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Summary: In addition to strategies designed to decrease amy-
loid beta (A�) levels, it is likely that successful Alzheimer’s
disease (AD) therapeutic regimens will require the concomitant
application of neuroprotective agents. Elucidation of patho-
physiological processes occurring in AD and identification of
the molecular targets mediating these processes point to poten-
tial high-yield neuroprotective strategies. Candidate neuropro-
tective agents include those that interact specifically with neu-
ronal targets to inhibit deleterious intraneuronal mechanisms
triggered by A� and other toxic stimuli. Strategies include
creating small molecules that block A� interactions with cell
surface and intracellular targets, down-regulate stress kinase

signaling cascades, block activation of caspases and expression
of pro-apoptotic proteins, and inhibit enzymes mediating ex-
cessive tau protein phosphorylation. Additional potential neu-
roprotective compounds include those that counteract loss of
cholinergic function, promote the trophic state and plasticity of
neurons, inhibit accumulation of reactive oxygen species, and
block excitotoxicity. Certain categories of compounds, such as
neurotrophins or neurotrophin small molecule mimetics, have
the potential to alter neuronal signaling patterns such that sev-
eral of these target actions might be achieved by a single agent.
Key Words: Alzheimer, neuroprotection, amyloid, stress ki-
nase, neurotrophin.

Potential impacts of neuroprotection on AD
This review will focus on strategies targeted to neu-

rons and designed to decrease their vulnerability to neu-
rodegenerative mechanisms occurring in Alzheimer’s
disease (AD). Potential therapies intended to decrease
amyloid burden1,2 or inflammatory processes3,4 have
been covered in recent reviews. Implicit in neuroprotec-
tion is the concept of delaying onset or slowing progres-
sion of AD. The late onset of symptomatic impairment in
the majority of AD cases creates a particularly high-
impact opportunity for neuroprotective strategies that
achieve even modest delays in disease onset. Delaying
disease onset by only 2 years would have a marked
impact on reducing prevalence and a 5-year delay would
reduce AD prevalence by half.5,6 Delaying onset by 10
years would, for the majority of individuals, eliminate
symptomatic AD as a significant factor in advanced age.
Once AD is present, delaying losses of independent ac-
tivities of daily living or nursing home placement would

markedly decrease costs associated with caregiver stress
and nursing home care.

Will neuroprotection play a critical role in AD
therapeutics?

Given the substantial body of evidence suggesting that
the accumulation of amyloid beta (A�) is a major and
early causative process in AD7 it can be argued that
treatments decreasing levels or availability of toxic
forms of A� will constitute high-priority, first-tier treat-
ment strategies while neuroprotective strategies focused
on non-A� targets might play a supportive, less critical
role. Promising approaches for decreasing A� levels in-
clude inhibition of A� generation, reduction of soluble
A� levels and enhancement of A� clearance from the
CNS.1,8 While development of A�-based treatments fol-
lows logically from known A� mechanisms, a number of
factors might limit the effectiveness of such treatments if
applied in isolation. First, the degree to which A� levels
need to be reduced to delay onset or slow progression of
AD is unknown. If A� levels are several-fold above
those capable of causing maximum rates of neural de-
generation, a large proportionate reduction in levels by a
“successful” drug candidate might be insufficient to slow
degeneration. Second, the normal physiological func-
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tions of A�, including its possible role as an antioxidant9

remain unknown; disruption of critical functions might
prove toxic. For example, in vitro studies suggest that
excessive depletion of endogenously produced A� from
culture medium leads to neuronal death.10 Third, the
ideal scenario would include the application of A�-based
drugs in early stages of A� accumulation, i.e., years
before onset of symptoms. This approach would require

drugs of exceptionally low toxicity administered with
difficult-to-achieve high compliance rates years before
clinical manifestations begin. Fourth, A�-based thera-
pies alone are unlikely to improve function or plasticity
of damaged but still surviving neurons. Finally, although
the bulk of current evidence points to A� accumulation
as a critical primary causative factor in sporadic AD, a
number of other potential mechanisms might constitute

FIG. 1. Overview of pathophysiological processes occurring in AD. A perspective emphasizing the many mutually reinforcing patho-
logical processes in AD suggests that neuroprotective strategies, inhibiting as many of these process as possible, will likely be required
for successful therapy in AD in parallel to therapies reducing A� accumulation.

