miR-17~92 target mRNAs were enriched in

fractions 10–11 in TG B cells, and miR-155 target mRNA were enriched in fractions 14–16 in

miR-155 KO B cells.

(PDF)

S17 Fig. Contribution of UTR length, number of binding sites, and seed type to target gene

sensitivity to miRNA suppression. (A) The distribution of length of 5’UTR, CDS, and 3’UTR

among miR-17~92 targets. (B) Location of miRNA binding sites in miR-17~92 targets. (C)

Average number of conserved miR-17~92 binding sites in miR-17~92 targets. (D) The distri-

bution of seed types among miR-17~92 binding sites. The conserved miR-17~92 binding sites

were identified by PAR-CLIP analysis of human B cells [40].

(PDF)

S18 Fig. Ribosome footprint distribution in translated miR-17~92 targets in TKO, WT,

and TG B cells. Color lines depict relative ribosome occupancy in B cells of indicated geno-

types. Grey shade represents the distribution of mapped reads from RNA-seq analysis of WT B

cells. The first and last nucleotides of CDS are set as position 0 for 5’UTR and 3’UTR, respec-

tively.

(PDF)

S19 Fig. Molecular features of the CD69 5’UTR. The sequence of CD69 5’UTR and its molec-

ular features. The locations of ribosome footprint, sub-optimal start codons, and the potential

hairpin are indicated.

(PDF)
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S20 Fig. Molecular dissection of cis-elements of CD69 5’UTR in determining its sensitivity

to suppression by miR-17~92. (A) A psiCheck-2-pd reporter with wt CD69 5’UTR and wt

CD69 3’UTR was transfected into primary B cells expressing miR-17~92 at three different lev-

els. Consistent with the endogenous CD69 gene (Fig 2E), the reporter gene was more sensitive

to miR-17~92 depletion than to transgenic miR-17~92 expression. Results from both lucifer-

ase assay (protein) and qRT-PCR (mRNA) were shown. (B) Molecular dissection of cis-ele-

ments of CD69 5’UTR. Experiments were performed as described in Fig 7B. Luciferase

activity was normalized to wt 3’UTR constructs. ΔHP, the left arm of the putative hairpin was

deleted. Mut-uORF, two sub-optimal start codons were mutated.

(PDF)

S21 Fig. The key target gene model. Key target genes emerge from a pool of hundreds of tar-

get genes via multiple mechanisms. There are mechanisms that regulate miRNA binding to

target mRNAs, the consequences of miRNA binding, and cellular responses to reduced target

gene protein levels. First, there are more binding sites than miRNA molecules and only a frac-

tion of binding sites are occupied by miRNA-containing RISC complexes at any given time.

Which binding sites are occupied by miRNA is determined by accessibility and affinity of

binding sites to miRNA, as well as cellular concentrations of target mRNAs and miRNA. Sec-

ond, miRNA binding does not necessarily warrant functional consequence. There are mecha-

nisms that determine whether miRNA binding leads to changes in target gene protein levels

and, if so, the amplitude of changes. 5’UTR is a part of the mechanisms regulating target gene

sensitivity to miRNA suppression. Third, there are mechanisms that regulate cellular responses

to changes in target gene protein levels. We speculate that reductions in the protein levels of

many target genes brought about by a miRNA are functionally inconsequential, while a small

number of target genes are sensitive to reduced protein levels in a given cellular context, as

documented by the pathologies arising from haploinsufficiency. These target genes are there-

fore only a few percent of target genes with miRNA binding sites and serve as critical media-

tors of miRNA functions. They are the key target genes (See discussion). Numbers in figure

indicate hypothetical target gene numbers in each category.

(PDF)

S22 Fig. 5’UTR regulates target gene sensitivity to miRNA suppression. (A) Translation ini-

tiation occurs by a cap-dependent scanning mechanism, which requires binding of a trimeric

complex eIF4F (consisting of 4E, 4G, 4A) to the m7G cap structure, followed by recruitment of

the preinitiation complex (PIC) and scanning of PIC to the first AUG codon. The interaction

between PABP and eIF4G circularizes the mRNA, and brings 3’UTR in close proximity to

5’UTR of the mRNA. This makes it possible for miRNA-containing RISCs associated with

3’UTR to directly regulate translation initiation at 5’UTR. (B) Our data suggest that miRNAs

and secondary structures in 5’UTR cooperate to regulate translation initiation. For target

mRNAs harboring secondary structures in 5’UTR, eIF4A or other RNA helicases are required

to unwind these secondary structures, allowing PIC to efficiently scan through and to initiate

translation. miRNA-containing RISCs may facilitate the dissociation of RNA helicases from

5’UTR, thereby stabilizing secondary structures and resulting in PIC accumulation in 5’UTR,

repression of translation initiation, and a reduction in protein output [117, 118]. RISC, RNA-

induced silencing complex. UTR, untranslated region. 4A, 4E, 4G, 4F, eukaryotic initiation

factors (eIFs). PIC contains 40S ribosome subunit, Met-tRNAi, and eIFs 1, 1A, 2, 3, and 5.

(PDF)

S1 Table. mRNA copy number per cell as determined by ERCC-RNA-seq.

(XLSX)
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S2 Table. Microarray analysis of miR-17~92 target gene mRNA levels in TKO, WT, and

TG B cells.

(XLSX)

S3 Table. Predicted miR-17~92 target genes with the highest context++ scores based on

the most recent TargetScan 7.0 algorithm.

(XLSX)

S4 Table. miR-17~92 target genes investigated in this study. A list of miR-17~92 target

genes investigated by immunoblot analysis. The experimentally identified miR-17~92 binding

sites by human B cell PAR-CLIP [40], Burkitt’s lymphoma cell HITS-CLIP [79], HEK293

PAR-CLIP [35] and TargetScan 7.0 [55] were indicated. Gene names in parentheses are com-

monly known aliases. n.d., miR-17~92 family miRNA binding sites not detected in the CLIP

dataset. References in which these genes were implicated as direct targets for miR-17~92 miR-

NAs were included [40, 45, 49, 56, 75–77, 80, 126, 129–197].

(XLSX)

S5 Table. Ribosome footprint abundance in 25.5 h activated TKO, WT and TG B cells.

(XLSX)

S6 Table. Ribosome footprint density of ribo-downregulated TG targets and ribo-upregu-

lated TKO targets in 25.5h activated TKO, WT and TG B cells.

(XLSX)

S7 Table. Absolute miRNA copy numbers in naïve and activated B cells as determined by

quantitative Northern blot analysis.

(XLSX)

S8 Table. Target gene mRNA copy number and the number of conserved miR-17~92 bind-

ing sites on each target mRNA.

(XLSX)

S1 Methods. Supplemental experimental procedures including Northern blot, immuno-

blot, flow cytometry, qRT-PCR, cloning, reporter assay, ribosome profiling, ERCC-RNA-

seq, polysome profiling, Microarray and bioinformatic analysis.

(PDF)
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