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Typical sickle cell pain case

A 19 year old female with severe sickle cell disease (SCD) presents to her hematologist with 

severe pain. Prior to age 16, she reported four hospitalizations and two emergency 

department visits for acute pain management. Her pain significantly increased in frequency 

and severity between ages 16–19 with 10 hospitalizations and she reported almost daily 
pain. Her pain descriptors included radiating, burning, tingling, electric shocks, numbness 

and she reported cutaneous pain with slight skin pressure and with cold temperatures. Pain 

locations included chest, lower back, knees, feet and “all over.” At age 18, she started 

hydroxyurea which induces the production of fetal hemoglobin and ameliorates some SCD 

complications, including acute pain. Despite a positive hematological response, significant 

pain persisted, severely impacting her quality of life. Her pain regimen included almost daily 

oxycodone, tramadol and ibuprofen. Questions raised by this common case include: What is 

the underlying mechanism(s) causing the pain? Why did her pain transition from acute and 

intermittent as a young child to chronic, almost daily pain as an adolescent? What alternative 

pain treatments can be used? What deleterious effects does chronic opioid treatment cause?

Sickle cell disease (SCD) is a global public health challenge

Over 5 million individuals and over a quarter million live births annually are affected by 

SCD world wide[49] and the United Nations and World Health Organization have 

recognized SCD as a global health problem that is projected to increase in future decades..

[2] In the US, 90,000–100,000 individuals live with SCD[1; 10], 1 in 365 African American 

babies are born with SCD, and 1 in 13 African Americans carry sickle cell trait.[1] This 

costs an estimated $460,000 in the US for each individual with SCD.[27] Both SCD and trait 

are diagnosed on newborn screening in the US and many developed countries. Far greater 

numbers are affected in West and Central Africa where as many as 18% have sickle cell trait 

and 1–2% of babies are born with SCD; few of these countries have newborn screening or 

basic health care.[48] SCD also affects individuals from the Mediterranean basin, Middle 
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East, Saudi Arabia, India, Asia and South/Central America. Millions of people suffer from 

SCD world-wide; however, the universal prevalence is unknown due to lack of newborn 

screening in many countries.[1; 48] SCD is clearly an under-recognized major international 

health problem.

Pathophysiology of SCD

Homozygous inheritance of hemoglobin S (sickle hemoglobin, HbS) gene results in the most 

common and severe form of SCD (HbSS). [53] However, other sickle genotypes occur with 

compound heterozygosity when HbS is co-inherited with other beta-globin gene variants, 

such as HbC or β-thalassemia. The HbS mutation is the result of a single base pair change in 

the β-globin gene responsible for synthesis of the β-globin polypeptide of the Hb molecule 

(α2β2). This change results in replacement of the normal glutamic acid with valine at 

position 6 of the β-globin chain. The hydrophobic valine is at the surface of hemoglobin and 

when deoxygenated, hemoglobin binds to a hydrophobic pocket, formed by βPhe85 and 

βLeu88, which then forms large insoluble aggregates. Similar interactions between many 

HbS molecules lead to long polymerization that is promoted by hypoxia or dehydration. Red 

blood cells (RBCs) with normal hemoglobin (HbA) are flexible biconcave discs that flow 

easily through blood vessels. In contrast, the aggregation of HbS polymers leads to the 

pathognomonic sickle RBC shape. Sickle RBCs are rigid, fragile, and have decreased 

deformability and increased adherence to endothelial cells resulting in increased 

microvasculature congestion and inflammation. The severe pathophysiology triggered by 

sickled RBCs includes: 1) blood vessel obstruction resulting in tissue ischemia (vaso-

occlusion)[13]; 2) reperfusion injury after vaso-occlusion [13]; 3) shortened RBC survival 

resulting in severe chronic hemolytic anemia and release of free heme[55] and other RBC 

intracellular contents[26; 52]; and 4) chronic inflammation.[28; 30] SCD is a multi-organ 

system disease due to the chronic and ongoing effects of repeated vaso-occlusion and 

subsequent ischemia-reperfusion injury.[53] [74]

Clinical manifestations of SCD include severe acute and chronic pain[6; 46; 51; 59], 

pulmonary pathology[21; 66], splenic impairment resulting in life-threatening pneumococcal 

infections[37; 38], strokes resulting in motor and cognitive impairments[15], renal 

failure[42], vision loss[34], bony infarcts, joint osteonecrosis[36], priapism[3], and leg 

ulcers.[40] The mean age of death for patients with HbSS disease is 38 for males and 42 for 

females (55 years for all SCD genotypes).[31].[16; 43] Although newborn screening, 

pneumococcal prophylaxis and increased hydroxyurea utilization[61; 62; 64; 67; 70] have 

increased patient survival and decreased morbidity, the survival and outlook remain 

significantly impaired.

