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Summary

Genomic rearrangements resulting in activating kinase fusions have been increasingly described in 

a number of cancers including malignant melanoma, but their frequency in specific melanoma 

subtypes has not been reported. We used break-apart fluorescence in-situ hybridization (FISH) to 

identify genomic rearrangements in tissues from 59 patients with various types of malignant 

melanoma including acral lentiginous, mucosal, superficial spreading, and nodular. We identified 

four genomic rearrangements involving the genes BRAF, RET, and ROS1. Of these, three were 

confirmed by IHC or sequencing and one was found to be an ARMC10-BRAF fusion that has not 

been previously reported in melanoma. These fusions occurred in different subtypes of melanoma 

but all in tumors lacking known driver mutations. Our data suggest gene fusions are more common 

than previously thought-and should be further explored particularly in melanomas lacking known 

driver mutations.
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Introduction

Metastatic melanoma is an aggressive cancer which until recently had a 5-year survival rate 

of less than 15% when spread to distant sites (Leung et al., 2012, Chang et al., 1998). 

Approximately 90% of all melanomas arise on chronically sun-damaged skin or 

intermittently sun-exposed skin, traditionally classified into superficial spreading, lentigo 

maligna, and nodular subtypes (Bulliard et al., 2007, Whiteman et al., 2006, Shain and 

Bastian, 2016). The second most common type of melanoma (4%) is uveal melanoma, 
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which occurs in the pigmented areas of the eye and is also partially related to UV exposure 

(Singh et al., 2011, Pane and Hirst, 2000). Although less common, other types can arise on 

non-sun-exposed areas such as acral lentiginous melanomas and mucosal melanomas. Acral 

lentiginous melanomas account for 2-3% of all melanomas and occur on non-glabrous skin 

such as the palms of the hands, soles of the feet, and underneath fingernails and toenails 

(Phan et al., 2007, Bradford et al., 2009). Mucosal melanomas (1%) arise in mucosa of the 

sinonasal, oral, anorectal, or vulvovaginal regions (Chang et al., 2015). While these 

melanoma subtypes differ in their location and molecular characteristics, they are all 

aggressive once they have metastasized and typically respond poorly to currently available 

therapy (Bhatia et al., 2009).

Nearly 50% of patients with cutaneous melanoma have an activating mutation in BRAF of 

which V600E is the most common mutation, which can be treated with inhibitors specific 

for the BRAFV600E mutation or its downstream kinase MEK (Davies et al., 2002 Davies et 

al., 2015, McArthur et al., 2014, Holderfield et al., 2014). However, BRAFV600E mutations 

are less common in other melanoma subtypes (approximately 10-15% in acral lentiginous 

and mucosal melanomas) (Yamazaki et al., 2015, Menzies et al., 2012, Lee et al., 2011, 

Sasaki et al., 2004). Other oncogenic driver mutations in genes such as NRAS, KIT, GNAQ, 

and GNA11 have been identified in different melanoma subtypes but at a much lower 

frequency (Hodis et al., 2012). Overall, approximately 25% of cutaneous melanomas and 

nearly 40-50% of non-cutaneous melanomas lack these common driver mutations (“pan-

negative”) and have no targeted therapy options available (Xia et al., 2014).

An alternate mechanism of BRAF activation, gene fusion, has been identified across several 

cancer types and has been found in a small percentage of cutaneous melanomas (Hutchinson 

et al., 2013, Menzies et al., 2015, Ross et al., 2015, Palanisamy et al., 2010, Botton et al., 

2013, Stransky et al., 2014). Genomic alterations include structural changes in 

chromosomes. Gene fusions are the result of genomic rearrangements that join two 

previously separated genes. Oncogenic fusions in common kinases such as BRAF, ALK, 

MET, ROS1, RET, and NTRK1 have been found in Spitz nevi and Spitzoid melanomas 

(Wiesner et al., 2014, Yeh et al., 2015). Analysis of the TCGA database containing 328 

cutaneous melanomas identified 223 different fusion events including BRAF and RAF1 
kinases, however no fusions in ALK, ROS1, RET, or NTRK1 were identified in this set of 

cutaneous melanomas (Cancer Genome Atlas, 2015). In a recent study, ALK fusions were 

reported in 4/30 (13%) of acral lentiginous melanomas, and none were identified in the 

mucosal melanomas (Niu et al., 2013). These studies suggest that the genes involved in 

oncogenic fusion events in melanoma may be subtype-specific, however the frequency of 

BRAF, ALK, ROS1, RET, and NTRK1 fusions has not been systematically studied across 

different melanoma subtypes. Characterizing kinase fusions in specific melanoma subtypes 

is critical in understanding the development of these melanomas and devising new treatment 

strategies.

