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Abstract

Since the introduction of commercial optical coherence tomography (OCT) systems, the 

ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of 

visualization of the retina and revolutionized the management and diagnosis of neuro-retinal 

diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing 

from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and 

processing methods, and onto the newer swept-source OCT and the implementation of adaptive 

optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced 

OCT by improving image resolution and quality, particularly in the posterior segment of the eye. 

Although OCT previously captured in-vivo cross-sectional images with unparalleled high 

resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral 

resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with 

OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and 

retina in three-dimensions, increasing resolution down to a theoretical 3 μm3. It is now possible to 

visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber 

layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its 

limitations and barriers to widespread commercialization, the expanding role of AO in OCT is 

propelling this technology into clinical trials and onto becoming an invaluable modality in the 

clinician's arsenal.
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1. Background

Glaucoma is a slowly progressive, multifactorial, degenerative optic neuropathy and is the 

most common cause of irreversible blindness and the second most common cause of 

blindness worldwide (Quigley and Broman, 2006). Glaucoma is characterized by the 

degeneration of retinal ganglion cells (RGCs) and their axons, associated with 

morphological changes within the optic nerve and retinal nerve fiber layer (RNFL) (Garcia-

Valenzuela et al., 1995; Quigley, 2011; Quigley et al., 1989; Quigley et al., 1995; Sommer et 

al., 1977; Weinreb et al., 2014; Weinreb and Khaw, 2004) such as neuroretinal rim thinning 

and RNFL wedge defects. Accurate and early detection of glaucomatous structural changes 

is paramount to successful management and the prevention of disease progression 

considering that the disease is causing irreversible loss of visual function (Foster et al., 2002; 

Quigley and Broman, 2006).

1.1 Optical coherence tomography

Optical coherence tomography (OCT) is one modality that has become particularly 

widespread and is now the state-of-the-art imaging modality in glaucoma, supplanting older 

adjuncts for glaucoma diagnosis and monitoring (Girach and Sergott, 2016). OCT was first 

demonstrated in 1991 (Huang et al., 1991) as an application of low-coherence interferometry 

(Fercher et al., 1988). In 1993, the first OCT imaging studies of the human retina in-vivo 
were performed; and the devices became commercially available in 1996 after scanning 

patterns with reproducible measurements were developed (Schuman et al., 1996). The 

groundbreaking technique has allowed for in-vivo, noninvasive, high-resolution cross-

sectional imaging of ocular structures. With the ability to provide quantitative evaluation of 

neural structures affected by the disease, such as the macula, RNFL, and optic nerve head 

(ONH) (Kim et al., 2010; Leite et al., 2011; Leung et al., 2009; Leung et al., 2010; Medeiros 

et al., 2004; Park et al., 2009; Rao et al., 2010; Sehi et al., 2009; Wang et al., 2011b), its 

clinical utility was quickly realized (Puliafito et al., 1995; Schuman et al., 1995). OCT began 

to gain popularity in clinical ophthalmology in the early 2000's. OCT has since changed the 

paradigm of visualization of the retina and revolutionized the management and diagnosis of 

glaucoma, being widely used for the initial assessment of glaucoma and for monitoring 

disease progression and response to its various treatment modalities (Mansouri et al., 2013b; 

Puliafito, 2010).

1.1.2 Advances in optical coherence tomography—Since its initial introduction, 

OCT technology has advanced considerably. Previously available OCT instruments used a 

technique referred to as time-domain (TD-) OCT. TD-OCT was based on the low coherence 

interferometry principle of signal reflected from the eye and signal from an oscillating 

reference mirror, in order to match path lengths with separate reflective surfaces within the 

retina. The first commercially available TD-OCT (Stratus OCT, Zeiss, Dublin, CA), featured 

nominal axial resolution of 10 μm, transverse resolution of 20 μm, and scanning speed of 

400 axial scans per second. However, this technology was limited by suboptimal resolution 

and slow scan acquisition rates (Hougaard et al., 2007a, b; Lee et al., 2009; Manassakorn et 

al., 2006; Medeiros et al., 2009b; Medeiros et al., 2005; Naithani et al., 2007; Nouri-
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Mahdavi et al., 2008; Parikh et al., 2007; Wollstein et al., 2005). Hardware advances in 

commercial systems improved resolution and increased scanning speeds.

The introduction of spectral-domain (SD-) OCT increased scan acquisition rate, allowing for 

a more thorough sampling of the area of interest and greatly reduced the need for 

interpolation between adjacent scans as compared to TD-OCT (Gonzalez-Garcia et al., 

2009; Iliev et al., 2006; Kim et al., 2009; Knight et al., 2009; Leitgeb et al., 2003; Leung et 

al., 2009; Leung et al., 2011; Mwanza et al., 2011; Ortega Jde et al., 2009; Schuman, 2008; 

Sung et al., 2011). In this iteration of the technology, the reference arm is stationary and 

interference pattern from the sampling and reference arms are detected spectroscopically. 

