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Abstract

Improved diagnostics for acute infections could decrease morbidity and mortality by increasing 

early antibiotics for patients with bacterial infections and reducing unnecessary antibiotics for 

patients without bacterial infections. Several groups have used gene expression microarrays to 

build classifiers for acute infections, but these have been hampered by the size of the gene sets, use 

of overfit models, or lack of independent validation. We used multicohort analysis to derive a set 

of seven genes for robust discrimination of bacterial and viral infections, which we then validated 

in 30 independent cohorts. We next used our previously published 11-gene Sepsis MetaScore 

together with the new bacterial/viral classifier to build an integrated antibiotics decision model. In 

a pooled analysis of 1057 samples from 20 cohorts (excluding infants), the integrated antibiotics 

decision model had a sensitivity and specificity for bacterial infections of 94.0 and 59.8%, 

respectively (negative likelihood ratio, 0.10). Prospective clinical validation will be needed before 

these findings are implemented for patient care.
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INTRODUCTION

Early and accurate diagnosis of infection is key to improving patient outcomes and reducing 

antibiotic resistance. The mortality rate of bacterial sepsis increases by 8% for each hour by 

which antibiotics are delayed (1); however, indiscriminate prescription of antibiotics to 

patients without bacterial infections increases rates of morbidity and antimicrobial 

resistance. The rate of inappropriate antibiotic prescriptions in the hospital setting is 

estimated at 30 to 50% and would be decreased by improved diagnostics (2, 3). In broader 

use, up to 95% of outpatients given antibiotics for suspected enteric fever have negative 

cultures (4). There is currently no gold standard point-of-care diagnostic that can broadly 

determine the presence and type of infection. Thus, the White House has established the 

National Action Plan for Combating Antibiotic-Resistant Bacteria, which called for “point-

of-need diagnostic tests to distinguish rapidly between bacterial and viral infections” (5).

Although new polymerase chain reaction (PCR)–based molecular diagnostics can profile 

pathogens directly from a blood culture (6), such methods rely on the presence of adequate 

numbers of pathogens in the blood. Moreover, they are limited to detecting a discrete range 

of pathogens. As a result, there is a growing need for molecular diagnostics that profile the 

host gene response. These include diagnostics that can distinguish the presence of infection 

as compared to inflammation in the absence of infection, such as our 11-gene “Sepsis 

MetaScore” (SMS) (7), which has been validated across multiple cohorts (8), among others 

(9, 10). Other groups have focused on gene sets that can distinguish between types of 

infections, such as bacterial versus viral infections (11–13); however, these gene sets often 

contain too many genes to translate into a useful clinical tool. Tsalik et al. described a model 

that distinguishes among all three groups—noninfected patients and those with bacterial or 

viral illness—but this model required the measurement of 122 probes, presenting an 

implementation challenge (14). Similarly, we have described a “meta-virus signature” that 

describes a common response to viral infection but contained too many genes (396) for 

clinical application (15). Overall, although great promise has been shown in this field, no 

pragmatic infection diagnostic based on host gene expression has yet made it into clinical 

practice.

The data from these biomarker studies and dozens of other genome-wide expression studies 

in sepsis and acute infections have been published and deposited for further study in public 

databases such as the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) 

and the European Bioinformatics Institute (EBI) ArrayExpress. These data are a largely 

untapped resource that can be used for both biomarker discovery and validation. We have 

previously shown that our integrated multicohort analysis of gene expression produces 

robust diagnostic tools for organ transplant (16), sepsis (7), specific types of viral infections 

(15), and active tuberculosis (17). Furthermore, these data are also useful as a benchmarking 

and validation tool for new host gene expression diagnostics. However, such validation using 

public data has previously been limited to only those cohorts that contain at least two classes 

of interest (those in which a direct comparison between classes is possible), because 

interstudy technical differences preclude direct comparison of diagnostic scores between 

cohorts.
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Here, we sought to improve the diagnostic power of the SMS by adding the ability to 

discriminate bacterial from viral infections. Thus, to derive an improved biomarker for 

discriminating infection types, we applied our multicohort analysis framework to clinical 

microarray cohorts that compared the host response to bacterial and viral infections. We 

further developed a method to conormalize gene expression data among multiple cohorts, 

allowing direct comparison of a diagnostic score among multiple cohorts. Finally, we 

combined the previous SMS and the bacterial/viral diagnostic described here into an 

integrated antibiotics decision model (IADM) that can determine whether a patient with 

acute inflammation has an underlying bacterial infection.