In this study, we used break-apart fluorescence in situ hybridization (FISH) to screen for 

kinase rearrangements in BRAF, ALK, ROS1, RET, and NTRK1 in different subtypes of 

melanoma from 59 patients. We identified genomic rearrangements in tumors from four 

patients involving BRAF, RET, and ROS1. These rearrangements occurred in superficial 
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spreading, acral lentiginous, and unknown primary subtypes, and we demonstrated three out 

of four rearrangements result in gene fusions by IHC or targeted RNA sequencing. These 

findings highlight the differences in gene rearrangements between specific melanoma 

subtypes, and prompt further characterization of the gene fusion landscape in all types of 

melanomas.

Results

Break-apart FISH identifies genomic alterations in RET, ROS1, NTRK1, and BRAF

In order to identify genomic rearrangements in BRAF, ALK, RET, ROS1, and NTRK1 
kinase genes, we used break-apart FISH to screen 98 samples from 59 patient tumors (27 

primary and 32 metastatic) across multiple subtypes including superficial spreading, 

nodular, acral lentiginous, mucosal, lentigo maligna, desmoplastic, and unknown primary 

(Table 1). We identified 4 samples that had genomic rearrangements (Figure 1A, D-F) and 2 

samples that showed an atypical hybridization pattern of NTRK1 (Figure 1B-C).

One sample from a patient with acral lentiginous melanoma of the plantar surface of the foot 

(#30) had a RET hybridization pattern showing single copies of the 3′ probe consistent with 

a rearrangement (Figure 1A). Another sample from a patient with acral lentiginous foot 

melanoma (#29) had an atypical FISH pattern for NTRK1. In this sample, there was both 

clustering of the NTRK1 signal and separation of the 3′ and 5′ signals (Figure 1B). The 

distance between them was, however, below the scoring threshold used to indicate the 

presence of a break in the gene. Multiple samples from this case were examined by FISH 

and interestingly the different samples had discordant results. Two samples were classified 

as NTRK1 atypical while two other samples from the same tumor were classified as negative 

for any atypical NTRK1 patterns suggesting intra-tumoral heterogeneity. H&E staining and 

NTRK1 FISH analysis of the original patient specimen showed the negative biopsies were 

taken from a region which contained only early stage in-situ melanoma cells, whereas the 

NTRK1 atypical biopsies were taken from a region of the same sample which contained 

more advanced vertical growth phase tumor cells (Fig. S1). An atypical FISH pattern for 

NTRK1 was also observed in a nasal sinusoid mucosal melanoma sample (#41), where 

single signals of the 5′ portion of NTRK1 were adjacent to an intact copy of the NTRK1 
gene (Figure 1C). Both NTRK1 atypical hybridization patterns suggest the presence of an 

unknown genomic alteration but does not indicate a rearrangement or a gene fusion. These 

three cases are the first demonstrations of RET and NTRK1 genomic alterations in 

melanoma subtypes other than Spitz nevus and Spitzoid melanoma.

Samples from eleven superficial spreading cutaneous melanomas were examined and two 

had rearrangements. A ROS1 rearrangement was identified in a sample from patient #8 

where single signals were observed for the 3′probe (Figure 1D), and in a sample from 

patient #9 a BRAF rearrangement was identified with split 3′and 5′ signals (Figure 1F). 

Samples from four unknown primary melanomas were included in the analysis. A BRAF 
rearrangement with extra copies of single 3′BRAF signals was observed in a metastatic 

lymph node in one patient with an unknown primary melanoma (Figure 1E). Overall, 2 out 

of 11 superficial spreading melanomas (18.2%), 1 out of 17 acral lentiginous melanomas 

(5.9%), and 1 out of 3 unknown primary tumors (33%) had genomic rearrangements.
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NTRK1, RET, and ROS1 expression in tumors with genomic rearrangements

Rearranged or atypical hybridization patterns by FISH do not necessarily indicate a 

functional gene fusion event. We used immunohistochemistry (IHC) with kinase-domain 

specific antibodies for NTRK1, RET, and ROS1 to determine if protein was expressed in the 

rearranged or atypical samples. The sample from patient #30 with a RET rearrangement 

from an early-stage primary in-situ acral lentiginous melanoma showed protein expression 

suggesting the presence of a functional gene fusion (Figure 2A).