Image analysis of neuro-retinal features has also advanced significantly since the 

introduction of OCT in the clinic. Initially, RNFL was the only feature of the retina 

measured by OCT that was used for glaucoma management, providing objective, 

quantitative measurements of RNFL thickness (Huang et al., 1991). However, when newer 

SD-OCT devices began to measure and quantify additional structural features, such as those 

from the ONH and macula, the clinical utility increased for OCT in glaucoma.

Since its commercialization, SD-OCT has become available from numerous manufacturers 

and has been established as the dominant imaging modality in the management of glaucoma. 

The nominal axial resolution of the commercial devices range between 3 to 7 μm, transverse 

resolution is similar across devices at 20 μm, but the scanning speed varies between 25,000 

to 100,000 axial scans per seconds. Scan patterns and measurements across these devices are 

generally not interchangeable, but their ability to detect glaucomatous changes of the fundus 

are similar (Akashi et al., 2013; Leite et al., 2011; Pierro et al., 2012). Overall, SD-OCT 

devices enhanced reproducibility and accuracy in quantifying glaucomatous damage.

Swept-source OCT (SS-OCT), a newer generation of OCT, has recently been introduced 

(Chinn et al., 1997). SS-OCT utilizes a longer wavelength (generally 1050 nm) compared 

with SD-OCT (840 nm). SS-OCT systems are able to capture high resolution images of the 

anterior chamber (AC) improving visualization and quantification of the AC structures. 

Because SS-OCT devices are less susceptible to signal attenuation, compared with other 

iterations of the technology, they are helpful in evaluating deeper posterior segment ocular 

structures, such as the choroid and lamina cribrosa (LC) in-vivo (Mansouri et al., 2013a; 

Mansouri et al., 2013b; Park et al., 2014; Takayama et al., 2013). SS-OCT has enabled users 

to acquire high quality wide-angle scans that contain a large area of the posterior pole, 

including both the optic disc and macula.

1.2 Adaptive optics for ophthalmic imaging

The addition of adaptive optics (AO) into ophthalmic imaging modalities has further 

enhanced image quality. Before AO was introduced into ocular imaging with retinal cameras 

(Liang et al., 1997), the technique was already highly utilized in astronomy imaging 

protocols to reduce atmospheric distortion caused by diffraction. Specifically, AO has helped 

reduce speckle or granular image artifacts, minimize blur, and resolve faint features of 

astrophysical objects when viewing from ground-based telescopes. To accomplish this, AO 

systems employ a wavefront sensor and wavefront corrector to measure and correct optical 
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aberrations in real time, typically with a deformable mirror that compensates for the 

aberrations by changing the shape of the incoming wavefront (Lombardo et al., 2013).

AO technology seeks to correct for the eye's optical aberrations and has been adapted to 

multiple ophthalmic imaging modalities (Godara et al., 2010; Williams, 2011). These optical 

aberrations impose a limit on ophthalmic imaging devices, resulting in blurring and image 

artifacts (Charman and Chateau, 2003; Guirao et al., 2002; Thibos et al., 2002b).

Although defocus, such as myopia and hyperopia, and astigmatism account for majority of 

optical aberrations in human eyes, “high-order” wavefront aberrations exist even in normal 

eyes (Castejon-Mochon et al., 2002; Porter et al., 2001; Williams et al., 2000). The 

development of wavefront sensors in the 1990's has allowed for researchers to routinely 

measure these aberrations (Castejon-Mochon et al., 2002; Diaz-Santana et al., 2003; Guirao 

et al., 2002; Lombardo and Lombardo, 2009; Lombardo et al., 2013; Nirmaier et al., 2003; 

Porter et al., 2001; Salmon and van de Pol, 2006; Thibos, 2000; Thibos et al., 2002a; Wang 

et al., 2003b). AO corrects for these aberrations and theoretically can improve image quality 

from any ophthalmic instrument involving the passing of light into or out of the eye. 

Adapting AO technology from concept to ocular imaging modalities, however, requires 

substantial engineering efforts.

1.2.1 Adaptive optics and optical coherence tomography—Since its introduction 

into ophthalmic imaging in 1989 (Dreher et al., 1989), AO technology has been successfully 

integrated into multiple ocular imaging modalities, including conventional fundus cameras 

(Bedggood and Metha, 2012; Dees et al., 2011; Liang et al., 1997; Rha et al., 2006; Salas et 

al., 2016), scanning laser ophthalmoscopy (SLO),(Burns et al., 2007; Dreher et al., 1989; 

Dubra and Sulai, 2011; Roorda et al., 2002) OCT (Torti et al., 2009; Wang et al., 2011a; 

Zawadzki et al., 2009; Zhang et al., 2005), or some combination of these (Hammer et al., 

2012; Salas et al., 2016). In 1997, AO was first integrated into fundus cameras (Liang et al., 

1997). The first AO-SLO was successfully demonstrated in 2002 (Roorda et al., 2002), 

showing the confocal advantages of SLO in the measurement of rudimentary optical 

sectioning and blood cell velocity. This was closely followed by the pairing of AO with OCT 

devices (Fernandez et al., 2005; Zawadzki et al., 2005; Zhang et al., 2005) with expanded 

applications in the founding labs (Miller et al., 1996; Merino et al., 2006; Jonnal et al., 2010; 

Kurokawa et al., 2010; Jonnal et al., 2016; Salas et al., 2016). Soon, many targeted 

improvements in AO-OCT system design and performance were reported by an increasing 

number of laboratories researching AO-OCT (Cense et al., 2009a; Diaz-Santana et al., 2003; 

Fernandez et al., 2008; Kocaoglu et al., 2011a; Kurokawa et al., 2010; Merino et al., 2006; 

Torti et al., 2009; Zawadzki et al., 2009; Zawadzki et al., 2007).