RESULTS

Derivation of the seven-gene bacterial/viral metascore

Our previously published 11-gene SMS cannot reliably distinguish between bacterial and 

viral infections, showing mostly nonsignificant differences in score distribution between 

patients with bacterial and viral infections (fig. S1). Having previously shown that there is a 

conserved host gene response to viral infections (15), we hypothesized that a classifier for 

bacterial versus viral infections would allow for an improved diagnostic model. We thus 

performed a systematic search for gene expression microarray cohorts that studied patients 

with viral and/or bacterial infections. We identified eight cohorts (11, 18–26) [both whole 

blood and peripheral blood mononuclear cells (PBMCs)] that included n > 5 patients with 

both viral and bacterial infections (Table 1A). The eight cohorts were composed of 426 

patient samples (142 viral and 284 bacterial infections), including children and adults, 

medical and surgical patients, and those with multiple sites of infection. We performed 

multicohort analysis on the eight cohorts as described previously (fig. S2) (7, 15–17). We set 

significance thresholds at an effect size >2-fold and a false discovery rate (FDR) <1% in 

leave–one–data set–out round-robin analysis. However, to make sure that neither tissue type 

(whole blood or PBMCs) biased our results, we further selected only those genes that also 

had an effect size >1.5-fold in separate analyses of both PBMC and whole-blood cohorts. 

This process resulted in 72 differentially expressed genes significant at the above thresholds 

(table S1). We used a greedy forward search (7) to find a gene set optimized for diagnosis, 

resulting in seven genes [higher in viral infections (IFI27, JUP, and LAX1) and higher in 

bacterial infections (HK3, TNIP1, GPAA1, and CTSB); fig. S3)]. As expected, a “bacterial/

viral metascore” based on these seven genes robustly distinguished viral from bacterial 

infections in all eight of the discovery cohorts [summary receiver operating characteristic 

(ROC) area under the curve (AUC), 0.97; 95% confidence interval (CI), 0.89 to 0.99; Fig. 1 

and fig. S4].

We next tested the seven-gene set in the six remaining independent clinical cohorts (13, 14, 

27–29) that directly compared bacterial and viral infections (138 bacterial and 203 viral 

infections, totaling 341 samples) and found a summary ROC AUC of 0.91 (95% CI, 0.82 to 

0.96) (Fig. 1, Table 1B, and fig. S5; individual test characteristics in table S2). To measure 

the generalizability of our signature, we also tested whether cells stimulated in vitro with 

lipopolysaccharide (LPS) or influenza virus could be separated with the bacterial/viral 

metascore [GSE53166 (30), n = 75; AUC, 0.99; fig. S6].
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Global validation via COCONUT conormalization

There are dozens of microarray cohorts in the public domain that studied either bacterial or 

viral infections, but not both, thus precluding a direct (within data set) estimate of diagnostic 

power for separating bacterial and viral illness. To apply and compare a gene score across 

these cohorts, we needed a method that could remove inter–data set batch effects while 

remaining unbiased to the diagnosis of the diseased patients. We designed and implemented 

a modified type of array normalization that uses the ComBat (31) empirical Bayes 

normalization methods on healthy controls to obtain bias-free corrections of disease samples 

(a method we call COmbat CO-Normalization Using conTrols or “COCONUT”; fig. S7). 

Housekeeping genes remained invariant across both diseases and cohorts after COCONUT 

conormalization, and each gene still retained the same distribution between diseases and 

controls within each data set (fig. S8). Because our method assumes that all healthy samples 

are derived from the same distribution, we separately normalized the whole-blood and 

PBMC samples because different immune cell types have different baseline gene expression 

distributions. Using COCONUT conormalization, the bacterial/viral metascore has a global 

AUC of 0.92 (95% CI, 0.89 to 0.96) in the whole-blood discovery cohorts (figs. S9 to S10). 

