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ABSTRACT: We report the self-assembly of a biodegradable platinum nanoparticle-loaded
stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for
anticancer drug delivery. Well-defined stomatocyte structures could be formed even after
incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high
percentage of semicrystalline poly(¢-caprolactone) (PCL), resulting in PCL domain formation onto
the membrane due to different properties of two polymers. The biodegradable motor system was
further shown to move directionally with speeds up to 39 pum/s by converting chemical fuel,

hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted
cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor
system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release

of therapeutic drugs.
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nspired by fascinating molecular motors and movable
I organisms, scientists have used both top-down and bottom-
up strategies to fabricate self-propelled micro- and
nanomotors over the past decade.'™” Until now, many
examples of different types of motors (micro- and nano-
tubes, "% wires,">'* helices,">'® rods,"” ™"’ Janus motors™’™ >’
and self-assembled polymeric motors”* >*) have been
developed. These artificial motors are capable of converting
chemical or external energy into autonomous movement and
possess various potential applications such as environmental
remediation, sensing, and drug delivery.””>* Compared to
normal drug delivery systems (lacking self-driving force), the
most important advantage of a micro- and nanomotor system is
independent impetus, which is necessary for tissue penetration
and cellular barriers.”*** For drug delivery applications, micro-
and nanomotor systems should be both biocompatible and
’biodegradable.%’37 However, the design of current motor
systems reported so far is mostly based on heavy metal systems,
which do not provide a suitable soft interface for biological
systems.”’38
While several examples of biocompatible motors have already
been reported,”””* only a few that progress toward
biodegradable motor systems have been reported until
now."' ™ For degradable zinc (Zn)/magnesium (Mg)-based
micromotors, acid-powered propulsion can be achieved only in
the gastrointestinal tract. The main degradation products were
essential nutrients in human bodies.**’ A protein-based
biodegradable multilayer microtubular motor combined with
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drug-loaded gelatin hydrogel has also been reported recently.**
However, the size of the Zn/Mg or protein-based motor is
micron sized, which is far away from potential clinical
applications that target an intravenous route. Furthermore,
the clearance of these micrometer motors will be quite fast due
to the lack of poly(ethylene glycol) (PEG) shells. In general,
the introduction of PEG shells, called PEGylation, onto the
surface of micro- and nanocarriers can prolong their circulation
in vivo by avoiding phagocytosis from macrophages.”® Hence,
the development of nanometer-scale biodegradable motors
capable of stealth transport and drug release remains
challenging.

In our previous work, a polymeric stomatocyte nanomotor
made of soft self-assembled block copolymers based on
poly(ethylene glycol)-b-polystyrene (PEG-b-PS) was demon-
strated not only to move in the presence of hydrogen
peroxide® and alternative fuels””>" but also to show chemo-
taxis behavior upon hydrogen peroxide gradients.”* Unlike the
traditional motor systems, both water-soluble and water-
insoluble drugs can be loaded due to the presence of the
bilayer structure.”> However, as a major component, glassy PS
is unfortunately a non-biodegradable and non-biocompatible
polymer, which is not suitable for further biomedical
applications. This fully bottom-up nanomotor system would
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be more versatile if a biodegradable polymer was used to build
the structure of the stomatocyte.

Here, we demonstrate successful design and fabrication of a
biodegradable self-assembled nanomotor system for drug
delivery based on a mixture of poly(ethylene glycol)-b-
poly(e-caprolactone) (PEG-b-PCL) and well-documented
vesicle former PEG-b-PS, as illustrated in Figure 1. Biodegrad-
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Figure 1. Self-assembly of a Dox-loaded hybrid stomatocyte
nanomotor.