OCT and AO have fundamentally improved ONH and retinal imaging and are 

complementary technologies allowing for resolution at a microscopic level. Although SD-

OCT is already a proven and well-established imaging modality that captures in-vivo cross-

sectional images with unparalleled high resolution in the axial direction, monochromatic 

aberrations of the eye limit lateral resolution to about 15-20 μm and reduce overall image 

quality. Since AO helps correct for these aberrations, imaging obtained with AO-OCT has 

substantially improved lateral resolution (Hermann et al., 2004; Hofer et al., 2001; Porter et 
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al., 2001). This is a major advantage of AO-OCT systems as its axial resolution of 3–8 μm is 

substantially better when compared to other systems. AO-OCT corrects for the eye's optical 

aberrations most commonly with a Shack-Hartmann configuration (Liang et al., 1994; Platt 

and Shack, 2001) with wavefront sensors and electro-actuated deformable mirrors.

Similar to the benefits seen in astronomy, AO also reduces the high-contrast granular image 

artifacts that obscure microscopic details, which are characteristically inherent to OCT due 

to its interferometric nature. Speckle size of AO-OCT systems have been observed to be as 

much as 9.6 times smaller than that of conventional SD-OCT when AO is paired with ultra-

high resolution OCT (Kocaoglu et al., 2011a). In this case, speckle size was reduced from 

7.3 μm (axial) × 11.4 μm (lateral) in SD-OCT (Spectralis, Heidelberg Engineering) to 2.9 

μm × 3.0 μm in AO-OCT device. In order to reach AO's full resolving potential, minimize 

lateral speckle, and obtain the transverse resolution needed to view individual cells, the pupil 

should ideally be large (greater than 5 mm) (Artal et al., 2001; Fernandez and Drexler, 2005; 

Donnelly and Roorda, 2003; Liang et al., 1997; Miller et al., 2003; Porter et al., 2006). 

Furthermore, OCT systems outfitted with AO technology are more sensitive to weak retinal 

reflectance, capturing a measured improvement of about 4–8 dB (Cense et al., 2009a). In 

these ways, the two technologies are complementary in obtaining nearly diffraction-limited 

resolution images of the ONH and retina in three-dimensions (3D), providing a theoretical 

spot volume of 3 μm3; and it now possible to visualize discrete structures within the 

posterior eye, such as individual cells and photoreceptors.

1.2.1.1 Current drawbacks of AO-OCT: AO-OCT has limitations, however, and many of 

them are obstacles to widespread adoption of this technology into clinical practice. Because 

AO-OCT can often have a limited field of view, acquiring a series of neighboring scans to 

compile an image covering a larger volume may be advantageous (Burns et al., 2007), 

though the extend acquisition time is a major clinical obstacle. Furthermore, because of the 

limited depth of focus, patching together volumes or adjusting the focal plane may be 

necessary in order to fully visualize the retinal structures at varying depths (Fernandez et al., 

2005; Zawadzki et al., 2009). Nadler et al., in seeking to characterize the LC in-vivo with 

AO-OCT, used the exterior margin of the optic disc for determining the extent of visible LC; 

however, the authors noticed that the AO-OCT's narrow depth of focus hindered the 

identification of the scleral canal opening, which is standard feature for delineation of the 

disc boundary (Nadler et al., 2014a). AO-OCT instruments that can be used for retinal 

imaging have yet to efficiently integrate strategies to overcome this limitation, such as 

quickly recording multiple volumes with differing axial focal positions or employing special 

beams with non-Gaussian intensity distributions.

Apart from these limitations, some of the barriers to more widespread commercialization 

include the requisite need of expertise and adequately trained personnel and the 

implementation of robust image processing and analysis tools in friendly graphic user 

interfaces. More recent technological developments in AO-OCT retinal imaging systems 

have potential to overcome some of these barriers to integration into clinics. For example, 

novel SS-OCT systems outfitted with AO have substituted the Hartmann-Shack Wavefront 

Sensor, which are typically built with concave mirrors, with a wavefront sensorless adaptive 

optics algorithm paired with lens-based optical systems (Jian et al., 2016). This change 
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maintains diffraction limited imaging while reducing overall system size and complexity. 

The continual development of more robust, straightforward, and user-friendly AO-OCT 

devices is needed to assist with increasing access to the technology. And the cost of AO-

OCT devices will undoubtedly decrease with increasing demand.