TABLE 1. Candidate Neurodegenerative Mechanisms in AD and Corresponding Therapeutic Neuroprotective
Approaches

Target Mechanism
Examples of Corresponding Therapeutic or Potential Therapeutic

Development

A� interaction with binding targets Neurotrophin small molecule mimetics binding to p75NTR might
block A�-p75NTR mediated toxicity

Activation of stress kinase/JNK signaling CEP-1347 inhibitor of stress kinase activation in clinical trials for
Parkinson’ s disease

Neurotrophin signaling blocks stress kinase signaling

Excessive tau phosphorylation and microtubule
instability

GSK-3 inhibitors under development

Valproate in AD trial underway
Microtubule stabilizing drugs under development

Caspase activation Minocycline caspase inhibitor in trials for ALS

Loss of synapses, neuronal death Trial underway in which NGF-secreting fibroblasts are grafted to
basal forebrain

Neurotrophin mimetics under development

Loss of cholinergic function ACIs in clinical use
M1 agonists such as talsaclidine in clinical trials
Neurotrophin mimetics under development

Generation of ROS Vitamin E in trials for MCI
Various antioxidants in MCI/AD trials
Clioquinol metal chelator completed phase II trial

Glutamate excitotoxicity Memantine NMDA uncompetitive antagonist in use in Europe for
AD with FDA approval in US pending

Other NMDA modulators under development
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important causative factors.11 Such non-A� mechanisms
might play even larger roles, or perhaps synergistic roles,
as the disease progresses. Thus, it is likely that parallel
application of neuroprotective strategies will play a vital
role in delaying AD onset and slowing AD progression.

Neurodegenerative mechanisms point to potential
neuroprotective strategies

Neurodegenerative mechanisms likely involved in AD
are outlined in FIG. 1. While AD mechanisms are often
outlined in linear terms of one pathophysiological pro-
cess leading to the next, a more biological perspective
might include multiple cycles and subcycles of self-am-
plifying neurodegenerative steps. Moreover, the pattern
of relative contributions of different pathological cycles
is likely to change as the disease progresses. This per-
spective encourages the view that one or more neuropro-
tective strategies, applied in parallel, will be required to
successfully slow AD progression. Neuronal targets can
be viewed from the perspective of those known to di-
rectly interact with A�, or alternatively, those found to
be affected in AD and not necessarily interacting directly
with A�. Many of these targets offer potential sites for
therapeutic small molecules (Table 1).

Neuronal targets of A�
Evidence that either extracellular12 or intracellular13,14

accumulation of A� results in neuronal degeneration has
encouraged identification of direct neuronal targets of

A� that serve as candidates for mediating its toxicity
(FIG. 2). A� has been reported to bind with relatively
high affinity to a number of neuronal targets,15 including
the �7 nicotinic acetylcholine receptor (�7nAChR), the
neurotrophin p75 (p75NTR) receptor, cell surface amyloid
precursor protein (APP), the receptor for advanced gly-
cation end products (RAGE), and BBP-1, a G protein-
coupled receptor. Except for �7nAChR, A� binding to
these receptors leads to neuronal death. Intracellular
binding targets of A� identified thus far include the
endoplasmic reticulum A�-binding dehydrogenase
(ERAB). A non-receptor based mechanism by which A�
might affect neurons is suggested by its ability to form
Ca2�-permeable channels or to modulate ion-conducting
channels, especially K� channels.16 Application of com-
pounds that block A� binding or that inhibit at proximal
steps deleterious A�-induced signaling are potential neu-
roprotective approaches. Limitations of these approaches
include the possibility that A� toxicity is mediated via
multiple targets or that critical physiological functions of
the target receptors or other proteins might be impaired.
The ability of a given small molecule to confer neuronal
protection by blocking such interactions will depend on
the extent to which A� interaction with the intended
target contributes to the degenerative process. A critical
current challenge is to determine whether the predomi-
nant neurotoxic effects of A� can be narrowed to one or
two pharmacologically accessible A� binding targets. Of