able polymer PCL is one of the most commonly used
candidates and was already approved by the FDA for medical
applications.”>>* Stomatocyte bowl-shape morphology was
obtained under osmotic folding of polymersomes and was
observed even when the percentage of PEG-b-PCL was
increased to 50% (w/w, 67% in mol ratio). The hydrophilic
polymer PEG in our system can prolong the circulation time in
vivo. Furthermore, water-soluble anticancer drug doxorubicin
(DOX) was loaded into the lumen of the structure, and
platinum nanoparticles (PtNPs, as model catalyst) were
encapsulated in the cavity of stomatocyte as the engine. The

self-assembled nanomotors show autonomous motion under
low concentrations of hydrogen peroxide. Due to the different
structural properties of PCL, which is a semicrystalline polymer,
and PS, a glassy polymer, it was anticipated that upon mixing
the PCL would demix and form domains in the self-assembled
bilayer when a high percentage of PCL was blended into the
membrane of stomatocytes. Large pores would be formed onto
the stomatocyte surface during the degradation of PCL, which
could lead to sustained drug release. After uptake by tumor
cells, the biodegradable stomatocyte nanomotor could
subsequently release the loaded cargo, in this case, Dox in
tumor cells (HeLa cells). According to the literature, tumor
cells can produce hydrogen peroxide at a rate of up to 0.5 nmol
per 10* cells per hour.> Therefore, such a design enables our
drug-loaded nanomotor system to actively move toward tumor
cells, facilitate uptake, release the drug, and kill the tumor cells.

RESULTS AND DISCUSSION

Self-Assembly of Hybrid Polymersome or Stomato-
cyte. A hybrid polymersome or stomatocyte was prepared by
mixing the biodegradable polymer PEG-b-PCL with the
template polymer PEG-b-PS (0/100, 25/75, 50/50, 75/2S,
90/10, and 100/0, w/w) by a solvent switch method and
subsequent dialysis to induce osmotic shock and folding of the
membrane into it.”**” Polymers with different ratios were
dissolved in organic solvent (THF/dioxane = 4:1, v/v), and
Milli-Q water was then slowly added into the polymer solution
at a rate of 1 mL/h. After vigorous dialysis to remove the
organic solvent, hybrid polymeric vesicles with different PCL
percentages were obtained. No significant cloud point was
observed in the sample with 100% PCL. This indicates no
vesicle formation, which was also confirmed by dynamic light

Figure 2. Characterization of vesicles with different percentages of PEG-b-PCL. (a) TEM measurements of vesicles with 0% PEG-b-PCL. (b)
TEM measurements of vesicles with 25% PEG-b-PCL. (c) TEM measurements of vesicles with 50% PEG-b-PCL. (d) TEM measurements of
vesicles with 75% PEG-b-PCL. (e¢) TEM measurements of vesicles with 90% PEG-b-PCL. (f) TEM measurements of samples with 100% PEG-
b-PCL. (g) EDX of FITC-labeled vesicles with 50% PEG-b-PCL-FITC. (h) EDX of normal vesicles with 50% PEG-b-PCL. Scale bar is 500 nm.
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scattering (DLS) measurements. Thirty nanometer sized
nanoparticles were formed instead. All self-assembled structures
showed narrow polydispersity (Supplementary Table 1) until
the PCL percentage was increased up to 90%. In the 90% PCL
sample, a small population of 30 nm sized nanoparticles was
observed in DLS intensity data (Supplementary Figure 1),
whereas the number size distribution DLS showed a much
larger percentage of 30 nm nanoparticles (Supplementary
Figure 2). This suggested high demixing between PEG-b-PS
and PEG-b-PCL polymers and the assembly of the PEG-b-PCL
into micelles. Transmission electron microscopy (TEM) was
further used to visualize the morphology of these samples
(Figure 2a—f). Vesicles containing PEG-b-PCL in less than 75%
can form well-defined stomatocyte structures. Clear bilayer
structure was observed with a thickness around 25 nm. Due to
the bilayer structure, the hydrophilic drug Dox was loaded in
the water lumen of vesicles during the self-assembly.
Fluorescent Dox was observed in the confocal image as red
dot indicating a successful drug encapsulation (Supplementary
Figure 3).