Other barriers include ocular motion artifacts and barriers involved in the processing of 

images obtained from AO devices. Although high speed AO-OCT systems and retinal 

tracking techniques are now available and help reduce image artifacts (Ishikawa et al., 2006; 

Kocaoglu et al., 2014a; Kocaoglu et al., 2014b; Zawadzki et al., 2014), it is still unclear 

whether these provide better ability to detect disease (Menke et al., 2009). Additionally, 

novel post-processing methods (Jonnal et al., 2012), and high-speed complementary metal 

oxide semiconductor (CMOS) detectors have been employed to reduce motion artifacts 

(Kocaoglu et al., 2011b; Kocaoglu et al., 2011c; Salas et al., 2016). The time required to 

obtain, process, and analyze images are also hindrances to AO-OCT's transition from lab to 

clinic; AO-OCT's clinical utility will increase with the development of novel sensitive 

metrics and image analysis strategies.

Furthermore, normative databases are required to define what constitutes normality. 

Although, for example, determining capillary density, quantifying blood flow, characterizing 

LC microstructure, and measuring RNFL bundles, are currently possible with AO 

technology, reference databases for these assays and disease states are currently lacking and 

are needed in order to discriminate healthy from glaucomatous eyes. This is especially true 

as AO uncovers new structures and features, which, just as photoreceptor spacing and 

density, require validation and need to be described in quantitative terms.

2. The expanding role of AO-OCT

Despite these drawbacks, OCT technology is advancing rapidly and the increasing role of 

AO is helping to propel AO-OCT into clinical trials and onto becoming an invaluable 

modality in the clinician's arsenal. Significant cellular damage has often already occurred by 

the time pathology is visible with current imaging tools - a reality that is now widely 

appreciated. Considering AO-OCT's abilities, the clinical implications are exciting, such as 

diagnosing retinal diseases early or more sensitive evaluation of treatment response at the 

cellular level. Individual RNFL bundles are now able to be visualized in-vivo, for example, 

along with retinal capillaries and other microvasculature (Hammer et al., 2008; Martin and 

Roorda, 2009; Popovic et al., 2011; Schmoll et al., 2011; Tam et al., 2010; Tam et al., 2011; 

Wang et al., 2011a; Zhong et al., 2011), Henle's fiber layer, RGCs and other microscopic 

structures in this layer, photoreceptor mosaic; retinal pigment epithelium, and details of the 

LC microstructure. In addition to glaucoma, AO technology is valuable for numerous other 

clinical applications and it is currently being used to study a number of clinical conditions, 

including macular degeneration, hereditary retinal dystrophies, retinopathy of prematurity, 

and other optic neuropathies.

2.1 Photoreceptors

Photoreceptors were one of the first targets of studies implementing AO-adapted ophthalmic 

imaging (Chen et al., 2011; Choi et al., 2006; Cooper et al., 2011; Dubra et al., 2011; 
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Genead et al., 2011; Talcott et al., 2011; Tojo et al., 2013; Wolfing et al., 2006) and some of 

these findings are relevant to glaucoma. Improvements in AO-SLO performance 

significantly reduced monochromatic aberrations within AO-SLO systems and, for the first 

time, enabled a clear visualization of photoreceptors (Dubra and Sulai, 2011; Dubra et al., 

2011). Although glaucoma is considered a disease of the inner retina, several studies have 

shown there may be an effect on the outer retina (Buchi, 1992; Fazio et al., 1986; Holopigian 

et al., 1990; Kendell et al., 1995; Nork et al., 2000; Odom et al., 1990; Panda and Jonas, 

1992; Poinoosawmy et al., 1980; Pokorny and Smith, 1986; Vaegan et al., 1995; Wygnanski 

et al., 1995). Photoreceptor loss and insult in glaucoma eyes have been observed in histology 

(Buchi, 1992; Nork et al., 2000), while intraocular pressure (IOP) elevation, was associated 

with a reduction in photoreceptor responses in rodents (He et al., 2006; Kong et al., 2009; 

Sun et al., 2007). One recent study of patients with permanent, glaucoma-like visual field 

(VF) abnormalities in other optic neuropathies, such as optic neuritis, ONH drusen, 

pseudotumour cerebri, and non-arteritic ischemic optic neuropathy, all revealed structural 

changes in cones along with expected inner retinal changes (Choi et al., 2008).

More recently, morphological changes in the photoreceptors have been directly assessed in-
vivo in glaucoma eyes with the aid of AO-OCT (Choi et al., 2011). In that study, which 

included a wide range of glaucomatous conditions, from pre-perimetric disease to advanced 

glaucoma with corresponding VF defects, ultra-high resolution AO-OCT revealed outer 

retinal changes and identified the exact location of structural changes within the cone 

photoreceptor layer. Concurrent AO-fundus camera images showed corresponding dark 

areas in the cone mosaic at the same retinal locations with reduced visual sensitivity. In AO-

OCT, AO-fundus camera, and AO-SLO, individual healthy photoreceptors appear as bright 

spots (Figure 1), which is due to the high refractive index relative to the surroundings, strong 

directional coupling of light by the photoreceptor inner segment into the outer segment 

(Miller et al., 1996), and backscattering due to mirror-like reflections from each of the outer 

segment layers (Kocaoglu et al., 2011c). Although the photoreceptor mosaic's precise role in 

glaucoma is not yet fully elucidated, AO technology provides the means to resolve this issue. 