The sample from patient #29 with an atypical NTRK1 FISH hybridization pattern showed 

scattered expression of the NTRK1 protein suggesting the atypical genomic alteration results 

in protein expression (Figure 2B). Expression of NTRK1 was observed only in scattered 

malignant melanocytes in the sample from patient #41 (Figure 2C) and was substantially 

different from patient #29. The conclusion from IHC is consistent with the FISH analysis 

which found different genomic events between the two tumors.

No IHC expression of ROS1 was demonstrated for patient #8 (Figure 2D). Real-time qPCR 

was also performed on tumor tissue and ROS1 transcript expression was undetectable, 

confirming the negative IHC result (Fig. S3). These data suggest the genomic rearrangement 

did not result in a functional gene fusion.

Characterization of BRAF rearrangements

BRAF fusions in melanoma have been reported to occur frequently in tumor samples with a 

Spitz-like morphology (Menzies et al., 2015, Botton et al., 2013). Both of our samples with 

BRAF rearrangements were examined by an experienced dermatopathologist, and did not 

show Spitz cytomorphology (Figure 3A). We performed targeted RNA sequencing for each 

sample positive for a BRAF rearrangement and identified the BRAF fusion transcripts and 

5′ gene partners.

In the metastatic sample from patient #9 with superficial spreading melanoma, an AGK-
BRAF fusion transcript was found that fused exon 2 of AGK with exons 8 through 18 of 

BRAF (Figure 3B). The sample from patient #56, a melanoma of unknown primary, was 

found to have an ARMC10-BRAF transcript with a fusion of exons 1-4 of ARMC10 and 

exons 11-18 of BRAF (Figure 3B). The fusion and breakpoint were confirmed for both 

patient samples using RT-PCR and Sanger sequencing (Figure 3C). AGK-BRAF fusions 

have been previously identified in melanomas (Menzies et al., 2015, Botton et al., 2013), 

however, this is the first report of an ARMC10-BRAF fusion occurring in a melanoma.

Classification of genomic alterations

Break-apart FISH analysis identified genomic rearrangements in tumors from four 

melanoma patients. Tumor from patient #30 with a RET rearrangement also had positive 

RET IHC staining. Because RET is normally hardly detectable, positive RET staining 

suggests upregulation due to a gene fusion. There was, however, not sufficient tumor 

material for confirmation by targeted RNA sequencing (Table 2). Tumor from patient #8 

with a ROS1 rearrangement was negative for ROS1 protein expression by IHC, therefore a 

functional kinase fusion did not occur. Targeted RNA sequencing was performed on RNA 
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from this tumor, and as expected, no ROS1 fusion transcripts were identified (Table 2). This 

result is consistent with our real-time qPCR data (Fig. S3). BRAF rearrangements in tumors 

from patients #56 and #7 were confirmed using targeted RNA sequencing. Melanomas 

express endogenous BRAF protein so IHC cannot be used for validation (Table 2). 

Therefore, we identified a total of three kinase fusions occurring in BRAF and RET genes.

Tumors from two patients, #29 and #41, were negative for rearrangements in the break-apart 

FISH analysis but had atypical hybridization patterns for NTRK1. Although these tumors 

did not have rearrangements, they were IHC positive for NTRK1 suggesting unknown 

genomic alterations led to expression of NTRK1 protein. –p0trrr cccl>

Kinase fusions occur in pan-negative patient samples

Using next generation whole exome sequencing, we examined all samples for the presence 

of mutations in seven common melanoma driver genes (BRAF, NRAS, KRAS, HRAS, KIT, 

GNAQ, and GNA11) as well as NF1, which has been recently described as a major subgroup 

of melanoma

Consistent with previous observations, all 6 samples with genomic alterations detected by 

FISH, across different subtypes, occurred in pan-negative melanoma patients whose tumor 

lacked any known hotspot mutations in common driver genes (Figure 4) (Botton et al., 2013, 

Hutchinson et al., 2013). We observed an NF1 mutation in the ROS1 rearranged superficial 

spreading melanoma tumor, however this rearrangement did not result in a functional gene 

fusion. The frequency of kinase fusions within the subset of pan-negative melanomas 

showed strong enrichment in cutaneous, acral lentiginous, and unknown primary subtypes 

compared to the overall frequency (Table 3). These findings suggest kinase fusions are more 

frequent across multiple subtypes of pan-negative melanomas.