We then applied this method to test the bacterial/viral metascore in all public domain 

microarray cohorts that matched inclusion criteria and used whole blood. These data sets 

included the four direct validation cohorts that included control patients and an additional 20 

cohorts that measured either bacterial or viral infections but not both (n = 143 + 897 = 1040) 

(32–49). These data sets represent a wide variety of clinical conditions, including a range of 

infection types (Gram-positive, Gram-negative, atypical bacterial, common respiratory 

viruses, and dengue) and severities (mild infections to septic shock). The bacterial/viral 

metascore showed an overall ROC AUC of 0.93 (95% CI, 0.91 to 0.94) across these data, 

which allowed us to set a single global score cutoff (Fig. 2, Table 1B, and fig. S11). Finally, 

we performed the same procedure on PBMC validation cohorts [six cohorts (50–54), n = 

259; global AUC, 0.92 (95% CI, 0.87 to 0.97; figs. S12 to S13)]. All three global ROC 

AUCs using COCONUT conormalization (discovery whole blood, 0.92; validation whole 

blood, 0.93; validation PBMCs, 0.92) approximately matched the summary AUC of the 

direct validation cohorts (0.91), giving high confidence in the diagnostic power of this 

method.

Integrated antibiotics decision model

A key clinical need is diagnosing whether a patient with signs and symptoms of 

inflammation has an underlying bacterial infection, because rapid and judicious 

administration of antibiotics is key to improving patient outcomes. Neither the SMS nor the 

bacterial/viral metascore alone can robustly distinguish between all three classes of (i) 

noninfected inflammation, (ii) bacterial illness, and (iii) viral illness. Thus, to increase 

clinical relevance, we developed an “integrated antibiotics decision model” (IADM), 

whereby we first apply our previously described SMS (7) to test for the presence of an 

infection and then apply the bacterial/viral metascore to the samples that test positive for 

infection (Fig. 3A). As described previously, the only way to establish test characteristics for 

the IADM simultaneously across cohorts is to use COCONUT conormalization. We found 

that the SMS in COCONUT-conormalized data is strongly influenced by age, which could 

be caused by age-dependent differences in healthy subjects, infected patients, or both (fig. 
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S14). We thus excluded cohorts focused on infants (children <1 year old) from the IADM. 

We also removed the low-severity outpatient viral illness cohorts (GSE17156 and 

GSE68310) because in outpatient settings, the history and physical exam findings make 

noninfectious causes of acute inflammation less likely. This resulted in a total of 20 cohorts 

for testing the IADM (n = 1057). The resulting global AUC for the SMS across the available 

data was 0.86 (95% CI, 0.84 to 0.89) (fig. S15 and table S3). We set global thresholds for an 

SMS sensitivity for infection of 95% and a bacterial/viral metascore sensitivity for bacterial 

infection of 95%. Considering all three classes of noninfectious inflammation, bacterial 

infection, and viral infection, this yielded an overall sensitivity and specificity of 94.0 and 

59.8% for bacterial infections and 53.0 and 90.6% for viral infections, respectively (Fig. 3). 

These performance characteristics were largely unchanged if healthy patients were included 

in the noninfected class (fig. S16). The overall positive and negative likelihood ratios for 

bacterial infection in the IADM were thus 2.34 (LR+) and 0.10 (LR−), respectively, 

compared to a recent meta-analysis of procalcitonin that showed a negative likelihood ratio 

of 0.29 (95% CI, 0.22 to 0.38) (55). We plotted negative predictive value (NPV) and positive 

predictive value (PPV) versus prevalence for these test characteristics; the NPV and PPV for 

bacterial infection at a prevalence of 15% were 98.3 and 29.2%, respectively (fig. S17).

There was only one data set [GSE63990 (14)] that included non-infectious inflammation 

patients and patients with both bacterial and viral illness but did not include healthy controls, 

precluding its addition to the global calculations. We thus tested the IADM on this cohort 

with locally derived test thresholds. We found an overall bacterial infection sensitivity and 

specificity of 94.3 and 52.2%, respectively (fig. S18).

Validation in independent samples using NanoString nCounter

Finally, we used targeted quantitative NanoString nCounter (56) gene expression assays to 

prospectively validate these results in independent whole-blood samples from children with 

sepsis from the Genomics of Pediatric SIRS and Septic Shock Investigators (GPSSSI) cohort 

(total n = 96, with 36 SIRS, 49 bacterial sepsis, and 11 viral sepsis patients; Fig. 4 and table 

S4). The GPSSSI cohort was also used by data set GSE66099, but the children profiled here 

were never profiled via micro-array and are thus not part of the discovery data sets. In the 

NanoString validation cohort, the SMS AUC was 0.81 (AUC of 0.80 in GSE66099). 

