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Summary: Multiple sclerosis presents particular and serious
problems to those attempting to develop cell-based therapies:
the occurrence of innumerable lesions scattered throughout the
CNS, axon loss, astrocytosis, and a continuing inflammatory
process, to name but a few. Nevertheless, the limited and
relatively focused nature of damage to oligodendrocytes and
myelin, at least in early disease, the large body of available
knowledge concerning the biology of oligodendrocytes, and the
success of experimental myelin repair, have allowed cautious

optimism that therapies may be possible. Here, we review the
clinical and biological problems presented by multiple sclerosis
in the context of cell therapies, and the neuroscientific back-
ground to the development of strategies for myelin repair. We
attempt to highlight those areas where difficulties have yet to be
resolved and draw on a variety of more recent experimental
findings to speculate on how remyelinating therapies are likely to
develop in the foreseeable future. Key Words: Multiple sclero-
sis, remyelination, stem cells, cellular therapy, demyelination.

INTRODUCTION

Within the past year or so (formal publication is
awaited), the first patients with multiple sclerosis (MS)
have, by way of preliminary clinical experiment, re-
ceived intracerebral implants of cells, in the hope that
these (autologous Schwann) cells would effect myelin
repair (http://www.myelin.org/12082003.htm). Early and
informal indications suggest that proof of efficacy is
lacking, but there is a drama underlying this work: re-
parative cell therapy in multiple sclerosis has finally
begun its journey from laboratory to clinic.

What has been the experimental rationale for this
work, and, no less important, what is the future of cell
therapy in multiple sclerosis? Does it lie with Schwann
cells, or with stem cells, with other glia or none? Here we
propose that, while serious and substantial clinical and
biological problems remain to be solved, remyelination
treatments by cell-based therapy represent an approach-
able challenge, offering a realistic prospect of successful
implementation for the current generation of patients
with multiple sclerosis.

THE CLINICAL SCIENTIFIC BACKGROUND
TO CELL THERAPY FOR DEMYELINATION

The complexity of the CNS poses daunting challenges
to reparative medicine. Not for nothing did Cajal coin the
immortal if lugubrious phrase “everything may die, noth-
ing may be regenerated,” and affirm the perception that
the brain has traded flexibility in response to damage,
and a capacity for functional, regenerative repair, for
prodigious sophistication and complexity. In the context
of this challenging background, there are, however, three
good reasons to believe that demyelinating diseases such
as multiple sclerosis might have significant advantages
over many other CNS disorders in their inherent eligi-
bility for cell therapies.

The first is that, despite the valuable concentration on
axon loss in multiple sclerosis in recent years, it remains
primarily a demyelinating disease. Axon loss undoubt-
edly occurs earlier in the course of MS than previously
believed, and is more than likely to represent the princi-
pal pathophysiological cause of disability in chronic pro-
gressive disease, but none of the recent experimental,
imaging, or neuropathological studies have challenged
the concept that disease processes in MS are primarily
directed against oligodendrocytes and/or myelin, and that
axons are relatively spared until late disease.1,2 The im-
portance of considering the mechanism of axon loss is
addressed below, but the key implication of the primary
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targeting of myelin in MS is that, in the main, axon
pathways remain intact. Cell therapies therefore aim
“only” to reinvest axons with myelin, rather than address
the almost overwhelming challenge presented by other
neurological diseases: that of re-establishing connectiv-
ity in highly complex but fragmented axonal circuitry.

The second positive feature of MS, in terms of devel-
oping cell therapies, is found in the clear evidence of
spontaneous if partial myelin repair in multiple sclero-
sis.3–6 The aim of cell therapies thus ceases to be the
artificial imposition of a repair phenomenon de novo, and
becomes one of enhancing or supplementing a spontane-
ous process. How this might be done must depend on a
better understanding of the clinical biology of the dis-
ease, including the reasons why endogenous repair is not
more successful, and how these limitations can be over-
come.