Discussion

In this study we report a high frequency of kinase fusions in pan-negative melanoma 

samples across different subtypes, which lack common driver gene mutations. We identified 

a RET fusion in an acral lentiginous melanoma and unknown genomic alterations in NTRK1 
in acral lentiginous and mucosal melanomas. These genomic alterations have not been 

previously described in melanoma. We did not find RET and NTRK1 alterations in 

cutaneous melanoma subtypes. Conversely, we observed BRAF fusions in cutaneous 

melanoma subtypes but not in acral lentiginous or mucosal melanomas. Finally, we did 

observe a ROS1 rearrangement in a cutaneous superficial spreading melanoma although lack 

of expression suggests this may not be a functional gene fusion. Our patient numbers are not 

large enough to conclude that these events are mutually exclusive.

Kinase fusions in NTRK1 and RET have been previously reported in Spitz neoplasms 

(Wiesner et al., 2014) but have yet to be described in malignant melanoma. Here, we 

identified the first case of a RET fusion in an acral lentiginous melanoma. Acral lentiginous 

melanomas are known to have a lower mutational burden, but higher levels of genomic 

instability and more DNA copy number alterations (Curtin et al., 2005). We also found an 

atypical FISH pattern in an acral lentiginous melanoma which corresponded with NTRK1 
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protein expression. Interestingly, the atypical NTRK1 FISH pattern was observed in more 

advanced vertical growth phase cells but not early stage melanoma in-situ tumor cells, 

suggesting the development of the atypical NTRK1 genomic alteration may be associated 

with melanoma progression. Further investigation of the genomic NTRK1 region is required 

to fully understand our observations and the tumorigenic potential and significance of 

NTRK1 alterations in melanoma.

In our cohort, we also observed a ROS1 rearrangement by FISH which did not express 

protein by IHC. To rule out the possibility of a false negative IHC result, we ran the samples 

with positive and negative controls that were stained within two hours of being cut (Fig. S2). 

The results were unchanged. Hence, the probability for a false negative outcome by IHC is 

unlikely. We also performed real-time qPCR and did not detect any ROS1 transcript 

expression (Fig. S3). Alternate explanations for the inconsistency between the ROS1 
rearrangement FISH and IHC results include a 5′ gene partner that is not expressed or an 

intergenic rearrangement where ROS1 does not have a 5′ gene partner.

Detection of activating rearrangements in the clinical arena can be complex and time-

consuming. Structural genomic alterations such as potential gene fusions can be identified 

using FISH, but their expression must be confirmed by other methods since these alterations 

are not always functional. Using break-apart FISH as the only molecular diagnostic 

technique may result in false negatives when the target genes are in the same chromosome 

and are located less than 10 Mbp apart, unless the fusion is generated by a chromosomal 

deletion which encompasses the sequences of one of the probes. Examples of this have been 

observed with the EML4-ALK rearrangements in lung adenocarcinoma (Ying et al., 2013). 

IHC can generate false positives when protein expression is a consequence of pathway 

crosstalk (Sullivan et al., 2015). Multiplex analysis, such as joint FISH and IHC, increases 

the likelihood of detection and has been shown to increase efficacy of detection in contrast 

to single screening techniques. Nonetheless, there may still be discordant outcomes which 

could be a causal result of tumor heterogeneity, out-of-frame rearrangements, or minimally 

expressed fusion transcripts. Lambros et al. suggested using a massive parallel sequencing 

technique (MassARRAY) in conjunction with FISH and IHC to decrease the possibility of 

false positive or false negative results (Lambros et al., 2011). Overall there are 

methodological advantages and drawbacks to both FISH and IHC. In addition, FISH is of 

limited value in detecting new and previously undescribed rearrangements. This is obviously 

best done using RNA techniques as have been previously described (Lambros et al., 2011). 

We think multiplex analysis using a combination of FISH, RNA analysis, IHC, and other 

expression techniques will be needed to uncover a multitude of gene rearrangements 

important in the pathophysiology and treatment of melanoma and other cancers.