Similarly, the bacterial/viral metascore AUC was 0.84 (AUC of 0.83 in GSE66099). The 

microarray AUCs were thus preserved when tested with a targeted, quantitative gene 

expression assay in new patients. Applying the same IADM, the sensitivity and specificity 

were 89.7 and 70.0% for bacterial infections (LR−, 0.15; LR+, 3.0) and 54.5 and 96.5% for 

viral infections (LR−, 0.47; LR+, 15.6), respectively.

DISCUSSION

Better diagnostics for acute infections are needed in both the inpatient and outpatient 

settings. In low-acuity outpatient settings, a simple diagnostic that can discriminate bacterial 

from viral infections may be enough to assist in appropriate antibiotic usage. In higher-

acuity settings, causes of noninfectious inflammation become more important to rule out, 

and so a decision model for antibiotic prescriptions must include a noninfected, nonhealthy 
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case. Thus, a reliable diagnostic needs to distinguish all three cases (noninfected 

inflammation, bacterial infection, and viral infection). Here, using 426 samples from 8 

cohorts, we derived a parsimonious set of only seven genes that can accurately discriminate 

bacterial from viral infections across a very broad range of clinical conditions in 

independent cohorts (total of 30 cohorts composed of 1299 patients). We further 

demonstrated that by integrating our published SMS (7) (to distinguish the presence or 

absence of infection) with the bacterial/viral metascore (to determine infection type) into a 

single IADM, we can determine with high accuracy which patients do not require 

antibiotics. Finally, we confirmed the diagnostic power of both the seven-gene set and the 

IADM in independent samples using a targeted NanoString assay, showing that the 

signatures retain diagnostic power when not relying on microarrays.

The IADM has a low negative likelihood ratio (0.10) and high estimated NPV, meaning it 

would be potentially effective as a rule-out test. A meta-analysis of procalcitonin that 

included 3244 patients from 30 studies resulted in an overall estimated negative likelihood 

ratio of 0.29 (95% CI, 0.22 to 0.38) (55). Thus, the IADM negative likelihood ratio is much 

lower than the estimate for procalcitonin (on the basis of nonoverlapping 95% CIs), 

indicating clinical utility. Moreover, these test characteristics assume no knowledge of the 

patient and so are only estimates of the real-world clinical utility of such a test, because 

patient history, physical examination, vital signs, and laboratory values would all assist in a 

diagnosis as well. Even given these caveats, a recent economic decision model of screening 

ICU patients for hospital-acquired infections suggested that a test such as the IADM that can 

accurately diagnose bacterial and viral infections could be cost-effective (57). Ultimately, 

only interventional trials will be able to establish cost-effectiveness and clinical utility of a 

diagnostic test.

We validated our diagnostic in pediatric sepsis patients from the GPSSSI cohort using a 

NanoString assay. NanoString is highly accurate and is a useful tool for measuring the 

expression of multiple genes at once; however, it is also likely too slow for clinical 

application (4 to 6 hours per assay). Thus, although the assay confirms that our gene set is 

robust in targeted measurements, further work will be needed to improve the turnaround 

time. There are multiple possibilities for developing a commercial assay based on rapid 

multiplexed quantitative PCR that meets the time-sensitive demands of an infection 

diagnostic test. However, this technical hurdle is something that all gene expression–based 

infection diagnostics must overcome to gain clinical relevance.

A simple linear score generally cannot adequately separate the three classes (noninfected 

inflammation, bacterial infections, and viral infections); other machine-learning techniques, 

such as multiple regression or tree-based methods, are typically used. However, because the 

location and scale of different genes vary greatly between microarray types, such techniques 

cannot usually be truly validated across microarray platforms. Although COCONUT 

partially circumvents this issue by allowing for discovery of a model across several cohorts 

with application of the same model in COCONUT-conormalized validation cohorts, such 

method would be forced to leave out data sets that did not include healthy controls. We thus 

opted to use our simple, scale-free, difference-of-geometric-means scores. This allowed us 

to both discover and validate our diagnostic models across multiple cohorts. It may be 
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possible to discover a gene set using multiple classification techniques, instead of our 

current method of starting with the SMS and then adding the bacterial/viral metascore. 

However, to discover and then validate in multiple cohorts requires that all cohorts be 

appropriate for COCONUT normalization, and we have instead erred on the side of 

maximizing the utility of multiple clinically heterogeneous cohorts.