Going forward, new models for understanding the complex photoreceptor-light interaction 

are also important for experiments aimed at improving diagnostic ophthalmic imaging 

devices (Vohnsen, 2014).

2.2 Retinal nerve fiber layer

Ophthalmic imaging modalities with the ability to detect and track pathological changes of 

the retinal structures, such as the RNFL, at an early, pre-symptomatic stage of disease 

represent the basis for developing new diagnostic and management protocols in glaucoma. 

Currently, diagnosis of glaucoma is confirmed based on the presence of typical VF defects 

on standard automated perimetry (SAP) and corresponding signs of glaucomatous ONH and 

retinal damage; and thus the diagnosis of moderate to severe cases of glaucoma is relatively 

straightforward. However, it is often thought that glaucomatous structural damage precedes 

vision loss (Artes and Chauhan, 2005; Kuang et al., 2015; Medeiros et al., 2009a; Quigley et 

al., 1992; Sommer et al., 1991; Strouthidis et al., 2006; Wollstein et al., 2005) with the 

disease frequently remaining asymptomatic in its early stages. It is worth noting that 

observed pre-perimetric structural losses could be an artifact of the testing method. SAP 
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only has the ability to detect functional deficits after at least 25–50% of RGCs have 

undergone apoptosis (Harwerth et al., 1999; Kerrigan-Baumrind et al., 2000; Medeiros et al., 

2013; Miglior et al., 2005; Mwanza and Budenz, 2015; Quigley et al., 1989; Strouthidis et 

al., 2006; Wollstein et al., 2005). Harwerth et al., for example, demonstrated in a population 

of 10 rhesus monkeys that SAP testing could not provide a useful estimate of ganglion cell 

losses at early stages of VF defects. Only in cases of more advanced glaucoma, visual field 

loss was directly related to ganglion cell loss (Harwerth et al., 1999). Similarly, Kerrigan-

Baumrind et al. compared 17 eyes of 13 human glaucoma subjects post-mortem and 

reported that at least 35% of RGCs died before statistically significant abnormalities were 

seen on the corresponding VF tests (Kerrigan-Baumrind et al., 2000). Although future 

studies are needed to further characterize the structure-function relationship, early 

identification of glaucomatous structural damage is important for early diagnosis, 

management, and prevention of disease progression and further vision loss (Alencar et al., 

2010; Ederer et al., 1994; Leske et al., 1999; Lim et al., 2012; Mansouri et al., 2011; Musch 

et al., 1999). Furthermore, although SAP is widely employed for the diagnosis, staging, and 

monitoring of the disease, diagnosis of glaucoma may require repeated testing (Katz et al., 

1995; Spry et al., 2003).

To some extent, glaucoma diagnosis occurring after morphological changes in the RNFL can 

be attributed to poor resolution of current imaging modalities, including standard OCT, as 

their ability to detect very early abnormalities of the retinal microstructure is limited. Non-

AO OCT devices, for example, lack the resolution required to obtain a cross-sectional profile 

of individual bundles of retinal nerve fibers as they traverse through the RNFL. Since early 

detection of glaucomatous changes is key, AO-OCT's increased ability to image microscopic 

subtle changes and variations of the RNFL at the preclinical stage underscores its potential 

as an invaluable asset to clinicians going forward for glaucoma detection and monitoring, 

especially given that RGC axonal losses in this retinal layer have been reported to precede in 

many cases ONH structural changes and vision loss as detectable by SAP (Sommer et al., 

1977; Sommer et al., 1991). It is worth noting that current RNFL thickness parameters 

generated by OCT devices have good diagnostic accuracy, reproducibility (Mwanza et al., 

2010), and can aid clinicians in differentiating healthy from glaucomatous eyes even in the 

early stages of the disease, and determine stages of disease severity (Mwanza et al., 2011; 

Mwanza et al., 2012; Wu et al., 2012; Akashi et al., 2013; Yang et al., 2015).