Altogether, our findings from FISH and IHC analyses may have clinical significance. We 

observed a high frequency of kinase fusions in pan-negative melanomas across most clinical 

subtypes. Kinase fusions are actionable therapeutic targets in other cancers and the same 

may be true for melanoma (Downing, 2008, Shaw and Engelman, 2014, Shaw et al., 2014, 

Shaw et al., 2013, Ross et al., 2015, Palanisamy et al., 2010). The demonstration here of 

activating kinase fusions in melanoma, particularly in pan-negative patient tumors, suggests 

expanded screening for fusions in patients with metastatic malignant melanoma should be 
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considered. The data presented likely provides only a limited scope of the frequency of 

fusions in melanoma. Further work in this area is warranted and could uncover other gene 

fusions that are important in the development, growth and treatment of melanoma.

Materials and Methods

Melanoma patient samples

Ninety-eight samples from 59 melanoma patients from the University of Colorado Denver 

Hospital, from 2008-2015, were included in the analysis. These were obtained as part of the 

International Melanoma Biorepository and Research Laboratory at the University of 

Colorado Cancer Center, with patient consent and approval from the Colorado Institutional 

Review Board (IRB# 05-0309). A total of 98 samples were randomly selected from 

superficial spreading, nodular, acral lentiginous, mucosal, desmoplastic, and unknown 

primary melanoma subtypes. Formalin-fixed, paraffin-embedded (FFPE) tissue microarrays 

(TMAs) were made from 1.5 mm punches of melanoma patient tumor FFPE blocks.

Break-apart fluorescence In Situ hybridization

This technique uses two different colored fluorescent FISH probes designed in the 5′ and 

3′portion of a gene to identify potential gene fusions. The two signals will overlap in normal 

cells, but there will be only one signal or split apart signals in cells where a genomic 

rearrangement in the gene has occurred. Dual-colored FISH assays were performed using 

break-apart (BA) probes for ALK, BRAF, RET, and ROS1 genes, using commercial 

reagents (Abbott Molecular). The NTRK1 probe was developed in our laboratory as 

previously described (Vaishnavi et al., 2013). The BRAF BA probe set was developed for 

this study using BAC clones RP11-837G3 and RP11-948O19 containing human DNA 

inserts from regions homologous to the 3′and 5′ end of BRAF, respectively. The signals 

from these clones were overlapped or very close in the native copy of the gene. Assays in the 

tissue microarrays (TMAs) were performed as previously described (Toschi et al., 2014).

The BA FISH analyses were conducted as previously described with minor modifications 

(Davies et al., 2012). Duplicate tissue cores for one or more specimens per patient were 

analyzed. A total of 50 cells were scored in each core. For each probe set, 3′and 5′ signals 

physically separated by ≥1 signal diameter were considered split. Specimens were 

considered positive for specific gene rearrangement if >15% of the cells showed split signals 

or single 3′or 5′ signals.

Immunohistochemistry

Archival FFPE specimens were stained as previously described (Narita et al., 2009, Zhang et 

al., 2005), with the following modifications and antibodies: NTRK1 staining was performed 

with citrate buffer target retrieval solution (TRS pH 6) and a one hour room temperature 

incubation with primary rabbit monoclonal [EP1058Y] TrkA antibody (ab76291, dilution: 

1:500), followed by secondary antibody (Dako Envision+ Anti-Rabbit K4003, pre-prepared 

standard dilution (Elias et al., 1989)). RET staining was performed with citrate buffer target 

retrieval solution (TRS pH 6) and a one hour room temperature incubation with primary 

rabbit monoclonal [EPR2871] anti-RET antibody (ab134100, dilution: 1:50), followed by 
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secondary antibody (Dako Envision+ Anti-Rabbit K4003, pre-prepared standard dilution 

(Elias et al., 1989)). ROS1 staining was performed using ROS1 monoclonal antibody (Cell 

Signaling D4D6®, dilution: 1:25) under previously reported conditions (Boyle et al., 2015).

Next-generation whole exome sequencing

Whole exome sequencing was done on samples from 51/59 melanoma patients. Blood 

samples were collected in PAXGene DNA tubes and stored at 4°C until processed. 