FIG. 2. A� binding targets and candidate associated neurodegenerative mechanisms. Extracellular A� interacts with a number of
neuronal and glial cell surface receptors. Evidence suggests that many of these interactions promote stress kinase and other signaling
triggering neurodegenerative processes. Intracellular A� is also likely to bind to one or more targets to contribute to neurodegenerative
signaling.
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the above candidate targets, Kawasumi et al.15 have ar-
gued that interaction with p75NTR is likely to play the
predominant role in A� toxicity.

Neuroprotection via modulation of stress-activated
protein kinase signaling

An alternative approach to neuroprotection that would
not rely on identification and modulation of individual
A�-target interactions is the identification and modula-
tion of primary signaling pathways mediating A� toxic
effects. Interestingly, studies of human AD brain, AD
mouse model brain, and in vitro models of AD all point
to the stimulation of stress-activated protein kinases, par-
ticularly c-Jun N-terminal kinase (JNK), as a critical
early event in AD-associated neuronal degeneration.17,18

Application of A� to cultured cortical neurons is asso-
ciated with JNK activation and with subsequent down-
stream activation of caspases and expression of pro-
apoptotic genes such as bax.19,20 Immunostaining reveals
JNK activation in degenerating neurons in AD brain,21,22

including in association with intraneuronal A� accumu-
lation and in association with tangle-like inclusions in
entorhinal cortex before A� deposition.23,24 Interest-
ingly, evidence suggests that JNK activation also con-
tributes to tau phosphorylation (discussed below). These
findings, along with evidence in vitro that inhibition of
JNK activation inhibits A� toxicity20,25–28 and blocks
caspase activation,17,20 point to small molecule targets
modulating stress kinase signaling and JNK activation as
a high priority area for AD therapeutics. CEP-1347 is an
example of a compound that inhibits stress kinase sig-
naling and partially blocks A� induced neuronal degen-
eration.17,29 CEP-1347 is currently undergoing clinical
trials in Parkinson’s disease and is a candidate agent for
AD trials (Cephalon Inc., West Chester, PA; http://
www.cephalon.com/research).

Neuroprotection via inhibition of aberrant tau
phosphorylation

Excessive phosphorylation of the tau microtubule-as-
sociated protein in AD is thought to cause formation of
insoluble tau filaments with resulting neurofibrillary tan-
gles, disruption of microtubules, and subsequent neuro-
nal dysfunction.30 Although the mechanisms responsible
for aberrant tau phosphorylation remain to be fully es-
tablished, their elucidation has begun to point to novel
protective strategies. Evidence that glycogen synthase
kinase-3� (GSK-3�) phosphorylates tau has engendered
considerable interest in GSK-3� inhibitors as neuropro-
tective agents.31,32 The finding that valproate, a well-
established epilepsy and mood-stabilizing medication,
inhibits GSK-3�33 has led to proposal that this drug
might improve symptoms of or slow progression of
AD.34 Interestingly, lithium, another well-established
mood stabilizer, has also been shown to inhibit GSK-
3�.31 Evidence that JNK contributes to tau phosphory-

lation suggests that inhibition of JNK activation might
promote the parallel beneficial effects of inhibiting tau
phosphorylation along with cell death signaling.23,35 The
large number of kinases found to be capable of phos-
phorylating tau, including extracellular signal-regulated
kinase (ERK) and cyclin-dependent kinase 5 (Cdk5),
among others,32 introduce a number of potential small
molecule targets. The presence of multiple candidate
targets raises the important questions of which kinases
play a critical pathophysiological role in AD, and if more
than one is involved, how many would have to be tar-
geted to prevent pathological tau phosphorylation. An-
other recent neuroprotective approach emerging from
microtubule studies is the development of small mole-
cules that stabilize microtubules and prevent A�-induced
cytoskeletal disruption and toxicity.36