In contrast, thanks to its micrometric level resolution, AO-OCT devices can obtain a cross-

sectional profile and 3D mapping of individual RNFL axon bundles in-vivo (Zawadzki et al., 

2008; Cense et al., 2009b; Torti et al., 2009; Kocaoglu et al., 2011a; Kocaoglu et al., 2014b), 

differentiate these bundles from Müller cell septa and fibers, and permit an increased 

characterization of structural differences in the RNFL between healthy and glaucomatous 

eyes. Indeed, AO-OCT devices outperformed standard SD-OCT in terms of clarity of the 

microscopic retina, particularly the RNFL, and demonstrated reproducible measurements 

(Kocaoglu et al., 2011a). In addition, a moderate correlation between retinal nerve fiber 

bundle width and RNFL thickness has been shown in healthy and glaucomatous eyes 

(Takayama et al., 2012). As measured with AO-OCT, RNFL bundles appear to thin and 

separate as they approach the fovea.
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The increased ability to visualize and quantify these nerve fiber bundles, which have also 

been demonstrated in flood-illuminated ophthalmoscopes and SLO (Huang et al., 2012; 

Takayama et al., 2012, Ramaswamy et al. 2014), have allowed for examination of 

differences in the bundles themselves and the observation that RNFL bundles possess a 

discrete reflectivity pattern. One study imaged the RNFL with AO-OCT in four healthy 

subjects and reported that the RNFL bundles reflect two times more light than the 

surrounding tissue (Kocaoglu et al., 2011a). It is speculated that this could be related to 

increased cellular activity and an overall increased number of organelles (Brown, 2003; 

Huang et al., 2013; Wang et al., 2003a) and it is currently thought that reflectance intensity 

may decrease prior to losses in thickness (Huang et al., 2011; Zhang et al., 2011; van der 

Schoot et al., 2012). Ultimately, the added benefits of AO-OCT and its ability to construct 

3D maps will likely permit earlier detection and improved monitoring of microstructures 

within the RNFL of patients with glaucoma.

2.3 Lamina cribrosa

As the presumed site of axonal injury in glaucoma, the LC may play a role in neuronal death 

seen in glaucoma. The LC provides mechanical support to optic nerve fibers within the deep 

optic disc region. Automated measurements of 3D LC microarchitecture showed good 

reproducibility (Nadler et al., 2014b) and holds the potential to serve as biomarkers for 

glaucoma damage. LC microarchitecture changes have been observed in-vivo with SS-OCT 

in glaucomatous eyes when compared with healthy eyes (Wang et al., 2013) and, using 

histological preparation, LC pore, shape and size have been correlated with the severity and 

progression of glaucoma (Miller and Quigley, 1987; Tezel et al., 2004). Additionally, the LC 

was noted in several OCT studies to displace posteriorly in glaucomatous eyes compared to 

age-matched healthy eyes (Kim et al., 2015; Sawada et al., 2015; Jung et al., 2016) and 

thinner LC was associated with glaucoma progression (Chung et al., 2015). Overall, the 

structural thinning, pore deformities and posterior displacement of the LC (Morgan-Davies 

et al., 2004), likely impede axoplasmic flow within the optic nerve fibers which will impair 

survival of RGCs (Burgoyne, 2011; Quigley, 2011). This could lead to RGC apoptosis, 

contributing to glaucoma development and progression.

As OCT and AO technology evolve, they continue to provide more accurate detection of LC 

deformation and enhance our understanding of the structural pathogenesis of glaucoma, 

including the role of the LC in glaucoma and glaucoma progression. Buried deep within the 

ONH, imaging the entirety of the LC structure is often obscured by vasculature, 

peripapillary sclera, and neural tissue, or viewing is obstructed by other reflective structures 

anterior in the ONH (Sigal et al., 2010). The improved resolution of AO-OCT to less than 5 

μm has enabled very high quality images of the posterior pole and increased visualization of 

the LC microstructure (Figures 2 and 3) (Nadler et al., 2014b) and better spatial 

characterization of LC microstructure in healthy eyes (Nadler et al., 2014a) (Figure 4). It is 

likely that novel systems that pair AO with the deeper tissue penetration of SS-OCT (Jian et 

al., 2016) offer promise in the ongoing study of the LC. While the LC's role in glaucoma 

progression is yet to be fully determined, SS-OCT, SD-OCT, and AO-OCT have 

undoubtedly allowed for increased visualization of the LC microstructure and improve the 

current understanding of the LC and its microarchitecture (Figure 5), (Videos 1, 2, and 3).
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3. Multimodal imaging: combining AO-OCT with other modalities

3.1 Scanning laser ophthalmoscopy

AO-OCT technology has been successfully integrated into multimodal imaging devices that 

include AO-SLO. Since then, AO-SLO has demonstrated itself as a complementary 

adjunctive diagnostic tool to OCT. The modality's high transverse resolution and contrast 

allow for the identification of structural changes at the photoreceptor level associated with 

retinal pathology. Detailed visualization of the RNFL (Figure 6), for example, is now 

possible. When paired with AO-OCT, it is possible to visualize the impact of modest 

perimetric defects on the RNFL appearance - structural losses in RNFL visualized with AO-

SLO correspond to RNFL thickness differences on OCT and the corresponding local VF 

defects on SAP.