Depending on material, tissue genomic DNA was isolated using the DNeasy Blood and 

Tissue kit or the QiaAmp DNA FFPE kit. DNA concentration and purity was determined 

using Qubit (Thermo Fisher Scientific) and Agilent 2100 bioanalzyer analysis. 200 ng of 

genomic DNA was sheared using Covaris S220 at 150bp. Sheared DNA was end-repaired 

and used to construct the exome library following Agilent SureSelect XT Target Enrichment 

System for Illumina Paired End Multiplexed Sequencing Library (cat# G9641B). Exome 

capture was done through hybridization using XT5 probe. Resulting captured libraries were 

indexed and purified. The cDNA library was validated on the Agilent 2100 Bioanalzyer 

using DNA-1000 chip. Libraries were sequenced on the Illumina HiSeq 2000 with 125 bp 

pair-end reads. We obtained an average of 400× and 200× sequencing coverage for the 

cancer and normal exomes, respectively. Data for blood and tissue samples were analyzed 

using the data analysis pipeline IMPACT (Hintzsche et al., 2016), and germ line variants 

identified in normal blood were removed.

Targeted RNA sequencing

RNA was isolated from fresh frozen patient tumor tissue using the RNeasy Plus Mini Kit 

(Qiagen). Tissues were homogenized with the TissueLyser II (2 × 2 minutes at 30 Hz) and 

on-column DNAse I digest was performed per protocol using the RNAse-free DNAse I set 

(Qiagen). Library preparation and sequencing were performed by the University of Colorado 

Denver Genomics and Microarray Core. Targeted libraries were generated using the Ovation 

cDNA module and Ovation Fusion Panel Target Enrichment System (NuGEN, Inc.) with 

250 ng - 750 ng RNA input as previously described (Scolnick et al., 2015). Paired-end 

sequencing (2 × 75 bp) was performed on a MiSeq instrument (Illumina) and approximately 

1.5 million total reads were collected for each sample. Fusions were detected by analyzing 

FASTQ files on the BaseSpace data analysis hosting platform (Illumina) using the NuGEN 

Ovation Fusion Target App (NuGEN).

RT- PCR, Sanger sequencing

RNA was isolated from fresh frozen patient tumor tissue using the RNeasy Plus Mini Kit 

(Qiagen). Tissues were homogenized with the TissueLyser II (2 × 2 minutes at 30 Hz) and 

on-column DNAse I digest was performed per protocol using the RNAse-free DNAse I set 

(Qiagen). RNA was reverse transcribed into cDNA using the Verso cDNA Synthesis Kit 

(Thermo Scientific). PCR was performed using primers specific for the AGK-BRAF fusion 

(CGCTTCGAAATCACTGGAAGAA (sense); CCACGAAATCCTTGGTCTCTAATC (anti-

sense)) and ARMC10-BRAF fusion (TCGCAGCCTGAAGACTTAAC (sense); 

GTGGAATAGCCCATGAAGAGTAG (anti-sense)). PCR products were purified using the 

QIAquick PCR purification kit (Qiagen) and submitted to the Barbara Davis Center for 
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sequencing using the BigDye Terminator Cycle Sequencing Ready Reaction kit version 3.1 

(Applied Biosystems) with both forward and reverse primers used in the PCR reactions.

Quantitative Real-Time PCR

The real-time PCR reaction was done in triplicate using PowerUp SYBER Green master mix 

(Thermo Scientific) and was analyzed on the StepOne Plus real-time PCR system (Applied 

Biosystems). Primer sequences are as follow: exons 1-2 (TCCGAAGCTTGTCAATTTTGC 

(sense); TGTGCCAAGGTCAAGCTG (anti-sense)), exons 3-4 

(AGGATGTCACTTTTGGAACTCTG (sense); TCTTCATATGCACCTTCCGC (anti-

sense)), exons 36-37 (AAACTGACTCTGCGTCTCTTG (sense); 

CTTCTCCTGGTCTGTGGAAC (anti-sense)), exons 40-41 

(GATGGCTCCAGAAAGTTTGATG (sense); TGCACATAGTTTAACACATCAAGG (anti-

sense)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Driver mutations, which can be targeted therapeutically, occur in approximately 50% of 

patients with malignant melanoma. We show here that 3/59 (5.1%) of all melanoma 

patients and 3/33 (9.1%) of melanoma patients with tumors lacking hotspot mutations in 

common driver genes have kinase fusions that may serve as targets for therapeutic 

intervention. Our data suggest that broader screening for kinase fusions in melanoma 

should become part of clinical practice.
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Figure 1. 
FISH images show rearrangements and alterations in different melanoma subtypes. 

Representative FISH images from tumors with rearrangement or atypical staining patterns. 

