
 

 

 
 

OPEN ACCESS | www.microbialcell.com 532 Microbial Cell | November 2016 | Vol. 3 No. 11 

www.microbialcell.com 

Review 

ABSTRACT  Apart from energy transformation, mitochondria play important 

signaling roles. In yeast, mitochondrial signaling relies on several molecular 

cascades. However, it is not clear how a cell detects a particular mitochondrial 

malfunction. The problem is that there are many possible manifestations of 

mitochondrial dysfunction. For example, exposure to the specific antibiotics 

can either decrease (inhibitors of respiratory chain) or increase (inhibitors of 

ATP-synthase) mitochondrial transmembrane potential. Moreover, even in 

the absence of the dysfunctions, a cell needs feedback from mitochondria to 

coordinate mitochondrial biogenesis and/or removal by mitophagy during the 

division cycle. To cope with the complexity, only a limited set of compounds is 

monitored by yeast cells to estimate mitochondrial functionality. The known 

examples of such compounds are ATP, reactive oxygen species, intermediates 

of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the 

precursor proteins which fail to be imported by mitochondria. On one hand, 

the levels of these molecules depend not only on mitochondria. On the other 

hand, these substances are recognized by the cytosolic sensors which trans-

mit the signals to the nucleus leading to general, as opposed to mitochondria-

specific, transcriptional response. Therefore, we argue that both ways of mi-

tochondria-to-nucleus communication in yeast are mostly (if not completely) 

unspecific, are mediated by the cytosolic signaling machinery and strongly 

depend on cellular metabolic state. 
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INTRODUCTION 

In present-day eukaryotes mitochondria play multiple roles 

such as oxidative phosphorylation, Fe-S clusters biosynthe-

sis, thermogenesis and others (see for review [1-3]). Some 

special features of mitochondria make them a unique cel-

lular signaling center. First, mitochondria have two com-

partments separated from the cytoplasm. Outer mem-

brane is impermeable for molecules with molecular weight 

above 8 KDa [4], thus the intermembrane space sequesters 

signaling macromolecules. Indeed, in higher eukaryotes the 

intermembrane space proteins serve as transducers of 

programmed cell death activation cascade [5]. The list of 

such proteins includes specific signaling molecules such as 

Smac [6] and Diablo [6], as well as proteins with well estab-

lished “day-job” function, e.g. cytochrome c, which in high-

er organisms binds cytosolic Apaf-1 complex to promote 

apoptosis [7]. In yeast, cytochrome c was also suggested to 

have a pro-apoptotic function [8, 9], although its cytoplas-

mic target is still not found. The inner membrane is im-

permeable for low molecular weight molecules, thus the 

matrix is able to entrap some metabolic intermediates and 

ions. Second, mitochondria harbor many enzymes with 

cofactors capable for reduction of molecular oxygen. This 

makes mitochondria a potentially powerful source of su-

peroxide and hydrogen peroxide [10, 11]. Finally, mito-

chondrial appear to be a natural element of signaling net-

work capable of signal integration. Indeed, mitochondria 

can converge different inputs by decreasing or increasing 

the transmembrane potential (e.g. via activation of respira-

tory chain activity). As the transmembrane potential con-

trols transport of various compounds across mitochondrial 

membranes (see [12] for review) and also regulates func-

tional states of inner membrane translocators [13], mito-

chondria can be regarded as an element of signal conver-

gence. 

What kind of cellular responses are triggered by mito-

chondria? As the main mitochondrial function is transfor-

mation of energy, one can expect metabolic enzymes to be 

 

doi: 10.15698/mic2016.11.537 

Received originally: 14.06.2016;  

in revised form: 27.08.2016,  

Accepted 30.08.2016, 

Published 22.09.2016.  

 

 

Keywords: mitochondria, yeast, 

retrograde signaling, ROS. 

 

 

Abbreviations: 

AMPK - 5' adenosine monophosphate-

activated protein kinase, 

MOTS-c - mitochondrial open reading 

frame of the 12S rRNA-c,  

mPOS - mitochondrial precursor over-

accumulation stress,  

ROS - reactive oxygen species,  

TOR - target of rapamycin. 