Thirdly, there is now available a very large body of
experimental evidence, employing a wide variety of an-
imal models of demyelination and a range of sources of
remyelinating cells, collectively providing proof of prin-
ciple: cell therapy can, without question, achieve suc-
cessful remyelination. Thus, implanted dissociated rat
Schwann cells remyelinate the rodent CNS,7,8 and can
restore normal conduction9; transplantation of purified
oligodendrocyte lineage cells8,10–15 or cell lines12,16,17

likewise achieves myelin repair, accompanied by im-
proved conduction18 and also demonstrable functional
recovery.19 Olfactory ensheathing cells (OECs), upon
transplantation into lesions containing demyelinated ax-
ons, also lay down (Schwann cell-like) myelin.20,21 Ro-
dent embryonic stem cells and neural stem cells ex-
panded from adult rodent brain both possess significant
remyelinating potential.22–25 Adult bone marrow also
contains stem cells with neurogenic (and other) potential:
these cells too, upon injection, are associated with suc-
cessful myelin repair.26,27

THE REMAINING OBSTACLES TO
DEVELOPING EFFECTIVE CELL

THERAPIES IN MS

Against this positive experimental and pathological
background to therapeutic remyelination in MS, why is it
that cell therapies, or at least clinical experimental ther-
apeutic trials, are not already widespread in this disease?
What are the significant remaining hurdles, and how
serious are they? What still needs to be done to develop
at least potentially effective interventions? At least four
significant problems readily suggest themselves: each
will be briefly considered (FIG. 1).

The timing of implantation: early or late?
The firstprinciple in any new therapeutic endeavor

must always remain “first, do no harm.” In late MS,
when progressive disability is established, and hope of
spontaneous recovery extinguished, the possibility of do-
ing damage or at best compromising spontaneous repair
is remote. However, compelling arguments must be of-
fered if the early exhibition of any potentially hazardous
intervention in MS is to be justified; at this stage, little
disability is present and therefore there is much to lose,
and the natural history is such that some patients will
never develop significant disability. In addition, implant-
ing cells into early lesions exposes remyelinating glia,
and their new myelin, to ongoing inflammatory activity.
Concurrent use of potent immunosuppressive agents, re-
quired in any case with allogenic transplants to prevent
graft rejection, might help protect cells, but no current
therapies reliably stop myelin destruction.

Despite this, we believe earlier intervention might well
have the best prospect of success. Spontaneous remyeli-
nation appears to occur maximally in acute inflammatory
lesions,5,28 suggesting an optimally propitious environ-
ment. Indeed, some suggest that anti-inflammatory
drugs29 or the suppression of inflammation in general30

may impair myelin regeneration.
The clinical impact of the accumulating axon loss in

secondary progressive disease2,31 provides a more potent
reason for earlier remyelinating intervention. Quite apart
from the futility of attempting to remyelinate axons long
since departed, recent findings indicate that changes in
the cell surface expression of various molecules (e.g.,
polysialic acid–neural cell adhesion molecule) in chron-
ically demyelinated axons actively inhibit myelination.32

Also apparent is a profound inhibitory effect on remy-
elinating glia of chronic astrocytosis,33 a key feature of
the chronically demyelinated lesion. These consider-
ations all seriously mitigate against deferred intervention
but, in addition, the underlying cause of axon loss also
must be considered.

The course of secondary progression—and by impli-
cation, of axon loss—appears to be influenced neither by
early inflammatory disease activity34–36 nor, sadly, by

FIG. 1. Questions to be considered in the development of re-
parative cell therapy.
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even the most profound immune suppressant or anti-
inflammatory treatments. These and other observations
have fueled the hypothesis that progressive axonal dam-
age is (at least in part) a consequence of persistent myelin
loss.2,37,38 Pathological studies have indicated that
chronic axon loss does not correlate with inflammatory
cell infiltrate, tumor necrosis factor (TNF) expression,
nitric oxide expression, or demyelinating activity, but is
related to the overall extent of established myelin
loss.34,36 It is seen in lesions which are demyelinated but
which exhibit sparse or no inflammation, but is rare in
remyelinated lesions.36 Demyelination-induced axon
loss might occur by several possible mechanisms: di-
rectly, through the loss of oligodendrocyte-derived tro-
phic support,37,39,40 or sustained demyelination-induced
conduction block and electrical silence,41 or indirectly
through increased vulnerability of the exposed axon to
injurious agents.42 A further important driver for early
intervention thus emerges: the restoration of a normal
oligodendroglial environment to sustain (previously de-
myelinated) axons. Therefore, the earlier the interven-
tion, the greater the potential gain.