(A) An acral lentiginous melanoma from patient #30 harboring a RET rearrangement where 

single copies of the 3′probes are observed (white arrows). This sample is classified as a 

rearrangement. (B) An acral lentiginous melanoma from patient #29 shows an NTRK1 

atypical FISH pattern including mini clusters of both probe signals (white arrows). This 

sample is classified as an unknown genomic alteration. (C) A mucosal melanoma with 

NTRK1 atypical FISH pattern where single copies of the 5′ probes are seen adjacent to 

intact copies of NTRK1 (white arrows). This sample is classified as an unknown genomic 

alteration. (D) A superficial spreading melanoma from patient #8 shows single copies of the 

3′ROS1 probe (white arrows). This sample is classified as a rearrangement. (E) An 

unknown primary melanoma from patient #56 shows single copies of the 3′BRAF probe 

(white arrows). This sample is classified as a rearrangement. (F) A superficial spreading 

melanoma from patient #7 shows single copies of the 3′BRAF probe. This sample is 

classified as a rearrangement.
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Figure 2. 
Immunohistochemistry analysis of tumor samples with RET, and ROS1 genomic 

rearrangements and NTRK1 unknown genomic alterations. IHC analysis of tumors with 

rearrangement or atypical FISH hybridization pattern. (A) Tumor from patient #30, 

identified with a RET rearrangement by FISH, shows staining with the brown DAB 

chromagen (left panel) indicating expression of the RET protein. The H&E section of this 

tumor (right panel) shows large, pleomorphic tumor cells with some blood. (B) NTRK1 

staining (black arrows) of a red chromagen in of an acral lentiginous melanoma from patient 

#29 with an unknown genomic alteration is shown (left panel) and the H&E stain of 

malignant tumor cells is shown (right panel). (C) Lower protein expression for NTRK1 is 

seen in scattered tumor cells precipitating the red chromagen (black arrow) in a sample from 

patient #41 (left panel) that was identified with an unknown genomic alteration by FISH. 

The matched H&E section (right panel) shows small amounts of melanin (brown pigment) 

are scattered throughout the section. (D) ROS1 IHC (left panel) of a superficial spreading 

melanoma from patient #8 found to have a ROS1 genomic rearragnement by FISH. The 

ROS1 IHC does not show any staining of the brown DAB chromagen (left panel) and thus is 

negative for ROS1 protein expression. The H&E stain of the tumor is shown (right panel).
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Figure 3. 
Characterization and validation of BRAF fusions in rearranged samples. (A) Representative 

H&E stained images from each BRAF fusion tumor show lack of Spitz associated 

morphology in these tumors. (B) Schematic of exonic breakpoints in the BRAF fusions. 

Targeted RNA sequencing was used to identify the breakpoints and 5′ partners for each 

BRAF fusion. (C) Sanger sequencing confirmation of BRAF fusion transcripts. RT-PCR 

products for each fusion were sequenced and chromatograms confirm in-frame transcripts 

for ARMC10-BRAF and AGK-BRAF fusions with the expected breakpoints.
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Figure 4. 
Genomic alterations occur in melanomas without hotspot mutations in common driver genes 

in all subtypes. Results from the FISH analysis and whole exome sequencing are presented 

for each melanoma patient sample. Samples were classified positive if > 15% of cells 

exhibited rearrangement patterns. Samples were classified as atypical if they had a consistent 

atypical FISH hybridization pattern and were not positive for rearrangement. Patients within 

each subtype are grouped by the presence of driver mutations, followed by the presence of 

genomic rearrangements or alterations. Dark grey bars indicate missing data for the FISH 

analysis (failure of hybridization for that specific gene) and the whole exome sequencing 

analysis (failure of library preparation for sequencing or insufficient material to use for 

sequencing analysis). Clinical information was analyzed for mutation testing in patients 

where samples were unable to be sequenced, and resulted in only partially missing driver 

gene mutation status for some patients.
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Table 3
Kinase fusion frequency in melanomas

Subtype

Number of kinase fusions

All patients Pan-negative patients

Superficial spreading 1/11 (9.1%) 1/6 (16.7%)

Nodular 0/11 (0%) 0/7 (0%)

Acral lentiginous 1/17 (5.9%) 1/5 (20%)

Mucosal 0/14 (0%) 0/12 (0%)

Unknown primary 1/3 (33.3%) 1/1 (100%)

Lentigo 0/2 (0%) 0/1 (0%)

Desmoplastic 0/1 (0%) 0/1 (0%)

Total: 3/59 (5.1%) 3/33 (9.1%)
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