 

 

 



D.A. Knorre et al. (2016)  Mitochondria-to-nucleus signaling in yeast 

 
 

OPEN ACCESS | www.microbialcell.com 533 Microbial Cell | November 2016 | Vol. 3 No. 11 

the central targets of the mitochondrial signaling. Indeed, 

it was recently shown that overexpression of mitochondrial 

superoxide dismutase in mammalian cancer cells inhibits 

AMPK and upregulates glycolytic enzymes via increased 

flux of hydrogen peroxide [14]. Moreover, there are a lot of 

metabolic enzymes among the targets of retrograde (mito-

chondria-to-nucleus) signaling cascade mediated by 

Rtg1/Rtg3 transcription factors (see for review [15]). Next, 

as mitochondria partially rely on their own DNA, mito-

chondrial DNA damage can cause mitochondrial dysfunc-

tion. Indeed, there are several stresses that are more dam-

aging for mitochondrial than for nuclear DNA. An example 

of such stress is the exposure of yeast cells to anoxia ([16]; 

see also [17] for review). In such cases the feedback is re-

quired by the nucleus to change the levels of the nuclear-

encoded mitochondrial proteins accordingly. It is important 

to mention here that the nuclei encode most of the pro-

teins localized in mitochondria. Furthermore, a set of 

changes in mitochondria are required during cell division. 

Although there are convincing data that in yeast cell cycle 

arrest does not inhibit replication of mtDNA [18, 19], the 

recent data suggests that mitochondrial biogenesis is thor-

oughly coordinated with the cell cycle stages [20]. 

In our review we argue that in yeast the major known 

routes of mitochondrial signaling are moderated by non-

mitochondrial inputs. Despite the importance and com-

plexity of mitochondrial activity, yeast cells, apparently, do 

not monitor mitochondrial functional state directly. In-

stead, they monitor important mitochondrially-produced 

substances, the levels of which also depend on non-

mitochondrial factors. The cellular reactions to the imbal-

ances in such substances are also not mitochondria-specific 

but include modulation of mitochondria-independent pro-

cesses. 

 

ATP VERSUS TRANSMEMBRANE POTENTIAL IN RTG-

DEPENDENT MITOCHONDRIAL RETROGRADE 

SIGNALING 

Retrograde signaling pathway was originally discovered as 

a mechanism initiated by mitochondrial dysfunction [21]. 

As a result of its activation, the Rtg3 protein is translocated 

to the nucleus and activates expression of a set of genes 

which helps to cope with the dysfunction. In particular, the 

changes in the expression provide reconfiguration of me-

tabolism aimed to maintain synthesis of vital amino acids 

(reviewed in [15]). One of the possible reasons of mito-

chondrial dysfunction is exposure of yeasts to specific mi-

tochondrial inhibitors (most of those are produced by bac-

teria or fungi [22, 23]). Thus, one of the responses induced 

by Rtg1/Rtg3 transcription factors is the induction of plei-

otropic ABC-transporters expression, that can prevent the 

delivery of unwanted xenobiotics to mitochondrial targets 

[24], although the precise mechanism of pleiotropic drug 

resistance activation is still unknown [15]. Rtg2 protein is 

proposed to be an initiator of this pathway (see reviews 

[15, 25]), however, the existence of additional upstream 

signaling proteins cannot be excluded. Are there any spe-

cific Rtg2 ligands responsible for its activation? At least 

three possible parameters are usually considered as poten-

tial hallmarks of mitochondrial dysfunction: alterations in 

the levels of nucleotide triphosphates, mitochondrial 

transmembrane potential and reactive oxygen species 

(ROS, see [26]). It was previously shown that introduction 

of the ATP1-111 mutation in the cells lacking mitochondrial 

DNA (rho0) increases the mitochondrial transmembrane 

potential and at the same time prevents expression of the 

downstream events of the retrograde signaling (i.e. Rtg3-

GFP relocalization to the nuclei, [27]). This points at the 

role of the transmembrane potential, although does not 

address the mechanism of the “sensing”. Conversely, the in 

vitro experiments revealed the role of nucleotide triphos-

phate binding in activation of Rtg2. It was found that ATP 

in high concentration induces dissociation of Rtg2 from its 

downstream target Mks1 [28].  

On the one hand, these data complement each other. 