The site of implantation
Clearly, multiple inoculations of cells into widely dis-

tributed lesions in the brain and spinal cord of patients
with MS is unrealistic. What should not be overlooked,
however, is that many plaques are clinically silent, while
a disproportionate degree of disability frequently ema-
nates from a few critical lesions in eloquent areas. Thus,
implantation into a very small number of carefully se-
lected lesions, for example, the optic nerves, the spinal
cord, or the superior cerebellar peduncle, could yield a
useful therapeutic dividend.43

A more global myelin repair strategy, applicable not
only for multiple sclerosis but also for the significantly
rarer group of patients with inherited disorders of myelin
metabolism, however, is not impossible to foresee.
Transplanted cells would need to be encouraged to mi-
grate widely, as occurs during development. Supple-
menting cellular transplantation with growth factor infu-
sions,44 cotransplantation with growth factor-secreting
cells,45 and suppressing molecules that inhibit migra-
tion33,46 have all been tried experimentally, with limited
success. An alternative approach would exploit both the
circulation of the brain and the blood–brain barrier dis-
ruption present at sites of active inflammation to dissem-
inate and deliver cells, relying on the tropism of certain
reparative cells for diseased tissue, as discussed below
(in relation to bone marrow-derived and other adult stem
cells).

Monitoring success or otherwise
At present, the MRI detection of new myelin is not

reliably feasible, but new techniques continue to emerge,
of which magnetization transfer contrast is the strongest

candidate for imaging remyelination.47 Magnetic reso-
nance spectroscopy measurement of N-acetyl-aspartate
levels might offer means of assessing any impact on
local neuron/axon survival.48,49 Using paramagnetic par-
ticles to label cells before transplantation, enabling their
dispersion to be tracked by MRI50–52 has promise, al-
though from a safety perspective, even the most trivial
manipulation of cells before implantation would be bet-
ter avoided. Furthermore, graft survival cannot be in-
ferred from migration, since dead cells remain visible,50

and this method not only fails to show new myelin for-
mation but may also impair the ability of other MR
modalities to do so.

Serial neurophysiology may prove valuable, and mon-
itoring conduction times may provide evidence of return-
ing saltatory conduction in the targeted pathway(s). The
optic nerve has particular advantages in this respect, but
various approaches to more generalized neurophysiolog-
ical assessment have been described and may prove use-
ful for any intervention aimed at multifocal or more
diffuse myelin repair.53

Finally, remyelination without clinical improvement
would be a hollow victory, so robust and reproducible
methods of clinical assessment need to be applied ab
initio. Specific clinical outcome measures of function,
disability, and handicap must be adopted and tailored for
each type of intervention. Ultimately, success will need
to be measured using properly designed clinical trials, in
which clinical outcomes should be paramount. Consid-
erable advances in clinical scale design have improved
physical and functional measurement in multiple sclero-
sis,54 so that the tools for assessing clinical outcome, on
which remyelination therapies must stand or fall, are
becoming available.

Choice of reparative cell
Cells of the oligodendrocyte lineage. Oligodendro-

cytes are the most obvious candidates. These are the cells
lost in multiple sclerosis, and it is their normal function
to myelinate the CNS. Immature oligodendrocytes and
oligodendrocyte precursors are found in fresh le-
sions55–60 and are generally considered responsible for
the majority of spontaneous remyelination.61–64 Consid-
eration of the stage within the oligodendrocyte lineage
optimal for transplantation is important. Although some
studies have suggested that mature differentiated oligo-
dendrocytes are useful myelinating cells,10 the majority
view is that mitotic65and migratory14,66,67 capacities are
vital prerequisites for successful remyelination, and that
postmitotic oligodendrocytes, lacking these competen-
cies, do not readily recapitulate their development to
form myelin sheaths again.14,68,69

Despite their motility, oligodendrocyte progenitors
show poor survival and migration when implanted into
normal white matter, although they are able to populate
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and remyelinate when injected into, or very close to,
lesioned tissue.70 By contrast, these cells survive well in
x-irradiated tissue, which depletes endogenous progeni-
tors.71 Part of this increased survival may reflect compe-
tition between endogenous and implanted cells for sur-
vival factors, because progenitor numbers increase with
increased availability of platelet-derived growth factor
(PDGF)72 or glial growth factor 2 (GGF2).73 The possi-
bility of improving graft survival and proliferation by the
use of growth factors has been explored in vivo with
some success,45 but this introduces a further complica-
tion in developing clinical therapy.