Neuroprotection via inhibition of caspase activation
A number of observations have raised the possibility

that caspases contribute to neuronal degeneration in AD,
although the actual extent to which caspase-mediated
cell degeneration or death occurs in AD remains to be
established.37 In AD brain, activated caspases are found
in association with neurofibrillary tangles.38 As de-
scribed above, activation of JNK promotes caspase acti-
vation.20,29,39 In vitro studies demonstrate that applica-
tion of A� induces caspase activation and that caspase
inhibitors can block A�-induced cell death.40,41 Consis-
tent with a role for caspases in relatively distal steps of
cell death pathways, caspase inhibitor-protected cells
have been found to survive in an atrophic and metabol-
ically compromised state in which there is decreased
protein synthesis, glucose uptake, and mitochondrial ac-
tivity.29,42 An analysis of neuronal death induced by
nerve growth factor (NGF) withdrawal from sympathetic
neurons demonstrated that caspase inhibition resulted in
neurons that were more atrophic and had decreased met-
abolic function compared with those rescued via block-
ing of stress kinase activation using CEP-1347.29 These
authors concluded that caspase inhibitors are unlikely to
constitute an effective therapy in chronic neurodegenera-
tive settings since caspase inhibitor rescue of neurons
might result in neurons surviving but in a dysfunctional
state. In contrast to this view, the finding of caspase
activation in early stages of AD and in association with
neurofibrillary tangles suggests that caspases might serve
as a link between senile plaques and tangles and contrib-
ute to early as well as terminal steps of cell death.38

Minocycline, a tetracycline-type antibiotic known to in-
hibit caspases, is currently under trials for ALS (NINDS)
and might be considered for trials in AD.

Ligand-receptor mechanisms promoting
neuroprotective signaling

A number of growth factors and other ligands acting
via known receptors, as well as peptides acting via un-
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known targets, have been found to protect neurons from
A� toxicity and other deleterious mechanisms relevant to
AD. These factors include neurotrophins (discussed be-
low), insulin-like growth factor-1,26,43 basic fibroblast
growth factor,44 estrogen,45 activity-dependent neurotro-
phic factor,46 and Humanin.47 Given the long-standing,
large body of work assessing neurotrophins in the con-
text of AD, the recent entry of neurotrophins into clinical
trials, and the space limitations of the present review, we
will focus primarily on neurotrophins.

Neuroprotection via neurotrophins
The extensive overlap in signaling pathways regulated

by neurotrophins and those likely to be involved in AD
degeneration along with the expression of neurotrophin
receptors by neurons undergoing degeneration point to
neuroprotective applications for neurotrophins. The ma-
jor role of neurotrophins in synapse stabilization and
function48 along with emerging evidence that synaptic
failure is a critical early process in AD49 further adds to
interest in neurotrophins as candidate therapeutic agents.
In the context of AD, NGF and brain-derived neurotro-
phic factor (BDNF) have been of particular interest. Neu-
rotrophins each bind to a dual receptor system, consisting
of p75NTR along with one of the Trk tyrosine kinase
receptors. NGF binds to TrkA and BDNF to TrkB.50,51

Neurotrophin receptors are expressed by neuronal popu-
lations particularly vulnerable in early stages of AD.
p75NTR, TrkA, and TrkB are each expressed by basal
forebrain cholinergic neurons, hippocampal pyramidal
neurons and layer V cortical neurons.50,52–56

Neurotrophin signaling is directly relevant to the ab-
errations in core signaling mechanisms, likely contribut-
ing to neuronal dysfunction and degeneration in AD.
Neurotrophin binding to Trk receptors activates at least
three fundamental pathways, including phosphatidylino-
sitol-3-kinase (PI3K)/Akt kinase, mitogen-activated pro-
tein (MAP) kinase, and phospholipase C� (PLC�) sig-
naling.50,51 Activation of the PI3K/Akt pathway
inactivates SEK1 and ASK1, two key activators of JNK
and other stress kinases, suppresses JNK activation, in-
hibits pro-apoptotic members of the Bcl-2 family, acti-
vates CREB and I�B kinase/NF-�B signaling to promote
survival and protects cultured neurons from A� toxici-
ty.26,29,39,57 NGF-induced MAP kinase signaling blocks
formation of reactive oxygen species (ROS) (see discus-
sion below).58 p75NTR acts in coordination with, and
independently of, Trk receptors to modulate neurite in-
tegrity, neuronal size, and neuronal survival. In the con-
text of different ligands or different cell types, p75NTR