On the other hand, concentration of ATP in the cells does 

not strictly correlate with mitochondrial transmembrane 

potential. Under conditions of active glycolytic flux and 

repressed respiratory chain mitochondria do not contrib-

ute significantly to the cellular ATP level [29]. Therefore, 

under such conditions, loss of mitochondrial DNA – the 

standard way to activate retrograde signaling response – 

will not necessarily lead to a decrease in cytoplasmic ATP 

level. Thus, the effect of Rho0 mutation could be damp-

ened in high glucose concentrations. In agreement with 

this, it was shown that the level of background retrograde 

cascade activation is much higher in the cells grown on 

poor-fermentable carbon sources [30]. Moreover, in our 

hands [31], as well as in the previous high-throughput 

screen, rho0 mutation did not lead to an increase of mRNA 

of Rtg-targets [32]. Finally, the ATP-ase inhibitor oligomycin 

induces the set of genes that differs from the one activated 

by rho0 mutations or uncoupler CCCP [33]. This contradic-

tion suggests that Rtg2 signaling depends on ATP level ra-

ther than on mitochondrial transmembrane potential. 

To summarize, as ATP concentration does not depend 

on mitochondrial function only, Rtg pathway cannot be 

regarded as an exclusive mitochondria-to-nucleus signaling 

line. 

 

ABERRANT ACCUMULATION OF MITOCHONDRIAL 

PRECURSORS IN THE CYTOSOL 

Taken that Rtg2-mediated signaling is not specific to mito-

chondrial dysfunction, how do mitochondria provide feed-

back to the nucleus in case of mitochondrial problems? 

Higher eukaryotes harbor mechanisms for identification of 

dysfunctional mitochondria, which is based on impaired 

protein import [34-36]. Damaged mitochondria can induce 

compensatory response [36] or be removed by mitophagy, 

a mitochondria-specific branch of autophagy [35]. In both 

cases, the mitochondrial dysfunction retards import of 

specific proteins. In C. elegance, transcription factor ATFS-1 

has double localization targeting. Inhibition of mitochon-

drial import induces its relocalization to the nucleus and 

activation of compensatory response [36]. In mammals, a 

decrease of the transmembrane potential activates mi-
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tophagy which relies on PINK and Parkin proteins (see for 

review [35]). S. cerevisiae lacks homologs of ATFS-1 or 

PINK/PARKIN systems. Are yeast cells able to get rid of 

mitochondria with low transmembrane potential? Alt-

hough there are several works suggesting the role of mi-

tophagy in yeast mitochondrial quality control [37-39], a 

specific mitochondrial autophagy in yeast is normally in-

duced by starvation [40, 41]. The latter fact points at the 

role of mitophagy in maintaining energy and nitrogen bal-

ances. Nevertheless, retention of the damaged mitochon-

dria in the mother cell during cell division could ensure 

their clearance from the growing colony [42, 43]. We sug-

gested earlier that the presence of such a mechanism 

could substitute for selective mitochondrial mitophagy [44]. 

In any case, yeast cells do possess a specialized signal-

ing pathway activated by a drop in the transmembrane 

potential. Recently it was reported that in yeast, a failure 

to import mitochondrially-targeted proteins activates mi-

tochondrial precursor over-accumulation stress (mPOS) 

response, which suppresses the proteotoxic consequences 

of the precursor accumulation [45]. The set of proteins 

induced acts mainly to reduce the rate of protein biosyn-

thesis. Interestingly, this type of unfolded protein stress, 

unlike the one caused by the heat shock (reviewed in [46]), 

does not induce accumulation of cytosolic chaperones 

which act to repair the misfolded proteins. The authors 

speculate that additional chaperones would not improve 

the situation: refolding of the cytosolically accumulated 

precursor proteins could even worsen the situation. Still, 

the question remains: do mitochondrial precursor proteins 

bind to a specific signaling ligand in the cytosol or, alterna-

tively, accumulation of non-specific misfolded proteins in 

the cytosol can trigger mPOS network. The answer to this is 

not straightforward because conventional stresses causing 

protein misfolding are not specific to the cytoplasm: heat 

stress, mutations in the proteasomal genes or major mo-

lecular chaperones also cause an increase in proteins fold-

ed in the ER (reviewed in [47]). At the same time, there 

were many studies on ectopic expression of hard-to-fold 

human proteins in yeast: alpha-synuclein, polyglutamine-

rich fragments of huntingtin, etc. (see [48, 49] for review). 