A further difficulty of “using” oligodendrocyte pro-
genitors is that investigations of human CNS glia have
consistently demonstrated significant biological differ-
ences from rodent cells, so that data concerning rodent
oligodendrocyte progenitor cells (OPCs) cannot be di-
rectly extrapolated to human glia. Early studies identified
glia similar to the rodent OPCs in cultures derived from
the fetal human CNS74; these cells can synthesize myelin
in the dysmyelinated rodent CNS, even after cryopreser-
vation.75 Initial studies of the more recently identified
adult human oligodendrocyte progenitors76–78 suggested
a very limited capacity for remyelination (in the irradi-
ated rodent spinal cord).79 However, elegant methods for
selection of these cells (for experimental purposes) from
samples of human white matter have since been perfect-
ed80 and, interestingly, very recent comparative studies
suggest that adult human CNS-derived oligodendrocyte
progenitors have a significantly greater remyelinating
capacity than their fetal counterparts.81

Schwann cells. Perhaps surprisingly, Schwann cells
make a significant contribution to endogenous myelin
repair in multiple sclerosis, particularly in the spinal
cord.6,82,83 Experimental methods have been established
for preparing cultures of Schwann cells from adult pe-
ripheral nerve biopsies and for purifying and expanding
the cells in vitro to generate large populations of
Schwann cells.84,85 When so purified, human Schwann
cells successfully lay down new myelin in the mouse86

and the rat spinal cord.87,88

Autologous Schwann cell harvesting from peripheral
nerve biopsy, expansion in vitro, and transplantation into
patients with multiple sclerosis offers the considerable
attractions of relative ease of availability, and the avoid-
ance of rejection. Furthermore, by contrast with oligo-
dendrocyte-established new myelin, Schwann cells and
their myelin sheaths should be resistant to continuing
disease-related immunological attack. Firm evidence is
required, however, that expanded human Schwann cells
do not form tumors in vivo, a hazard described when
rodent Schwann cells immortalized by growth factor ex-
pansion were transplanted89; unpurified preparations of
human peripheral nerve cells result in substantial fibro-
blast overgrowth with axon destruction87; this obviously

presents an imposing barrier to the clinical application of
Schwann cell transplants. The apparent inhibitory effect
of astrocytes on Schwann cell-mediated CNS remyelina-
tion90–92 represents another potential problem for the use
of Schwann cells in remyelination therapy (FIG. 2).

Olfactory glia. OECs ensheath the axons emanating
from olfactory epithelial neurons that penetrate the ol-
factory bulb of the CNS (FIG. 3). They are found in the
olfactory bulb, nerves, and epithelium. Normally, OECs
are nonmyelinating, but rodent OECs assume a myeli-
nating phenotype closely resembling that of Schwann
cells when transplanted into lesions containing demyeli-
nated axons.20,21 The ability of OECs to promote CNS
axon regeneration and ensheath and myelinate demyeli-
nated axons has led to considerable interest in olfactory
glia in the field of CNS repair.93

One of the potential advantages of OECs over
Schwann cells relates to their relationship with astro-

FIG. 2. Cultured Schwann cells, stained with S100.

FIG. 3. Adult human olfactory glia in vitro.
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cytes. In health, OECs coexist alongside astrocytes
within the olfactory bulb, whereas in experimentally de-
myelinated lesions, OECs can (in contrast to Schwann
cells) ensheath and myelinate axons unimpeded by the
astrocytic environment.20 In vitro, rodent OECs migrate
far more successfully over astrocytes than Schwann
cells.94 Human OECs, like rodent OECs, are capable of
remyelination following transplantation into the demy-
elinated rodent spinal cord.95,96