signaling promotes either neuronal survival or death.59,60

p75NTR-ligand interactions provide a good example of
the principle that different ligands acting at a given re-
ceptor can differentially modulate its function; for exam-
ple, binding of different neurotrophins to p75NTR can

elicit different patterns of signaling.50,61 Recent observa-
tions that levels of “pro-NGF,” a precursor form of NGF,
are doubled in parietal cortex harvested from AD pa-
tients,62 along with the finding that pro-NGF might bind
with greater affinity to p75NTR compared to NGF and
promote death via binding to p75NTR,63 add additional
complexity to potential mechanisms by which p75NTR

signaling regulates trophic status.
In paradigms in which ligand-induced activation of

p75NTR prevents neuronal death, evidence suggests that
p75NTR signaling prevents death via either the PI3K/Akt
pathway and/or NF-kB activation.59,60 In view of these
signaling studies and evidence that different ligands can
differentially affect p75NTR signaling, it is of interest that
synthetic mimetics of the loop 1 region of the NGF
protein were found to prevent death of dorsal root gan-
glia sensory neurons.64 Preliminary data in our labora-
tory suggest that application of NGF loop 1 mimetics to
cultured hippocampal neurons results in activation of
PI3K/Akt signaling and prevents cell death. In earlier
studies, addition of NGF to cultured E18 rat hippocampal
neurons was found to up-regulate p75NTR expression and
potentiate A� neurotoxicity.12 Current studies will de-
termine if NGF loop 1 mimetics prevent rather than
promote A� toxicity.

Within the neurotrophin protein family, NGF has been
the most extensively studied with respect to its ability to
confer neuroprotection in in vivo models of AD. NGF
administration to multiple models of basal forebrain cho-
linergic neuron atrophy, including post-cholinergic neu-
ron axotomy, trisomy 16 mice, aged rodents, and aged
primates demonstrates a potent effect in reversing atro-
phy, up-regulating cholinergic function, reversing age-
related cognitive impairment and increasing density of
cortical cholinergic innervation.50,65 Interestingly, in
vitro studies point to the possibility that NGF might
promote non-amyloidogenic secretory processing of
APP.66 In AD brain, NGF levels in the basal forebrain
are reduced, while levels in the hippocampus target re-
gion have been reported as either unchanged or in-
creased.67 This shift in NGF distribution, along with
direct evidence of impaired retrograde transport of NGF
in a mouse model of AD,68 suggests an impairment of
retrograde transport of NGF. These findings raise the
possibility of a degenerative cycle in which degeneration
leads to a critical lack of NGF reaching the neuronal
soma with deficiency of somal NGF leading to further
degeneration.69 Interestingly, a transgenic mouse model
in which chronic NGF deficiency is created via the ex-
pression of NGF antibodies demonstrates degeneration
of basal forebrain cholinergic neurons, tau hyperphos-
phorylation associated with neurofibrillary pathology,
and accumulation of A� plaques.70 This model points
further to a potential degenerative cycle incorporating
accumulation of A�, neuronal degeneration and loss of
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neurotrophin function, and further A� accumulation.
Augmentation of neurotrophin function might serve to
both decrease A� accumulation and render neurons less
vulnerable to A� toxicity.