Several groups have published models for diagnosing infections on the basis of host gene 

expression; none have yet made it into clinical practice. Most of these classifiers were not 

tested in multiple independent cohorts, had too many genes to allow rapid profiling 

necessary for useful diagnosis, or both. For instance, Suarez et al. created a 10-gene k-

nearest-neighbor classifier but did not test it outside their published data set (GSE60244) 

(13). Tsalik et al. created a 122-probe (120-gene) classifier on the basis of multiple 

regression models, but in testing it in external GEO cohorts, they retrained their regression 

coefficients in each new data set (14). Such model retraining results in a strong upward bias 

to these validation numbers (assuming that a final model would not be locally retrained). 

Other groups have made gene expression classifiers for infection but did not include models 

for discriminating viral infections (7, 9, 10). Our IADM is robust across a wide range of 

disease types and severities but has a relatively lower sensitivity for viral infections. Non–

gene expression biomarkers have also been used for infection diagnosis. Procalcitonin has 

been studied extensively in the setting of sepsis diagnosis but cannot distinguish between 

noninfected individuals and those with viral infections (58). Protein-panel assays have been 

shown to discriminate bacterial from viral infections but cannot discriminate patients with 

noninfectious inflammation (59, 60). Thus, all of these classifiers have certain strengths and 

weaknesses that will become more apparent with further prospective testing and direct 

comparison.

Although our goal in this study was to identify biomarkers and not necessarily mechanistic 

biology, it is still important for a biomarker set to have biological plausibility. Of the seven 

genes in the bacterial/viral meta-score, six have previously been linked to infections or 

leukocyte activation. Both IFI27 and JUP were shown in single-cohort genome-wide 

expression studies to be induced in response to viral infection (52, 61), whereas TNIP1 and 

CTSB are important in modulating the nuclear factor kB and necrotic responses to bacterial 

infection (62, 63). Finally, LAX1 (up-regulated in viral infections) is involved in activation 

of T and B cells (64), and HK3 is instrumental in the neutrophil differentiation pathway 

(65). Thus, the role of these transcripts as biomarkers for infection type is not coincidental.

Here, we developed a method, COCONUT, to directly compare our model across a large 

pool of one-class cohorts that would otherwise be unusable for benchmarking a diagnostic 

gene set. COCONUT assumes that all controls come from the same distribution; that is, the 

genes in each group of controls are reset to have the same mean and variance, with batch 

parameters learned empirically from gene groups. This method corrects for microarray and 

batch processing differences between cohorts and thus allows for the creation of a global 

ROC curve with a single threshold. This is a more “real-world” measure of diagnostic power 

than reporting multiple validation ROC curves, because no single cutoff could attain the 

same test characteristics in the different cohorts (17). However, the COCONUT-

conormalized data showed differences in infants as compared to older children and adults. 
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Therefore, infants were excluded from the validation, meaning that the efficacy of the IADM 

in infants remains unknown. These data also had few children with viral infections between 

the toddler and teenage years; this is an age group that will require further study. The most 

important takeaway from the COCONUT-conormalized data is that both the bacterial/viral 

metascore and the IADM retain diagnostic power across a very broad range of infection 

types and severities, with overall AUCs that are similar to the summary AUCs from head-to-

head comparisons within cohorts.

Overall, we have leveraged our proven multicohort analysis pipeline to derive a highly 

robust model for improving infection diagnosis. Using our method, we were able to validate 

this in dozens of independent microarray cohorts. We have also validated using a targeted 

NanoString assay in pediatric sepsis patients. Although the IADM still needs to undergo 

optimization for rapid turnaround as well as a prospective interventional trial, it seems clear 

that molecular profiling of the host genome will become part of the clinical toolkit in the 

future.

MATERIALS AND METHODS

Study design

The purpose of this study was to use an integrated multicohort analysis framework to 

analyze multiple gene expression data sets to identify a biomarker that can classify patients 

with bacterial or viral infections. This framework has been described previously (7, 16, 17).

Systematic search and multicohort analysis

We performed a systematic search in NIH GEO and EBI ArrayExpress for public human 

microarray genome-wide expression studies using the following search terms: 

bact[wildcard], vir[wildcard], infection, sepsis, SIRS, ICU, nosocomial, fever, and 

pneumonia. Abstracts were screened to remove all studies that were (i) nonclinical, (ii) 

performed using tissues other than whole blood or PBMCs, or (iii) comparing patients who 

were not matched for clinical time.