Apparently, such expression differs significantly from a 

general proteostatic stress. Thus, to our knowledge, there 

are no data on the changes in the proteome caused by 

exclusively cytosolic bulk protein misfolding. 

 

AMINO ACIDS-BASED SIGNALING 

As a specific mitochondria-to-nucleus signaling based nei-

ther on inhibited protein import into mitochondrial matrix 

nor on mitochondrial transmembrane potential has not 

been shown so far, a question arises: how yeast cells can 

measure mitochondrial 'health'? Possibly, the simplest way 

to monitor mitochondrial state is to measure metabolic 

intermediates that are produced or modified specifically in 

mitochondria (see for review [50]). 

Due to the fact that amino acid (i.e. glutamate and ar-

ginine [51, 52]) biosynthetic pathways are localized in mi-

tochondrial matrix, the cytoplasmic amino acids levels are 

good candidates for mitochondrial productivity indicators. 

Indeed, the deficit of glutamine activates Rtg pathway, 

leading to an increase in transcription of the mitochondrial 

enzyme Gln1p responsible for its synthesis [53]. Interest-

ingly, similar to activation of Rtg by a decrease in ATP con-

centration, the final step of this pathway’s activation by 

the drop in the amino acid concentrations also happens in 

mitochondria-independent fashion. While the molecular 

mechanism is rather complex [54, 55], it was convincingly 

shown that TOR (target of rapamycin) complex located in 

the cytosol senses the amino acid deficit and then directly 

activates Rtg2 protein [56, 57]. 

 

RETROGRADE SIGNALING AND REACTIVE OXYGEN 

SPECIES 

Mitochondria are usually considered as a source of reactive 

oxygen species (ROS). The most common ROS are O2•
−
, 

H2O2, •OH, NO• and 
1
O2. If the level of ROS exceeds the 

capacities of the defense mechanisms, the cell reaches the 

state which is often referred to as “oxidative stress”. A 

precursor of most of the ROS, superoxide anion (O2•−), is 

produced via nonenzymatic reduction of molecular oxygen 

by electron transport chain components (reviewed in [58, 

59]). Hydrogen peroxide (H2O2) is produced by dismutation 

of O2•−, and can be reduced fully into water or partially 

into highly reactive hydroxyl radical (•OH) [60]. Some of 

TCA enzymes also contribute to generation of reactive oxy-

gen species [61]. At the same time, mitochondria harbor a 

robust antioxidant system: for instance, the activity of mi-

tochondrial catalase is several orders of magnitude higher 

[62] than the maximal rate of hydrogen peroxide produc-

tion by dysfunctional mitochondria [63]. As a result, under 

normal conditions mitochondria do not export ROS, in-

stead, they can be considered as a sink for them (see [10] 

for review). However, under stress the capacity of antioxi-

dant systems can be exhausted and the direction of ROS 

flux can be reverted. For instance, an increase in cytosolic 

[Ca
2+

] transforms yeast mitochondria into a major source 

of ROS (see [9] and references within). Moreover, it was 

shown that Rtg1-Rtg3 signaling pathway plays a hormetic 

role by increasing mitochondrial ROS production and in this 

way upregulating antioxidant enzymes [64]. 

In the states of dysfunction, mitochondria activate sig-

naling to increase the levels of antioxidant enzymes which 

do not rely on respiratory chain functioning. In particular, it 

was shown that inhibition of respiratory complex III with 

myxothyazol induces expression of not only mitochondri-

al/peroxisomal catalase Cta1 [65] but also of cytosolic cata-

lase Ctt1 and of unspecific stress response genes controlled 

by Msn2/Msn4 transcription factors [65]. These data indi-

cate that oxidative stress response induced by mitochon-

drial dysfunction is general rather than mitochondria-

specific. This is in agreement with the data on ethanol-

induced oxidative stress: it was shown that high doses of 

ethanol activate Yap1 [66, 67], the key cytosolic hydrogen 

peroxide sensor [68]. 
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Fe-S CLUSTERS AND HEME 

Yeast mitochondria are indispensable for synthesis of such 

iron-containing compounds as Fe-S clusters and heme. Is 

the deficit of such compounds perceived by the cells as a 

manifestation of mitochondrial malfunction? The answer 

seems to be negative. The signaling pathways initiated 

under such conditions include the following steps.  