Although AO-SLO allows for high transverse resolutions, the axial resolution is limited in 

comparison with OCT. In contrast to SLO and conventional microscopy (Drexler et al., 

2015), OCT decouples the transverse and axial or depth resolutions, achieving very high 

axial image resolution that are independent of focusing conditions and numerical aperture of 

the optics of the eye itself. On the other hand, SLO's faster scanning speeds and direct 

measurements of back reflected light intensity allows for detection of both scattered and 

fluorescent photons from the tissue, making SLO very attractive for functional retinal 

imaging and allowing for higher fidelity en-face retinal images than AO-OCT. By detecting 

signals that OCT cannot, data acquired with AO-SLO can be complementary to OCT. With 

the added benefit of increased axial resolution provided by OCT, it is now possible to 

visualize contrast differences with AO-SLO in different retinal layers, such as the inner and 

outer segments and the external limiting membrane (Felberer et al., 2014). These dual 

SLO/OCT AO systems can also use SLO images as a reference to eliminate the effects of 

eye movements on the OCT image in order to resolve individual cells in different retinal 

layers, including photoreceptors and retinal pigment epithelium.

For visualization of the LC, AO-SLO by itself lacks the sensitivity and axial resolution 

afforded with OCT methods to adequately view the LC with depth. With AO-OCT, LC 

microarchitecture complexity as a function of depth can be visualized, such as the fine 

details of the delicate bifurcations and fenestrations of LC pores as they traverse the depth of 

the LC. On the other hand, AO-SLO has produced the highest resolution images of the LC 

surface structure ever obtained with ophthalmic imaging and significant changes in 

glaucomatous eyes have been observed in LC structural parameters in both primates and 

human subjects using AO-SLO (Sredar et al., 2013; Vilupuru et al., 2007). Given that AO 

ophthalmic systems in general are vulnerable to artifacts caused by eye drift and micro 

saccades because of the relatively small field size, AO-SLO/OCT multimodal systems could 

greatly benefit from supportive eye trackers (Zawadzki et al., 2005).

In addition, investigators have successfully implemented AO-SLO for the purpose of 

conducting functional assessments of the visual system, such as microperimetry (Tuten et 

al., 2012), while at the same time utilizing OCT to scan the retina to determine precisely 

where the stimulus fails to evoke a response. Microperimetry techniques have been 

described with AO that are able to measure light sensitivities of local retinal lesions and 
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individual groups of cones (Makous et al., 2006; Harmening et al., 2014; Bruce et al., 2015; 

Wang et al., 2015). Locations in AO-SLO images that do not show the cone mosaic and also 

fail to show OCT reflections corresponding to the photoreceptor layer may still maintain 

cone function when observing physiologic responses to visual stimuli (Wang et al., 2015), 

challenging the notion that photoreceptor structures must be visible on AO-SLO imaging for 

the corresponding retinal location to retain function.

Functional testing at the cellular level with or without microperimetry, however, is currently 

challenging. Using both AO and OCT techniques, multiple animal studies have sought to 

identify biomarkers that correspond to retinal function in order to overcome this, specifically 

aiming to implement ocular imaging modalities to assess functional responses at the cellular 

level without the need for subjective responses. For example, one study used a flood-

illumination AO-equipped retina camera to monitor changes in photoreceptor reflectance in 

response to visible stimuli (Jonnal et al., 2007). Most of the reflected light exiting an 

individual cone photoreceptor originates from the two ends of the outer segment: the 

connecting cilium and the posterior tip (Zhang et al., 2006). En-face AO modalities have 

demonstrated stimulus induced reflectance changes in the cone outer segment (Grieve and 

Roorda, 2008; Jonnal et al., 2010; Rha et al., 2009) with greater than 80% of cones activated 

after the application of a visible stimulus (Rha et al., 2009). In an AO-SLO device, 

photoreceptor response magnitude showed an average increase between 0% and 5% in the 

stimulated areas, with the most robust responses measured at a 3° peripheral location (Gri 

eve and Roorda, 2008). Such functional imaging may prove useful for examination of retinal 

function normal and diseased retinas.

Additionally, transversal scanning or en-face AO-OCT has also been integrated with SLO 

(Felberer et al., 2014), which provides information used for transverse motion correction in 

post-processing. In this case, aided by axial eye tracking, this device acquires volumes with 

high lateral and axial resolution and provided high resolution images of the photoreceptor 

mosaic. These systems are also useful for imaging the retinal vasculature, allowing for high 

resolution imaging of vessel walls and structures that may correspond to individual 

erythrocytes (Felberer et al., 2015).

3.2 Fundus cameras

Compact devices that combine AO-OCT with AO fundus cameras have also been 

demonstrated (Salas et al., 2016). Understandably, fundus cameras were the first imaging 

devices to implement AO technology in ophthalmology, as they employ simple optical 

principles involving little more than a camera capturing the light originating on the retina 

and emerging from the eye's optics to form an image on a light-sensitive film or charge 

coupled device. AO fundus cameras have since been used to image multiple structures in the 

eye, including photoreceptors (Lombardo et al., 2012), the RNFL (Ramaswamy et al., 2014) 

and retinal microvasculature (Popovic et al., 2011).

AO-OCT instruments alone have the disadvantage of having a smaller field of view in the 

imaging. The technology is somewhat restricted to imaging specific regions and identifying 

such regions can be challenging. AO-OCT multimodal systems that incorporate AO-fundus 

cameras or other modalities that provide a larger field of view are therefore advantageous, 
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particularly for assisting with device alignment and proper registration of the smaller AO 

images. Standard wide-field OCT imaging has also been proposed for similar reasons. 