Stem cells. There is general agreement that stem cells
have enormous therapeutic potential, perhaps particularly
for the treatment of neurodegenerative disease.97–100 To
date, most studies have concentrated on using embryonic
tissue as a source of stem cells, and certainly rodent em-
bryonic stem cells possess considerable remyelinating po-
tential.22 However, to develop therapies would obviously
require the dissection of human embryos as the stem cell
source, and this raises significant practical, immunological,
and ethical concerns. One serious risk is that of teratoma
formation101; removing this capacity from embryonic stem
cells with absolute success may pose considerable prob-
lems. In addition, the emergence of significant chromo-
somal abnormalities in cultured human embryonic stem
cells raises further concerns about their safe use.102 The
problem of rejection would also have to be circumvented.
Although this might be overcome using stem cells from
embryos cloned (by cell nuclear transfer) from individual
putative recipients (recently legalized uniquely in the
United Kingdom), the implication that every patient requir-
ing a transplant would first have to be cloned seems quite
unrealistic and would not bypass the major ethical difficul-
ties associated with the use of human embryonic material.

These problems have helped stimulate the largely suc-
cessful search for alternative sources of stem cells.103

There is increasing evidence that adult stem cells have a
greater capacity to differentiate into a wider range of cell
types than previously anticipated, and the use of adult
stem cells, particularly autologous cells would avoid
many of the difficulties associated with embryonic stem
cells.103–106

It is now clear that neural stem cells are present in the
adult rodent brain107; large numbers of oligodendrocyte
lineage cells can be generated using neurosphere/oligo-
sphere techniques, which, upon transplantation, success-
fully remyelinate axons. Neural stem cells are also
present in the adult human brain (FIG. 4).108 Recently, it
has been reported that adult CNS-derived rodent stem
cells will repair multifocal demyelinating lesions (in ex-
perimental allergic encephalomyelitis-affected rodents)
even after intravenous delivery.24

Bone marrow-derived stem cells (FIG. 5) are also ca-
pable of homing to damaged tissue(s) from the circula-
tion,109,110 and this tropism includes movement toward
injured CNS tissue.111,112 It is now beyond doubt that
adult bone marrow harbors a subpopulation of poten-

tially highly proliferative stem cells,106,112–120 whose dif-
ferentiation capacity includes glial cells and neu-
rones.121–124 Transplant studies in rodents have
confirmed the ability of bone marrow-derived cells to
express neural phenotypes in the CNS of recipients. Di-
rectly or peripherally injected bone marrow-derived cells
will repair damage, often with demonstrable functional
as well as anatomical recovery, in rodent models of
traumatic, degenerative, and ischemic CNS dam-
age.112,125–131 Remyelination is reported not only after

FIG. 4. Adult human brain-derived neural stem cells differenti-
ated into oligodendrocyte progenitors and stained with NG2.

FIG. 5. Adult human mesenchymal stem cells in culture.
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direct injection into lesions,27,132 but also, in more recent
studies, after peripheral injection.26

These properties, together with their easy accessibility,
ethical robustness, and significant track history in the
treatment of hematological disease makes bone marrow
cells ideal candidates for use in cellular therapies for
CNS disease. Further elucidation of the mechanisms in-
volved may allow for mobilization of endogenous cells,
perhaps even obviating the need for transplantation.

The possibility has been raised that cell fusion of bone
marrow-derived cells with host cells provides an alter-
native explanation for apparent transdifferentia-
tion.133,134 However, cell fusion cannot explain the ex-
tensive in vitro data indicating multipotentiality (see
above). In vivo studies confirm transdifferentiation with-
out fusion in a variety of tissues.135–137 Furthermore,
from a pragmatic perspective, fusion may simply be part
of the means by which bone marrow-derived stem cells
stimulate successful regeneration138; bone marrow–host
cell fusion in a liver disease model133,134 occurs in the
context of metabolic rescue by transplanted cells with
functional liver repair and survival of treated animals.139

Recent studies indicate that polyploidy is in fact a far
more common phenomenon that previously realized; the
possible occurrence of fusion does not necessarily imply
diminished regenerative capacity in a putative reparative
cell.140,141

CONCLUSION

We believe that cellular therapy holds considerable
promise for patients with demyelinating disease, and are
optimistic that this promise may begin to be realized
within the relatively near future. We would caution
against expecting reports of great benefit from trials re-
stricted to recruiting patients with chronic disease who
already have established stable (or progressive) disabil-
ity, in whom one might predict a minimal response.
Nevertheless, we look forward to the time when eligibil-
ity for cellular therapy trials will be less restrictive and,
in the interim, continue to accrue the safety data and
basic understanding of the mechanisms involved that
will make this a reality.
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