First, insufficient levels of either Fe-S clusters or heme 

induce mitochondria-mediated oxidative stress (reviewed 

in [69]). It is known that Yap1 is the central transcription 

factor activated by hydrogen peroxide. Interestingly, 

among other targets Yap1 promotes expression of plasma 

membrane iron transporters FET3 and FET4, iron regulon 

gene FRA2 and ISU1, product of which plays a scaffolding 

role during the assembly of Fe-S clusters [70, 71] Hem15, a 

protein mediating heme biosynthesis, is also among Yap1 

targets [70]. There is also a specialized transcription factor, 

Hap1, which is directly activated by heme [72]. Importantly, 

heme synthesis depends not only on functional mitochon-

dria, but also on iron and oxygen availability. At the same 

time, Hap1 is also sensitive to oxidative stress [73] and is 

known to induce the expression of mitochondrial and cyto-

solic genes responsible for respiration and for controlling 

oxidative damage [74-76]. Moreover, there is another 

heme-sensitive transcription factor - protein complex HAP, 

Heme Activator Protein [77]. HAP is the master regulator of 

the mitochondrial biogenesis in the yeast S. cerevisiae [78]. 

It was shown that HAP complex activity is sensitive to ROS 

signaling and can be restored by an antioxidant as well as 

by the overexpression of superoxide dismutase Sod1p [79]. 

Thus, it appears that a general oxidative stress re-

sponse includes a branch which signals to increase the 

production of the mitochondrially-synthesized iron-

containing molecules. Conversely, the cells upregulate 

their antioxidant defenses in response to a deficit in the 

mitochondrially-produced iron-containing substances. 

 

MITOCHONDRIAL-DERIVED PEPTIDES 

Export of Fe-S cluster precursors from mitochondrial ma-

trix in yeasts is mediated by Atm1p, which belongs to the 

large family of membrane proteins, ABC-transporters [80]. 

Atm1p is partly functionally redundant with the second 

ABC-transporter localized in mitochondrial inner mem-

brane, Mdl1 [81]. At the same time, many ABC-

transporters are able to transport various substrates with 

significantly different physico-chemical properties (re-

viewed in [82]). Accordingly it was shown that Mdl1 medi-

ates export of short (6-20 amino acid) peptides, which can 

be a product of proteolytic degradation of the mitochon-

drial matrix proteins by Lon protease [83]. These peptides 

(or some of them) are obviously perfect candidates for the 

role of specific messengers of mitochondria-to-nucleus 

signaling activated by mitochondrial matrix overload with 

unfolded proteins. It was shown that the deletion of MDL1 

gene changes the expression of several nuclear encoded 

genes under conditions of mitochondria dysfunction in-

duced by the deletion of an important mitochondrial pro-

tease YME1, while the phenotype of MDL1 deletion in the 

 

FIGURE 1: Schematic illustration of mitochondria-to-nucleus signaling in yeast. Mitochondrial dysfunction initiate change in concentra-

tions of several factors in the cytoplasm (ATP, amino acids, ROS, Fe-S clusters, unfolded proteins and others), these concentrations also 

depend on environmental and non-mitochondrial factors. Then factors are detected by the cytosolic sensors (RTG1/RTG3, Hap 1-5, Yap1 

and others) which transmit the signals to the nucleus leading to compensatory transcriptional response. Question mark indicates that the 

direct signaling routes are still not known. 
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parental cells was much weaker [84]. An example of mito-

chondrial regulatory short peptide was recently discovered 

in mammalian cells. It was shown that MOTS-c transcript is 

exported from mitochondrial matrix and translated in cy-

toplasm, where it activates AMP-dependent kinase [85]. 

Although yeasts do not contain any regions with close ho-

mology to MOTS-c, their mitochondrial genome is relative-

ly large and more complex than the human one (human 

mitochondria harbor shorter DNA, no introns, genes relat-

ed to oxidative phosphorylation only), meaning that similar 

mechanisms could still be found in yeasts. 