Severe pain during acute vaso-occlusive crisis

The hallmark of SCD is the acute vaso-occlusive pain crisis manifesting as abrupt onset of 

severe, debilitating pain in any part of the body. Vaso-occlusive crises are the most common 

cause of emergency department visits and hospitalizations and crises profoundly impact 

quality of life.[6; 39] Triggers of vaso-occlusive crises (VOCs) include illness, dehydration, 

cold temperatures [54; 58], increased wind speed[44], and higher barometric pressure.[58] 
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However, often no precipitating factor occurs and pain crises start abruptly without warning, 

adding to the severe impact on patients’ quality of life. Children can begin having pain crises 

as early as 6 months of age when fetal hemoglobin (HbF) is replaced by abnormal adult 

hemoglobin, HbS. Acute vaso-occlusive crisis pain is described as aching, drilling, 

pounding, sharp knives or throbbing and can last a week or longer.[18; 68; 69; 71] Pain 

crises increase in number, duration and intensity as patients age.[46] Patients with more 

frequent pain crises have a higher mortality rate.[50] The backbone of acute pain crisis 

treatment includes intravenous opioids.[74] SCD patients often require large opioid doses 

due to increased opioid metabolism and clearance, as well as tolerance from receiving life-

long opioid therapy[14] such that their pain becomes increasingly refractory to opioids.[65] 

Further, some SCD patients display opioid-induced hyperalgesia.[63]

Transition from acute to chronic pain in SCD

In addition to intermittent acute vaso-occlusive pain, SCD patients also develop chronic 
pain. Chronic pain transpires with increasing age as illustrated in the patient case above and 

in Table 1. Chronic, almost daily pain occurs irrespective of an acute vaso-occlusive crisis in 

29.3% of adults.[59] In addition, 40% of children and adolescents (ages 8–18 yrs) have 

chronic pain with 35% reporting daily pain.[57] Chronic SCD pain is also associated with 

more functional and psychosocial morbidity[20; 33; 56; 57], unemployment[4; 5], and 

school [33; 56; 57; 59; 60] and work absenteeism.[20]

Patients describe SCD pain using both nociceptive (i.e., throbbing, wrenching, tearing, 

pulsing, piercing, crushing, cramping) and neuropathic descriptors (i.e., aching, cold, hot, 

penetrating, shooting, and stabbing).[18; 68; 69; 71] The broad pain descriptors suggest that 

SCD pain is multifaceted in etiology. Neuropathic pain questionnaires demonstrate that 30% 

of adult patients have neuropathic pain.[7; 17] Quantitative sensory testing in SCD patients 

reveals they have increased sensitivity to thermal and/or mechanical stimuli, and fMRI 

changes and windup suggest that there are both peripheral and central nervous system 

abnormalities.[8; 9; 17; 25; 45] These data suggest a complex etiology to SCD pain 

including ischemic, inflammatory and neuropathic components. The tissue sources of pain 

range from cutaneous to deep foci. Although tissue sources can include bony infarcts, 

avascular necrosis of the femoral/humoral heads and leg ulcers, most SCD patients with 

chronic pain do not have an obvious anatomic source making the etiology of chronic pain 

even more challenging to identify. Whereas physicians who treat SCD patients are aware of 

the immense suffering, the pain remains poorly understood and the pain research community 

has only begun to appreciate the wide-spread chronic pain and multifactorial etiology that 

occurs with SCD.