In all data sets that included sample-level microbiology data, we retained only those samples 

for which pathogens of a single type (either bacterial or viral) had been identified. Data sets 

for which sample-level microbiology data were not available were still retained if the 

corresponding paper described the cohort as being infected with only bacteria or only 

viruses. In three cohorts, the diagnosis was not necessarily micro-biologically confirmed: 

GSE11755 (one of six patients described as culture-negative meningitis), GSE42834 

(described as a cohort of bacterial pneumonia meeting clinical criteria), and GSE57065 

(described as a cohort of bacterial sepsis for which 86% of patients had microbiological 

confirmation). All other samples used in our analysis had confirmed microbiological 

diagnoses at the sample or cohort level.

All microarray data were renormalized from raw data (when available) using standardized 

methods. Affymetrix arrays were renormalized using GC robust multiarray average 

(gcRMA) (on arrays with mismatch probes) or RMA. Illumina, Agilent, GE, and other 

commercial arrays were renormalized via normal-exponential background correction 
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followed by quantile normalization. Custom arrays were not renormalized. Data were log2-

transformed, and a fixed-effect model was used to summarize probes to genes within each 

study. Within each study, cohorts assayed with different microarray types were treated as 

independent.

We performed multicohort meta-analysis as described previously (7, 15–17). Briefly, genes 

were summarized using Hedges’ g, and the DerSimonian-Laird random-effects model was 

used for meta-analysis, followed by Benjamini-Hochberg multiple hypothesis correction 

(66). Patients with bacterial infections were compared to patients with viral infections within 

studies, such that a positive effect size indicates that a gene was more highly expressed in 

virus-infected patients and a negative effect size indicates that a gene was more highly 

expressed in bacteria-infected patients. All data sets that matched criteria with n > 5 in both 

bacterial and viral cohorts that were published by the time of the initial search (1 April 

2015) were used for discovery; data sets published after this time were used in validation.

To find a set of genes highly conserved in differential expression between bacterial and viral 

infections, we selected all cohorts that directly compared patients with bacterial and viral 

infections. Patients with documented co-infections (both bacterial and viral) were removed. 

Cohorts were required to have >5 patients in each group to be included in the meta-analysis. 

Both PBMC and whole-blood cohorts were included. We only included genes present in 7 (k 
− 1) data sets; thus, there were 14,729 genes included in the analysis. Significant genes were 

those that had an effect size >2-fold and an FDR <1% in a leave–one–data set–out round-

robin analysis. However, to ensure that genes from both whole blood and PBMCs were 

represented in the final gene set, we also performed separate meta-analyses of the PBMC 

and whole-blood cohorts and removed all genes that had an effect size <1.5-fold in either 

whole blood or PBMCs separately. The remaining genes were considered significant.

Derivation of the seven-gene set

To find a set of highly diagnostic genes, the significant genes from the meta-analysis were 

run through a greedy forward search as described previously (7). Briefly, this algorithm 

starts with zero gene and adds one gene in each cycle that best improves the AUC for 

diagnosis in the discovery cohorts, until a new gene cannot improve the discovery AUCs 

more than some threshold (an increase in the weighted discovery AUC of ≥1). The resulting 

genes are used to calculate a single bacterial/viral metascore, calculated as the geometric 

mean of the “viral” response genes minus the geometric mean of the “bacterial” response 

genes, times the ratio of the number of genes in each set. The resulting continuous score can 

then be tested for diagnostic power using ROC curves.

Direct validation of the seven-gene set

The resulting gene set was first validated in the remaining public gene expression cohorts 

that directly compared bacterial to viral infections but were too small to be used for meta-

analysis. Two cohorts [GSE60244 (13) and GSE63990 (14)] were made public after our 

meta-analysis was completed and so were used for validation. To show generalizability, we 

also examined one large in vitro data set comparing LPS to influenza exposure in monocyte-
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derived dendritic cells, but this was not included in the summary AUC because it is not 

expected to come from the same distribution as the clinical studies.

Summary ROC curves

For both discovery and validation cohorts, summary ROC curves were constructed 

according to the method of Kester and Buntinx (67) and as previously described (17). 

Briefly, linear-exponential models were made for each ROC curve, and the parameters of 

these individual curves were summarized using a random-effects model to estimate the 

overall summary ROC curve parameters. The α-parameter controls AUC (in particular, 

distance of the line from the line of identity), and the β-parameter controls skewness of the 

ROC curve. Summary AUC CIs were estimated from the SE of the α and β in meta-analysis.