 

RETROGRADE SIGNALING AND CELL CYCLE 

Mitochondria quantity and quality must be tracked during 

cell cycle progression, otherwise the daughter or mother 

cells could inherit insufficient or excessive amounts of the 

organelles. The former could lead to a complete depletion 

of mitochondria in some cells and consequent cell death. 

Indeed, in contrast to the loss of mitochondrial DNA, yeast 

cells cannot tolerate the loss of mitochondria. To our 

knowledge, there were no reports describing cases of mi-

tochondria elimination from the wild type yeast cells, alt-

hough malfunction of mitochondrial transport machinery 

can induce the formation of buds without mitochondria 

[86]. Thus, it seems likely that mitochondria transmit signal 

to the nuclei to control cell cycle progression depending on 

mtDNA and/or mitochondrial proteins abundance. 

In 2004 Singh [87] suggested the existence of mito-

chondria-specific checkpoint, mitocheckpoint, which signals 

to the nucleus upon severe mtDNA damage. Later it was 

found that growth defects of yeast cells with compromised 

respiratory activity is due to Rad53-mediated delay of G1- 

to S-phase transition [88]. Recent data also revealed that 

coordination of nuclear cell cycle progression with mito-

chondrial biogenesis is regulated at the level of protein 

import machinery [20]. We found that under nitrogen star-

vation conditions, mitochondria contribute to activation of 

pseudohyphal growth [31]. Such growth is associated with 

prolonged cell cycle delay in G2-phase [89]. We have also 

shown that signaling mediated by Rtg-proteins contributes 

to the severity of S-phase arrest induced by telomere dys-

function [90]. At the same time, early studies showed that 

cell cycle arrest does not prevent mtDNA overreplication 

[18, 19]. Together, it suggests that although mitochondria 

influence cell cycle progression and activation of its specific 

modes (e.g. pseudohypha), mitochondrial signaling branch 

is integrated together with other signals which influence 

cell cycle progression. 

 

CONCLUSIONS 

To conclude, beyond their role in energy requirement, mi-

tochondria are recognized as elements of signaling path-

ways convergence. A plethora of cellular processes rely on 

their proper functionality which is controlled by a tight 

cross talk between mitochondria and the nucleus (retro-

grade signaling) and vice versa (anterograde signaling). 

However, how cells sense mitochondrial functionality or 

mitochondria signal their status is still unclear and needs a 

better understanding. Yeast has been widely used as a 

model to study mitochondrial function for its metabolic 

features are highly conserved throughout the eukaryotic 

kingdom. 

The presented data point that baker’s yeast are devoid 

of specialized mitochondria-to-nucleus signaling pathways. 

Instead, mitochondria-initiated cascades are modulated by 

non-mitochondrial (cytosolic) factors (see Figure 1). Typi-

cally, mitochondrial compensatory response is initiated by 

the changes in concentrations of certain factors in the cy-

toplasm. Then such problem is detected by the specialized 

cytosolic sensors which modulate the transcription of the 

sets of genes (Figure 1). For example, a deficit of glutamate 

can be caused by malfunctioning mitochondria, by insuffi-

cient nitrogen source in the medium or by over-intense 

protein biosynthesis. The deficit is sensed by TOR complex, 

which activates Rtg cascade (to improve mitochondrial 

biosynthetic machinery), invasive growth (to seek nitrogen 

source) and also slows down the rate of protein synthesis. 

This does not necessarily mean that the cells are unable to 

produce transcriptional response which is aimed at mito-

chondria only. Possibly, a certain combination of changes 

in the cytosol, e.g. simultaneous drops in the concentra-

tions of ATP and glutamate combined with mild oxidative 

stress, can induce transcriptional changes mainly affecting 

mitochondria. Also, it is still possible that the direct signal-

ing routes, similar to mammalian MOTS-c - dependent 

pathway, do exist in yeast. In our opinion, it is likely that 

mPOS network is initiated by the specific precursors (as 

opposed to bulk misfolded protein). If so, such precursor 

can be considered as a classical signaling intermediate. 

Short peptides exported by mitochondrial ABC-transporter 

Mdl1 are also candidates for the role direct signaling mole-

cules. 
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