Additionally, the wider field of view facilitates with image comparison with the OCT: retinal 

features such as blood vessels, for example, can be easily identified. Conversely, again 

underscoring the major advantage of OCT in these systems, the depth information provided 

by the AO-OCT is important for full understanding of features seen on the AO-fundus 

images.

Due to the added benefit of depth information provided by the AO-OCT, this union in 

modalities has allowed researchers to examine microscopic retinal structures that were 

previously unable to be seen. This has been shown, for example, in the case of visualizing 

in-vivo the photoreceptor cone mosaic, which appear differently on AO-OCT when 

compared to AO-fundus images in systems that have combined both modalities (Zhang et 

al., 2006). This could be explained by the integration of OCT signals over a larger depth.

4. Future directions and conclusion

OCT has changed the face of glaucoma research and the ways that patients are diagnosed 

and followed in the clinic and remains a dynamic and evolving imaging modality. The 

technology has grown from TD-OCT devices to the improved SD-OCT, adapted novel 

image analysis and processing methods, and onto the newer SS-OCT and AO-OCT. Ongoing 

advances in OCT, such as faster scanning speeds, better visualization of retinal 

microstructure, and increased ability to assess functional aspects of these structures, should 

help elucidate new glaucoma diagnostic methods along with key pathogenic events and new 

treatment targets. Concurrently, AO technology is rapidly evolving alongside OCT and other 

ophthalmic imaging modalities.

Due to the key strengths of AO-OCT systems, the modality will have a major role in the 

ongoing study of structures related to glaucoma pathogenesis. AO-OCT imaging has a high 

potential in evaluating structural characteristics of the RNFL and identifying possible risk 

factors implicated in glaucomatous ONH damage. Additionally, the technology will aid the 

ongoing study and characterization of the structure-function relationship in glaucoma. 

Furthermore, because of its ability to capture very high resolution images at depth, AO-OCT 

can be particularly valuable in glaucoma for identifying early glaucomatous damages at the 

cellular level, detecting subtle RNFL, macular, or optic nerve head changes and 

abnormalities and monitoring for progression. And although the precise role of 

photoreceptors and changes in the photoreceptor layer in glaucoma is yet to be determined, 

this technology has proven to have the means to resolve this.

The combination of OCT with other complementary AO outfitted ophthalmic imaging 

modalities has certainly provided a more complete understanding of the various retinal 

locations under investigation. Furthermore, the integration of information from multiple 

modalities is often useful for new technologies, where there is far less experience in reading 

and interpretation of the images. Multimodal imaging, for example, has the advantage of 

providing complementary views of the retinal architecture and takes advantage of strengths 

of different imaging modalities. This provides the user with an added reference and 
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additional information for the comparison and interpretation of images acquired with the 

new technology, yielding a more complete picture of the anatomy under investigation. 

Ultimately, the application of AO-OCT in this way has allowed for new discoveries related 

to glaucoma and hold promise for new insight in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
AO-SLO of a healthy retina focused at the level of the photoreceptors in a 27-year-old 

Caucasian man. (B) Zoomed in region shows the ability to identify individual 

photoreceptors. Scale bar = 100 μm.

Dong et al. Page 24

Prog Retin Eye Res. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Cirrus HD-OCT demonstrating inferior RNFL thinning in a 42-year-old Caucasian man with 

normal tension glaucoma (A, B) with corresponding superior nasal step scotoma (C).
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Figure 3. 
(A) En-face slices from LC scan taken from the same subject with normal tension glaucoma 

shown in Figure 2, going from anterior to posterior in 25 μm increments. (B) Zoomed in C-

mode slice from the same subject with (C) automated segmentation of corresponding slice 

with pores outlined in green and the boundary of segmentation area in blue. (D) 3D 

thickness analysis show regions of thick LC beams (white/yellow) and thin LC beams 

(purple). Scale bar = 200 μm.
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Figure 4. 
AO-SD-OCT scan of a LC taken from a healthy 25-year-old Asian man (a–f) going anterior 

to posterior in 25 μm increments. Automated segmentation of pores in blue and beams in 

teal (g–l) allow further quantitative analysis such as beam thickness (m–r), with thicker 

beams in white/yellow and thinner beams in purple. Scale bar = 200 μm.
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Figure 5. 
(A) Original C-mode of adaptive optics OCT taken from a 56-year-old Caucasian woman 

with glaucoma. (B) Automated segmentation of the corresponding slice, with the beams 

labeled in green and pores in red. (C) 3D view en-face of the LC beams. (D) rotated 3D view 

of the same LC beams.
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Figure 6. 
(A) Montage AO-SLO scan of a healthy 27-year-old Caucasian man with the focus at the 

level of the RNFL with a zoomed in region (B) showing the striation of RNFL fiber bundles. 

Scale bar = 500 μm.
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