Application of NGF protein as a therapeutic agent for
AD faces a number of critical limitations typical of pro-
tein ligands, including limited blood brain barrier and
intraparenchymal tissue penetration and a short half-life.
Moreover, NGF interaction with its dual p75NTR/TrkA
receptor system elicits a wide range of biological actions
beyond those preventing neural degeneration including
sprouting of sympathetic fibers and up-regulation of pain
transmission.71 In the limited clinical experience assess-
ing NGF actions in AD patients, NGF was administered
to three patients via intraventricular infusion over a pe-
riod of up to three months.72 No significant improvement
in cognition was detected and patients experienced back
pain and weight loss. In an ongoing phase I trial, NGF is
being delivered to the basal forebrain via intraparenchy-
mal grafting of autologous fibroblasts engineered to se-
crete NGF.65 Another neurotrophin-based therapeutic
approach is the development of NGF small molecule
mimetics.73–75 Such mimetics acting selectively at
p75NTR64 or TrkA76 receptors have been shown to pre-
vent neuronal degeneration in vitro and activate partially
distinct patterns of intracellular signaling cascades, com-
pared with those activated by NGF. These findings point
to the possibility of creating compounds with preferred
pharmacological properties and bioavailability that are
capable of preventing neuronal degeneration without
stimulation of the entire range of NGF effects.

Cholinergic strategies for neuroprotection
An early pathological process in AD consists of de-

generation of basal forebrain cholinergic neurons along
with their projections to hippocampal, cortical, and lim-
bic targets.77 Losses in certain other neurotransmitter
systems might occur as a secondary result of reduced
cholinergic innervation and function. Strategies involv-
ing application of acetylcholinesterase inhibitors (ACIs)
and cholinergic agonists have largely been focused on
improving cognitive and neurobehavioral symptoms in
AD rather than slowing underlying neuronal degenera-
tion. It is of interest to note, however, that recent clinical
observations, along with emerging insight into reciprocal
interactions between A� production and cholinergic
function, suggest that cholinergic-based therapies might
in fact have neuroprotective effects.

Results of ACI trials have raised the question of
whether ACIs might slow disease progression.78–80 Pa-
tients initially placed in placebo groups appeared to have
lost cognitive function that was not restored after starting
ACIs in open-label extension phases. The open-label
design of the extension phase of these trials, however,
would preclude any formal conclusion regarding slowing

of progression. In a study of cognitive function of pa-
tients who had dropped out of an ACI trial, individuals
who had initiated and then discontinued ACI treatment
demonstrated less subsequent cognitive loss compared
with placebo-treated patients.81 These findings again
raise the interesting scenario of slowed disease progres-
sion; however, a critical caveat is that patients discon-
tinuing the medication cannot be assumed to represent a
random sample from the total study population. Detec-
tion of slowed disease progression requires study designs
that incorporate strategies such as delayed treatment with
subsequent blinded follow-up or random discontinuation
of drug with adequate washout periods. In the case of
ACIs, their recognition as a standard of care in AD limits
such trial designs. Current trials of ACIs applied to mild
cognitive impairment (MCI) will determine whether
ACIs can delay progression to AD, although distinguish-
ing between symptomatic versus disease-slowing effects
will remain a challenge.

There are several potential mechanisms by which
ACIs or cholinergic agonists might slow underlying dis-
ease progression including decreased A� production
and/or reduction of neuronal vulnerability to A� toxici-
ty.66,82 M1 muscarinic acetylcholine receptors (mAChR)
are primarily localized postsynaptically to cortical cho-
linergic nerve terminals. M1 mAChR signaling activates
protein kinase C (PKC), increases secretory processing
of APP and down-regulates production of A�.83–86 Cho-
linergic stimulation has also been found to: reduce tau
phosphorylation;87 protect neurons from A�88 and pro-
mote neurotrophin release.89,90 Chronic M1 agonist
treatment in clinical trials has been shown to reduce A�
levels in cerebrospinal fluid of AD patients.91,92 Current
goals in the development of cholinergic-based strategies
in neuroprotection include the development of M1 ago-
nists with adequate bioavailability, potency, and receptor
selectivity.82

The known inhibitory effects of A� on the synthesis
and release of Ach and on cholinergic signaling point to
the possibility of a degenerative feedback loop in which
A� impairs Ach release, which leads to altered APP
processing, increased A� levels and disrupted neurotro-
phin regulation.16,66,77 These processes in turn lead to
further increases in A� production, further loss of neu-
ronal function and further decline in Ach release. Given
a potential neurotrophic role of cholinergic neurons on tar-
get hippocampal and cortical neurons and the effect of
cholinergic input on APP regulation, it has been proposed
that cholinergic degeneration might lead to secondary de-
generation in a wide range of non-cholinergic target sys-
tems.90 From the perspective of these mechanisms, it is
plausible that drug strategies designed to up-regulate cho-
linergic function might slow degeneration.
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Oxidative stress and antioxidant neuroprotective
strategies