While hydroxyurea can prevent some acute SCD complications including acute pain crises 

and acute chest syndrome (ACS), its effectiveness at alleviating chronic SCD pain is not 

well known.[72] This is illustrated by our patient case where her pain was not relieved by 

hydroxyurea despite a good hematologic response to the drug. Furthermore, some patients 

who have undergone bone marrow transplantation to cure their SCD continue to have 

chronic opioid requirements at least 6 months post-transplant.[24] This suggests that 

different mechanisms are likely driving the development and maintenance of chronic pain. 
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High dose opioid-based regimens are the backbone of treatment for both acute and chronic 

SCD pain[74]; however, chronic opioid use is often associated with well-known side effects 

including sedation, dizziness, nausea/vomiting, constipation, physical dependence, tolerance 

and opioid-induced hyperalgesia.[32] Therefore, non-opioid based treatments for chronic 

pain are critically needed.

Animal models of SCD replicate clinical pain

Several transgenic SCD mouse models exist that exclusively express human sickle 

hemoglobin.[47; 73] Berkeley sickle transgenic mice have a knockout of all mouse alpha 

and beta globins and express a transgene with either normal or sickle human hemoglobin.

[47] Townes sickle mice have a knockout of mouse hemoglobin and a site-directed knockin 

of human hemoglobin.[73] The transition from fetal to adult hemoglobin occurs prior to 

birth in Berkeley mice, whereas in Townes mice, pups are born with expression of gamma 

globin at birth which gradually decreases to <1% HbF during the first week post birth.[73] 

Both SCD mouse models have vascular and organ pathologies that closely mimic patients 

with severe SCD. Like patients, mice have sickled, rigid and fragile RBCs, severe hemolytic 

anemia, increased hematopoiesis, and extensive multi-organ damage.[35]

Sickle mice exhibit prominent, chronic evoked and ongoing pain behavior

SCD mice display chronic pain-like behaviors at “baseline” when not in an apparent sickling 

crisis. Stimulus-evoked pain behaviors include pronounced hypersensitivity to cutaneous 

mechanical stimuli with decreased von Frey thresholds and hypersensitivity to very light 

touch.[19; 23; 29] Sickle mice also have marked hypersensitivity to cold stimuli and show 

avoidance of even very mild cool temperatures.[75] This cold allodynia mimics the most 

prominent phenotype in SCD patients who display increased cold pain sensitivity in 

quantitative sensory testing[9; 45] and increased numbers of acute pain crises during cold 

temperatures and cold water exposure.[8; 54; 58] SCD mice also express heat 

hypersensitivity similar to SCD patients who have lower heat pain thresholds.[9] 

Anecdotally, many patients prefer warmth using heating pads, high room temperatures and 

blankets during an acute pain crisis and between crises.

SCD mice also express deep tissue, non-stimulus evoked pain, and musculoskeletal pain 

measured by decreased grip force strength, decreased voluntary wheel running[22; 29], 

altered grimace, body length and stature scores associated with chronic pain[41], and 

anxiety and depression-like behaviors[29; 31] which correlate the comorbidities of 

depression and anxiety in SCD patients.[57; 60] Female and male mice exhibit similar 

magnitudes of hypersensitivity[23], consistent with both female and male patients enduring 

the severe pain. These data suggest cutaneous and deep afferents and CNS pathways may be 

sensitized in SCD. As in SCD patients, mouse pain behaviors become exacerbated with 

increasing age[11; 75] suggesting that repeated acute sickling episodes transition to 

worsened chronic pain. Mimicking acute vaso-occlusion in mice using experimental hypoxia 

exacerbates the hypersensitivity, indicating RBC sickling worsens the pain.[23]
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Peripheral sensory and spinal cord neurons are sensitized in SCD mice

Cutaneous C fiber and Aδ fiber nociceptors exhibit prominent, long-lasting sensitization to 

mechanical stimuli in the form of increased suprathreshold firing to sustained pressure.[23] 

C fibers also exhibit sensitization to cold stimuli displayed as warmer cold activation 

thresholds and enhanced cold-evoked responses.[75] Low threshold, light touch Aβ afferent 

fibers that innervate Merkel cells and hair follicle afferents also display prominent 

mechanical sensitization.[19] The mechanical and cold afferent sensitization occurs by 8 

weeks of age, however, the timeframe in development when this afferent sensitization 

develops is not known. Thus, a diverse range of cutaneous afferent fibers are sensitized in 

SCD. While the extent of sensitization of deep muscle, joint or bone afferents is unknown, 

the findings that isolated dorsal root ganglion neurons that project to all peripheral targets 

exhibit sensitization [23; 75] suggests that afferents that innervate deep tissues are 

sensitized. Importantly, chronic sensitization of primary afferent neurons can lead to 

enhanced, summated input to the spinal cord pain pathways in SCD patients.