Formation of PCL Domains. In order to confirm the
mixing and the presence of PCL in the membrane structure,
energy-dispersive X-ray spectroscopy (EDX) was used to map
certain elements on the vesicles. Fluorescein isothiocyanate
(FITC) was coupled onto the PEG-b-PCL polymer to
introduce S for visualization. Significant S enrichment was
observed for the FITC-labeled vesicles (mixed with 50% PEG-
b-PCL-FITC) compared to normal vesicles without FITC
labeling (mixed with 50% PEG-b-PCL) (Figure 2gh).
Interestingly, the signal of S showed domain formation on
the structure of the hybrid vesicle rather than homogeneous
distribution over the whole membrane. EDX line scans using
STEM mode across the vesicles also revealed that S was not
evenly distributed on the membrane structure (Supplementary
Figure 4). Differential scanning calorimetry (DSC) was further
used to confirm the demixing behavior of hybrid stomatocytes.
The samples with different percentages of PCL blending (0, 25,
50, 75, 90, and 100% PCL) were prepared and freeze-dried for
DSC measurements. From the DSC spectrum (Supplementary
Figure 6), two polymers mixed well in the sample of the hybrid
stomatocyte with 25% PCL blending due to a negligible signal
from semicrystalline PCL. When the PCL percentage increased
to 50%, a significant signal of PCL was observed, which
suggests PCL demixing with PS, indicating PCL domain
formation.

Because the main component of the hybrid stomatocytes
(PEG-b-PCL polymer) is biodegradable, our nanomotor
systems can easily be degraded by either acid or lipases.
Stomatocytes with 50% PCL were used to investigate the acid-
induced degradation as well-defined stomatocyte structures
were still formed at this high percentage. Hybrid stomatocytes
with 50% PCL were incubated with citric acid/Na,HPO, buffer
(pH 1), and scanning electron microscopy (SEM) was used to
image the morphology changing before and after acidic
treatment. From the SEM image and TEM image (inset of
Figure 3a) shown in Figure 3a, smooth bowl-shaped
stomatocytes with narrow openings were observed before
treatment. However, after incubation with acidic buffer, the
PCL units from the stomatocyte started to degrade (Figure 3b).
Large pores in the membrane of the stomatocyte and even
collapsed structures were formed. This also indicates that a high
percentage of PEG-b-PCL polymer induces domain formation
onto the membrane, which is responsible for the observation of
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Figure 3. Pore formation of stomatocytes before and after
degradation. (a) SEM images of stomatocytes with 50% PEG-b-
PCL before acidic degradation (inset is a TEM image of a single
stomatocyte with small opening). (b) SEM images of stomatocytes
with 50% PEG-b-PCL after acidic degradation. (c) Release of Dox
from a stomatocyte with different percentages of PCL at different
pH. All scale bars are 400 nm.

the large pores by SEM after acid treatment. This would not be
possible if PEG-b-PCL is homogeneously mixed with PEG-b-PS
in the membrane.”® When loaded with drug, the drug can be
released in a controlled manner once PCL starts to degrade at
low pH. This feature makes these motors attractive for practical
drug delivery and release in the human body.

In order to investigate the release characteristics of our self-
assembled system, release experiments in vitro from stomato-
cyte nanomotors were performed at room temperature in two
types of medium, namely, acidic buffer (citric acid/Na,HPO,,
pH S) and neutral buffer (citric acid/Na,HPO,, pH 7) (Figure
3c). The release percentage of stomatocyte nanomotors with
50% PCL was higher than that of samples without PCL or with
only 25% PCL in both acidic and neutral conditions. Moreover,
for stomatocyte nanomotors without PCL blending, there was
almost no release of Dox in both buffers at different pH. Hybrid
nanomotors cumulatively release 20% Dox in acidic buffer for
48 h, which was significantly higher than the 5% release in
buffer at pH 7 in the same time frame. Interestingly, the release
curve of stomatocytes with 25% PCL and 50% PCL seemed to
be quite linear, probably because of pore formation after acidic
treatment. From SEM images after acidic incubation (Figure
3ab), pores on the structure of the hybrid stomatocyte and
collapsed structures were observed, which also explains the
linear release profiles of Dox.

