Table 3.
Diversity indices/parameters | Formula | Carrot | Cucumber | Onion | Tomato |
---|---|---|---|---|---|
Taxa (S) | - | 5 | 4 | 4 | 3 |
Individuals (n) | - | 31 | 30 | 20 | 21 |
Dominance (D) | D = Sum (ni/n)2 | 0.3403 | 0.3933 | 0.43 | 0.61 |
Simpson (1-D) | 1 – D = 1 - Sum (ni/n)2 | 0.6597 | 0.6067 | 0.57 | 0.39 |
Shannon (H) | H = Sum ((ni/n) In (ni/n)) | 1.245 | 1.123 | 0.9958 | 0.7091 |
Evenness (E) | E = eH/S | 0.6949 | 0.7684 | 0.6767 | 0.6774 |
Brillouin (HB) | HB = In (n) – Sum In (ni) | 1.067 | 0.9698 | 0.8154 | 0.5821 |
Menhinick (db) | db = S/ | 0.898 | 0.7303 | 0.8944 | 0.6547 |
Margalef (Ma) | Ma = (S-1)/In (n) | 1.165 | 0.882 | 1.001 | 0.6569 |
Equitability (J) | J = H/Hmax | 0.7738 | 0.81 | 0.7183 | 0.6455 |
Fisher alpha (FA) | S = α*In (1 + n/α) | 1.687 | 1.24 | 1.504 | 0.9578 |
Berger-Parker (d) | d = n/nT | 0.4194 | 0.5667 | 0.55 | 0.7619 |
Chao-1 | Chao1 = S + F1(F1 - 1)/(2 (F2 + 1)), | 5 | 4 | 5 | 3 |
n = number of individuals; n i = number of individuals of taxon i; S = number of taxa; nT = number of individuals in the dominant taxon
Hmax = log S