Nociceptive spinal dorsal horn neurons (nociceptive specific and wide dynamic range 

neurons) exhibit sensitization in the form of enlarged receptive fields, increased spontaneous 

activity, lower mechanical thresholds, increased suprathreshold mechanical responses and 

prolonged after discharges following mechanical stimulation[12], suggesting that central 

sensitization contributes to chronic SCD pain. Higher level brainstem, thalamic and cortical 

ascending or descending pathway relay neurons that are essential components of chronic 

pain have not yet been investigated in SCD models.

Neuronal and non-neuronal cellular and molecular mechanisms drive 

sensitization in SCD

Table 2 outlines supporting data for neuronal and non-neuronal mechanisms that drive 

sensitization and pain in SCD at both the peripheral and central levels.

The power of SCD models for pain research

The value of SCD mouse models for mechanistic pain research is that the chronic pain 

develops over time naturally from the underlying disease. This is in contrast to pain that is 

artificially induced in many persistent pain models such as Complete Freund’s Adjuvant 

injection or nerve lesion or ligation. While these induced models provide mechanistic 

insights into inflammatory and neuropathic pain in well-controlled models, there are some 

underlying concerns with these models, including their relevance and translatability to 

human patient pain conditions which are more complex in etiology and longer in duration. 

The SCD mouse models comprise preclinical models where the chronic pain develops 

naturally from the endogenous disease. Further, in these models, the development of acute 

pain and its transition to chronic pain can be studied at every level of the pain pathway 

including the PNS, CNS ascending and CNS descending control, as well as interactions 

between neuronal and non-neuronal cells (endothelial cells, mast cells, microglia, 

astrocytes). In addition, the parallel study of patients and mouse models of SCD should 

Brandow et al. Page 5

Pain. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reveal what aspects of this preclinical model will and will not translate into true clinical 

relevance.
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Table 2

Neuronal and non-neuronal mechanisms that drive sensitization in SCD at peripheral and central levels

Mechanism Supporting data

Peripheral
Mechanisms

Substance P (SP) • Increased in cutaneous sensory neurons of SCD mice[28]

• NK1 receptor increased in sensory ganglia from SCD mice[76] suggesting 
elevated SP receptor signaling

• Plasma levels higher in SCD patients at baseline health (vs. controls) and 
increases further during acute pain[9; 39]

Calcitonin Gene-Related
Peptide (CGRP)

• Increased in cutaneous sensory neurons of SCD mice[28]

Mast cell activation • Increased activation in SCD mice contributes to peripheral, neurogenic 
inflammation-mediated release of CGRP, SP and tryptase[66]

Endothelin-1 (ET1) • Elevated in plasma in mice and patients at baseline and in crisis[21] and 
expression is elevated in sensory ganglia from SCD mice[76]

Transient Receptor Potential
Vanilloid 1 (TRPV1)

• Shown to mediate mechanical hypersensitivity in SCD mice suggesting afferent 
sensitization[23]

Cannabinoid receptors 1
and 2 (CB1 and CB2)

• Expressed on mast cells and CB1 and CB2 receptor agonists alleviate cutaneous 
and deep tissue pain behavior in SCD mice[65]

Central
Mechanisms

Increased cellular signaling
cascades in spinal cord

• Phosphorylated mitogen-activated protein kinases (MAPKs), c-Jun N-terminal 
kinase (JNK), extracellular signaling-related kinase (ERK) and p38 kinase.[12]

Other cellular and
inflammatory mechanisms
increased in spinal cord

• COX-2, IL-6 and TLR4 receptors[28] and second messengers PKC and CaMKII 
activation are increased in the spinal dorsal horn [71], and inhibition of PKCδ 
attenuates the SCD pain behavior[22]
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