Movement Analysis and Cell Uptake. PEG-b-PS and
PEG-b-PCL at different ratios were dissolved in THF and
dioxane (4:1, v/v), and Milli-Q water was added at a rate of 1
mL/h followed by PtNP solution. After dialysis to remove the
organic solvent, hybrid stomatocyte nanomotors with different
PCL percentages were obtained (the structure of nanomotors
can be seen in Supplementary Figure 7). Nanosight NSS00 was
used to investigate the motion behavior of these hybrid
stomatocyte nanomotors in the presence of hydrogen peroxide
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solution. The movement was recorded for 90 s, and each
second contained 30 frames. Nanoparticle-tracking analysis was
used to track in real-time the movement of the stomatocyte
motors. A 4.98 mM hydrogen peroxide solution was used for
the motion analysis. An appropriate concentration of motor
solution (finally concentration is 10° particles/mL) was added,
and the resulting solution was measured at physiological
temperature of 37 °C. Calculated mean-square displacements
(MSDs) of the hybrid nanomotors in the presence of hydrogen
peroxide showed directional movement compared to that of the
stomatocytes without fuel. Fitting of the MSDs allows for
calculation of the velocity of the nanomotors by using the self-
diffusiophoretic model proposed by Golestanian and co-
workers.”” The velocity of hybrid stomatocyte nanomotors in
the presence of fuel (Figure 4a) at 37 °C showed no significant
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Figure 4. Motion of hybrid stomatocyte nanomotors with different
percentage of PCL. (a) Velocity of hybrid stomatocyte nanomotors
in the presence of H,0, (final concentration was 4.98 mM) at 37
°C. The motion of the nanomotor was measured by Nanosight
NS500. Velocities were calculated. Directional motion was fitted
using the equation (4D)At + (v*)(A£). (b) Representative tracking
trajectories of the hybrid stomatocyte nanomotor.

difference compared to that of normal nanomotors without
PCL blending, which was also comparable with our previous
study. The velocity of the stomatocyte nanomotor with 0, 25,
and 50% PCL was around 39 pgm/s. Brownian motion and a
typical linear MSD curve was observed when studying the
movement of hybrid nanomotors without hydrogen peroxide
fuel. In addition, representative tracking trajectories of the
hybrid nanomotors with and without fuel are presented in
Figure 4b. As predicted, the trajectory of the hybrid
nanomotors without fuel followed the random walk typical of
a Brownian motion and did not show any directionality or
increase in movement. For the mechanism of motion, self-

diffusiophoresis and bubble propulsion were possible mecha-
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nisms in our system. In our previous studies,”’ decreased speed
and MSDs were observed in PBS compared to Milli-Q water,
indicating a self-diffusiophoresis mechanism. However, speed
and MSDs in PBS were still higher than those of motors
without hydrogen peroxide fuel (Brownian motion), which also
indicated the possible existence of a bubble propulsion
mechanism. After degradation of the PCL in acidic conditions,
the motion behavior of a biodegradable hybrid stomatocyte
nanomotor was studied. Almost Brownian motion was
observed, indicating that the degradation of PCL affects the
motion behavior (Supplementary Figure 8). For our nano-
motor design, the narrow opening of the stomatocyte serves as
the outlet for the formed oxygen, and it is crucial for the
propulsion of the nanomotor. After PCL degradation, large
pores or even collapsed structures are formed on the membrane
of the stomatocyte nanomotor. This results in complete
collapse of the structure or of the outlet into multiple pores,
leading to almost complete disruption of the active motion
toward Brownian motion.

HeLa cells were used to investigate cell internalization and
subsequent release behavior of hybrid stomatocyte nanomotors.
The cells were incubated with Dox-loaded nanomotors
together with hydrogen peroxide. Confocal laser scanning
microscopy images (Figure S) clearly show that both a normal
stomatocyte nanomotor and a hybrid stomatocyte nanomotor
were taken up by the HeLa cells (red fluorescence comes from
Dox). In the case of a biodegradable hybrid stomatocyte
nanomotor, the fluorescence of Dox diffused over the cell,
indicating the release of drugs from vesicles into the cell due to
degradation (see the cross section in Figure Sd). However,
stomatocytes without PCL still showed a dot-like fluorescent
signal (see the cross section in Figure Sb), which meant no
drug release occurred. In addition, cell uptake experiments were
also performed without hydrogen peroxide. Similar results are
shown in Supplementary Figure 9. To further test the
biodegradability of our nanomotor, stomatocytes loaded with
near-infrared fluorescent cyanine dye DiR were injected in vivo.
The fluorescence signal was no longer detectable at day 7 after
injection, compared to the strong signal at day 3, suggesting
that the stomatocytes were degraded in the mouse (Supple-
mentary Figure 10).