The role of oxidative stress, an imbalance between the
production and detoxification of oxidative reaction prod-
ucts, continues to be the subject of extensive research in
AD.93,94 While oxidation products accumulate to some
degree in normal brain, their levels increase with age and
are substantially greater in AD, including in its early
stages.95 Excessive levels of hydrogen peroxide and
ROS such as hydroxyl free radical and superoxide lead to
formation of oxidization products including oxidized
proteins, lipid peroxides, advanced glycosylation end
products (AGEs), and DNA adducts. Protein and lipid
oxidation leads to loss of critical enzyme functions, in-
cluding those regulating glutamate transport, which re-
sults in excitotoxicity due to excessive extracellular glu-
tamate, and to the loss of ion-transporting ATPases,
causing a disruption of calcium ion homeostasis and
impaired mitochondrial function.96 Oxidative stress trig-
gers degenerative signaling, including activation of stress
kinases (including JNK) and caspases.25,28 Sources of
oxidative stress in AD include impaired mitochondrial
metabolism and A�-associated sources.97,98 Addition of
vitamin E to neuronal cultures inhibits A�-induced tox-
icity, protein oxidation, and JNK and p38MAPK activa-
tion.28,93 Studies in AD transgenic mice (Tg2576) re-
vealed elevated peroxidation occurring several months
before detectable A� accumulation and amyloid plaque
formation.99 Further supporting a causal role for oxida-
tive stress in amyloid-induced pathology, administration
of the antioxidant curcumin to these mice led to reduced
oxidative stress and amyloid pathology.100 A� itself, in
particular when binding Cu2� or Fe3� and forming cer-
tain types of aggregates, may be a primary source of
ROS.98 Cu2� and Zn2� promote aggregation of human
A� and chelation of these metals renders the structure of
A� aggregates less compact and less resistant to turn-
over. Clioquinol (CQ), a retired hydrophobic antibiotic
with brain-penetrating and Cu/Zn-chelating properties, is
a potential agent for inhibiting A� accumulation and
decreasing ROS production.98,101 In the Tg2576 trans-
genic mouse model, CQ led to reduced amyloid accu-
mulation and improved behavioral scores.102 Clinical
phase II efficacy testing of this agent is currently com-
pleted, though the results are not yet published.101

In human antioxidant studies, vitamin E is one of the
most extensively studied antioxidant agents. Data from
cross-sectional and longitudinal studies assessing the re-
lationship between vitamin E consumption and AD risk
have led to conflicting results. Two prospective epide-
miological cohort studies of AD found that diets con-
taining higher levels of vitamin E were associated with
lower odds of developing AD.103,104 A surprising finding
was that neither study was able to identify an association
between AD incidence and use of vitamin E supple-

ments. In commentary on these studies, Foley and
White105 pointed to the limitations of observational stud-
ies and raised the possibilities that clinical status before
the onset of dementia might have influenced diet, recol-
lection of diet, and/or supplement use. In addition, it is
possible that predicted vitamin E content of food might
have served as a marker for the presence of other com-
pounds that actually conferred the neuroprotective ef-
fects. In a prospective cohort study, Luchsinger et al.106

were unable to detect an association between antioxidant
vitamin use and AD risk. Finally, a pioneering trial with
vitamin E supplementation of 2000 IU per day for mod-
erate-stage AD patients led to a small but significant
delay in reaching the endpoints of institutionalization,
loss of major activities of daily living, or death, but did
not delay loss of cognitive performance.107 These find-
ings have encouraged current trials in which vitamin E is
being given to individuals with MCI with the hope that
antioxidant therapy administered at earlier stages of dis-
ease might have a greater impact on outcomes.108 Other
antioxidant compounds have been studied in terms of
delaying AD onset, slowing progression, or improving
cognitive function.99 European trials in small numbers of
AD patients with idebenone, a centrally active antioxi-
dant and analog of coenzyme Q, suggested improved
cognitive scores, with efficacy similar to ACIs.109 To
date, there is no clear body of definitive data, derived
from adequately controlled prospective trials of suffi-
cient size and duration, that suggests a given antioxidant
compound delays the onset of cognitive loss or slows its
progression in AD.