COCONUT conormalization

There are dozens of public microarray cohorts that profiled patients with either bacterial or 

viral infections, but not both. It would be advantageous to be able to compare a gene score 

across these cohorts, but it has not previously been possible because each different 

microarray has widely different background measurements for each gene, and among studies 

using the same types of microarrays, there are large batch effects. To make use of these data, 

we needed to conormalize these cohorts in such a way that (i) no bias is introduced that 

could influence final classification (the normalization protocol should be blind to diagnosis), 

(ii) there should be no change to the distribution of a gene within a study, and (iii) a gene 

should show the same distributions between studies after normalization. A method with 

these characteristics would allow our gene score to be calculated and compared across 

multiple studies and thus allow us to broadly test its generalizability.

The ComBat empirical Bayes normalization method (31) is popular for cross-platform 

normalization but crucially falls short of our desired criteria because it assumes an equal 

distribution across disease states. We thus developed a modified version of the ComBat 

method, which conormalizes control samples from different cohorts to allow for direct 

comparison of diseased samples from those same cohorts. We call this method COmbat CO-

Normalization Using conTrols or COCONUT. COCONUT makes one strong assumption 

that it forces control/healthy patients from different cohorts to represent the same 

distribution. Briefly, all cohorts are split into healthy and diseased components. The healthy 

components undergo ComBat conormalization without covariates. The ComBat estimated 

parameters α̂, β̂, σ̂, δ*, and γ* are obtained for each data set for the healthy component and 

then applied to the diseased component (fig. S7). This forces the diseased components of all 

cohorts to be from the same background distribution but retains their relative distance from 

the healthy component (t statistics within data sets are only different post-COCONUT 

because of floating-point math). It also does not require any a priori knowledge of disease 

classification (such as bacterial or viral infection), thus meeting our prespecified criteria. 

This method does have the notable requirement that healthy/control patients are required to 

be present in a data set for it to be pooled with other available data. Also, because healthy/

control patients are set to be in the same distribution, it should only be used where such an 

assumption is reasonable (such as within the same tissue type, among the same species, 

etc.).
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The ComBat model and the COCONUT method

As described by Johnson et al., the ComBat model corrects for location and scale of each 

gene by first solving an ordinary least-squares model for gene expression and then shrinking 

the resulting parameters using an empirical Bayes estimator, solved iteratively (31). 

Formally, each gene expression level Yijg (for gene g for sample j in batch i) is assumed to 

be composed of overall gene expression αg, design matrix of sample conditions X with 

regression coefficients βg, additive and multiplicative batch effects γig and δig, and an error 

term εijg

Estimating parameters using ordinary least-squares regression standardizes Yijg to a new 

term Zijg (where σ̂g is the SD of εijg)

The standardized data are now distributed according to , where 

 and .

The inverse γ is assumed as a standard uninformative Bayesian prior. The remaining 

hyperparameters are estimated empirically, with the derivation and solution found in the 

original reference (31). The estimated batch effects  and  can then be used to adjust the 

standardized data to an empirical Bayes batch-adjusted final output 

In our modified version of this method (COCONUT), all of the above are performed 

according to the original method without modification. However, it is applied to only the 

healthy/control patients in each data set (Y is a matrix of only healthy patient samples). The 

estimated parameters α̂, β̂, σ̂, δ*, and γ* are all taken and applied directly to a matrix D that 

consists only of diseased patient sample (which must be ordered in the same manner as Y)
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We can thus obtain a batch-corrected version of diseased samples D*, which corrects for the 

differences between healthy controls but does not change each submatrix Di with respect to 

each Yi.

Global ROCs

We used COCONUT conormalization to test (i) all discovery cohorts and (ii) all validation 

cohorts, even those containing only bacterial or only viral illness. We did this separately for 

the PBMC and whole-blood data, for reasons described previously. After conormalization, 

the distributions for the individual cohorts were plotted together to allow for direct 

comparison. For each plot, we show (i) the distribution of scores for each data set, (ii) the 

normalized gene expression for each gene within the diagnostic test, and (iii) the 

housekeeping genes that are expected to show no difference between classes based on meta-

analysis. The healthy patients have been removed from these plots. However, to show that 

the distributions of genes between healthy and diseased patients within cohorts do not 

change after COCONUT conormalization, we have also shown plots with both patient types 

with both target genes and housekeeping genes (fig. S8). Genes with minimal effect size and 

minimal variance in meta-analysis were selected as housekeeping genes.