CONCLUSIONS

In summary, we have demonstrated the design of a hybrid
stomatocyte nanomotor based on biodegradable PCL for drug
delivery. The bilayer membrane structure of motors allows for
efficient loading of both hydrophilic and hydrophobic drugs.
Due to a high percentage of PCL blending, PCL domains were
formed on the surface of the nanomotors. The system is in
effect able to locally sense the environment, in this case pH.
During the degradation, pores and collapse are formed, leading
to controlled release of the anticancer drug under acidic
conditions in vitro. In addition, our nanomotor can also be
taken up by HeLa cells and subsequently release its cargo to kill
them. Finally, in vivo data show the biodegradability of the
nanomotor system. Thus, we envision that our nanomotor
system has huge potential for drug delivery and controlled
released in vivo.

METHODS

Self-Assembly of Stomatocytes or Hybrid Stomatocytes.
Ten milligrams of polymer with different ratios between PEG-b-PS
and PEG-b-PCL was fully dissolved in a 1 mL mixture of THE/
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Figure 5. Cell uptake of Dox-loaded stomatocyte nanomotors. (a) Bright-field images of cells after being incubated with Dox-loaded
stomatocyte nanomotors (without PEG-b-PCL) in hydrogen peroxide. (b) Confocal images of cells after exposure to Dox-loaded stomatocyte
nanomotors without PEG-b-PCL. (c) Bright-field images of cells after being incubated with Dox-loaded stomatocyte nanomotors (50% PEG-
b-PCL) in hydrogen peroxide. (d) Confocal images of cells after exposure to Dox-loaded stomatocyte nanomotors with 50% PEG-b-PCL. All

scale bars are 20 ym.

dioxane (4:1, v/v). One milliliter of Milli-Q water was slowly added
into the solution by a syringe pump at a rate of 1 mL/h. After vigorous
dialysis for at least 48 h, stomatocytes and hybrid stomatocytes with
different percentages of PCL were obtained.

Self-Assembly of PtNP-Loaded Stomatocyte or Hybrid
PtNP-Loaded Stomatocyte. Ten milligrams of polymer with
different ratios between PEG-b-PS and PEG-b-PCL was fully dissolved
in a 1 mL mixture of THF/dioxane (4:1, v/v). Next, 0.35 mL of Milli-
Q water was slowly added by a syringe pump at a rate of 1 mL/h,
followed by addition of preformed PtNP solution (0.65 mL) also at a
rate of 1 mL/h. After dialysis for at least 48 h, PtNP-loaded
stomatocytes and hybrid PtNP-loaded stomatocytes with different
percentages of PCL were obtained.

DSC Measurement of Hybrid Stomatocytes with Different
Percentages of PCL. Hybrid stomatocyte samples with different
percentages of PCL blending (0, 25, 50, 75, 90, and 100% PCL) were
prepared by the solvent switch method. The samples were freeze-dried
for DSC measurement. DSC thermograms were recorded using the
Mettler DSC 822e (Mettler-Toledo AG, Greifensee, Switzerland).
Samples (10 mg) were crimped in aluminum pans with pierced lids,
equilibrated at 0 °C for S min, and finally heated to 100 °C at a heating
rate of 2 °C/min. The measurement cell was purged with dry nitrogen
gas at a flow rate of S0 mL/min during the measurements.

Movement Analysis. Nanosight NSS00 was used for the motion
measurements of hybrid stomatocyte nanomotors. Hydrogen peroxide
solution (498 mM) was used for the motion analysis. Hybrid
nanomotor solution with a final concentration around 10° particles/
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mL was added, and the resulting solution was measured at
physiological temperature of 37 °C. The motion of hybrid stomatocyte
nanomotors after acidic degradation was also measured. The fitting of
the MSD allows for calculation of the speed of the nanomotors by
using the self-diffusiophoretic model proposed by Golestanian and co-
workers.”> While a purely diffusive system would show only a linear
component according to the equation (4D)At, from which an
enhanced diffusion coefficient can be extracted, our MSD curves are
not linear and show a parabolic fit according to the equation (4D)At +
(v*)(A#), from which we can extract the velocity of the particles.
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