Modulation of NMDA receptor function
Oxidative stress, accumulation of A� and other mech-

anisms lead to neuronal energy deficits in AD which in
turn can result in excessive neuronal depolarization with
a subsequent excess of extracellular glutamate, evoking
further depolarization. Persistent depolarization leads to
activation of NMDA receptors and deleterious increases
in intracellular Ca2�.110,111 Olney et al.112 proposed that
an early event in AD pathophysiology consists of in-
creased sensitivity to glutamate-induced excitotoxicity
secondary to effects of A� accumulation, oxidative
stress, and/or energy metabolic dysfunction. A� has been
shown to inhibit glutamate uptake by synaptosomes and
glia.16 The observation that free-radical scavengers block
these effects is consistent with a model in which A�
inhibits glutamate uptake via oxidative damage.113 The
potentially synergistic multiple effects of A� on gluta-
mate function, including enhancing its release, prevent-
ing its uptake, and increasing neuronal vulnerability,
along with the degenerative feedback cycle of excess
glutamate, excess depolarization and intracellular Ca2�,
with subsequent further glutamate release and loss of
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multiple neuronal functions, points to a prominent role
for excitotoxicity in AD.

These findings suggest that modulation of glutamate
receptors might serve as a neuroprotective strategy in
AD. Memantine is an NMDA channel uncompetitive
antagonist that preferentially blocks channel opening and
neuronal death due to excessive exposure to glutamate
while allowing physiological activation required for
long-term potentiation (LTP).114,115 Administration of
memantine to rats has been found to block neuronal
degeneration caused by injection of A�1–40 raising the
possibility that memantine can protect against A�-in-
duced degeneration.116 In a recent clinical trial, a com-
parison of AD patients treated with memantine versus
placebo showed that after 26 weeks, patients treated with
memantine demonstrated a significantly reduced decline
in scores measuring overall clinical impression of change
and activities of daily living.117 Determining whether
these effects were due to an actual slowing of underlying
disease progression or were merely the result of symp-
tomatically improved function will require further clini-
cal and animal studies.

Summary
Given the many potential limitations of isolated A�-

based therapies, it is likely that effective AD therapeutics
will include parallel strategies that confer neuroprotec-
tion against deleterious forms of A� and other agents and
processes causing neuronal dysfunction and degenera-
tion. Mechanisms underlying the onset and progression
of AD are likely to consist of a number of interacting
events including the following: excessive accumulation
of A�, oxidative stress, deleterious stress kinase/JNK
signaling, aberrant tau phosphorylation, excitotoxicity,
disruption of neurotrophin signaling, loss of synapses,
neurites and neurons, and loss of cholinergic and other
neurotransmitter function. Given the many layers of po-
tential integration and the mutually reinforcing nature of
these processes, it seems unlikely that clinically achiev-
able modulation of a single process will prevent onset or
significantly slow AD.

These candidate underlying mechanisms of neuronal
degeneration point to a number of therapeutic strategies
currently at various stages of development. A number of
agents with the potential to provide neuroprotective ef-
fects (including ACIs, memantine, and antioxidants) are
already clinically available; however, results of addi-
tional clinical testing will be required to determine if any
of these are capable of delaying onset or slowing under-
lying disease progression. Other compounds not in wide-
spread clinical use but undergoing clinical trials in AD
and/or other neurodegenerative disorders include nerve
growth factor, valproate and other GSK inhibitors, var-
ious nicotinic agonists, the CEP-1347 stress kinase in-
hibitor, minocycline as a caspase inhibitor, and metal

chelators. Some compounds, such as neurotrophin small
molecule mimetics, might prove successful in addressing
multiple underlying disease mechanisms in parallel.
Taken together, the work reviewed here points to a prom-
ising emerging picture of successful, mechanism-based,
neuroprotective strategies for AD.
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