For each comparison, a single global ROC AUC was calculated, and a single threshold was 

set to allow for an estimate of the real-world diagnostic performance of the tests. Thresholds 

for the cutoffs for bacterial versus viral infection were set to approximate a sensitivity of 

90% for bacterial infection, because a bacterial infection false-negative (the recommendation 

not to give antibiotics when antibiotics are needed) can be devastating.

Integrated antibiotics decision model

The SMS can discriminate between patients with severe acute infections and those with 

inflammation from other sources, but it cannot distinguish between types of infection (fig. 

S1). We thus tested an IADM, in which the 11-gene SMS is applied, followed by the 7-gene 

bacterial/viral metascore. This model thus identifies (i) whether a patient has an infection 

and, if so, (ii) what type of infection is present (bacterial or viral). We were unable to 

identify enough validation cohorts with patients with noninfected inflammation that also 

included healthy controls; thus, in constructing the global ROCs, we used both discovery 

and validation cohorts. Using COCONUT conormalization, we set global thresholds across 

all included cohorts, and these were applied to each individual data set to test the ability of 

the IADM to correctly distinguish patients with noninfectious inflammation, bacterial 

infection, and viral infection. Healthy patients were not included as a diagnostic class 

because they were used in the conormalization procedure. The IADM was also applied 

separately to all cohorts that had no healthy controls but that included (i) noninfected SIRS 

patients and (ii) patients with both bacterial and viral infections.

Because the PPV and NPV are dependent on prevalence and the prevalence of infections in 

the data used here does not match the prevalence of infections in a hospital setting, we 

calculated PPV and NPV curves on the basis of the sensitivity and specificity for bacterial 

infections attained with the IADM. Formally, NPV = specificity × (1 − prevalence)/((1 − 
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sensitivity) × prevalence + specificity × (1 − prevalence)); PPV = sensitivity × prevalence/

(sensitivity × prevalence + (1 − specificity) × (1 − prevalence)).

NanoString validation

We tested 96 samples from independent patients (those never profiled via microarray) from 

the GPSSSI trials (18–22) using a targeted NanoString (56) digital multiplex gene 

quantitation assay. The 18 genes were re-normalized to housekeeping genes (FRAS1 and 

LRRC17). The SMS and bacterial/viral metascore genes were both assayed, and the 

diagnostic performance of the IADM was calculated.

Data and source code availability

All analyses were conducted in the R statistical computing language (version 3.1.1). Code to 

recreate the multicohort meta-analysis, the COCONUT R package source code, and the 

COCONUT-normalized data used here have been deposited and are available at http://

khatrilab.stanford.edu/sepsis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Summary ROC curves for discovery and direct validation data sets for the bacterial/viral 
meta-score
Summary ROC curve is shown in black, with 95% CIs in dark gray.
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Fig. 2. Bacterial/viral score in COCONUT-conormalized whole-blood validation data sets
The global AUC across all whole-blood discovery data sets is 0.93. Top: Score distribution 

by data set (blue, bacterial; red, viral). Middle: Individual gene expression (exp.). Bottom: 

Housekeeping genes (grayscale). The dotted line at the top shows a possible global threshold 

for discriminating infection type.
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Fig. 3. IADM across COCONUT-conormalized public gene expression data that matched 
inclusion criteria
(A) IADM schematic. (B) Distribution of scores and cutoffs for IADM in COCONUT-

conormalized data. SIRS, systemic inflammatory response syndrome. (C) Confusion matrix 

for diagnosis. Bacterial infection sensitivity, 94.0%; bacterial infection specificity, 59.8%; 

viral infection sensitivity, 53.0%; viral infection specificity, 90.6%.
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Fig. 4. Targeted NanoString gene expression data for children with SIRS/sepsis from the GPSSSI 
cohort never tested with microarrays
Total n = 96, of which SIRS = 36, bacterial sepsis = 49, and viral sepsis = 11. (A) 

Breakdown of infected patients by organism type. (B and C) ROC curves for the SMS and 

the bacterial/viral metascore. (D) Distribution of scores and cutoffs for IADM. (E) 

Confusion matrix for IADM. Bacterial infection sensitivity, 89.7%; bacterial infection 

specificity, 70.0%; viral infection sensitivity, 54.5%; viral infection specificity, 96.5%.
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