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Abstract

Transient outward potassium current (Ito) in the heart underlies phase 1 repo-

larization of cardiac action potentials and thereby affects excitation–contrac-
tion coupling. Small molecule activators of Ito may therefore offer novel

treatments for cardiac dysfunction, including heart failure and atrial fibrilla-

tion. NS5806 has been identified as a prototypic activator of canine Ito. This

study investigated, for the first time, actions of NS5806 on rabbit atrial and

ventricular Ito. Whole cell patch-clamp recordings of Ito and action potentials

were made at physiological temperature from rabbit ventricular and atrial

myocytes. 10 lmol/L NS5806 increased ventricular Ito with a leftward shift in

Ito activation and accelerated restitution. At higher concentrations, stimulation

of Ito was followed by inhibition. The EC50 for stimulation was 1.6 lmol/L

and inhibition had an IC50 of 40.7 lmol/L. NS5806 only inhibited atrial Ito
(IC50 of 18 lmol/L) and produced a modest leftward shifts in Ito activation

and inactivation, without an effect on restitution. 10 lmol/L NS5806 short-

ened ventricular action potential duration (APD) at APD20-APD90 but pro-

longed atrial APD. NS5806 also reduced atrial AP upstroke and amplitude,

consistent with an additional atrio-selective effect on Na+ channels. In con-

trast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x chan-

nels, produced similar levels of inhibition of ventricular and atrial Ito. NS5806

discriminates between rabbit ventricular and atrial Ito, with mixed activator

and inhibitor actions on the former and inhibitor actions against the later.

NS5806 may be of significant value for pharmacological interrogation of

regional differences in native cardiac Ito.

Introduction

Genetically distinct potassium (K+) ion channel currents

are responsible for the repolarization of cardiac action

potentials (APs) (Tamargo et al. 2004). The rapid and

slow delayed rectifier K+ currents (IKr and IKs) contribute

to ventricular AP repolarization over plateau voltages,

while the inward rectifier K+ current (IK1) plays key roles

in both terminal repolarization and in setting the resting

membrane potential of nonpacemaker myocytes (Ner-

bonne 2000; Tamargo et al. 2004). In many species,

including (for example) man, dog, ferret, rabbit, and

rodent, initial rapid repolarization (phase 1) takes place

before the AP plateau (phase 2). This arises from a com-

bination of rapid inactivation of fast Na+ current (INa)

and from the activation of a voltage-dependent transient

outward K+ current (Ito) and, in the atria, of ultrarapid

delayed rectifier K+ current (IKur) (Nerbonne 2000;

Tamargo et al. 2004). The pore-forming subunits of chan-

nels that underlie Ito are derived from KCND3 (Kv4.3),

KCND2 (Kv4.2), and KCNA4 (Kv1.4) genes (Nerbonne

and Kass 2005; Niwa and Nerbonne 2010). Kv4.2 and 4.3

are believed to underlie an Ito that exhibits fast recovery

kinetics (Ito,f), whilst Kv1.4 is responsible for Ito with

slower kinetics (Ito,s) (Nerbonne and Kass 2005; Niwa and

Nerbonne 2010). Regional and species differences in Ito
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are likely to result from the relative balance between these

Ito subtypes (Niwa and Nerbonne 2010). Native Ito,f chan-

nels require interactions between Kv4.x and K+ Channel

interacting Protein 2 (KChIP2), while other proteins

(Kvb, DPP6 and members of the KCNE family) may also

modulate the current (Radicke et al. 2006; Niwa and Ner-

bonne 2010).

Ito contributes to phase 1 repolarization, but can also

affect both the plateau (phase 2) and repolarization

(phase 3) of the AP, due to the time- and voltage-depen-

dent behavior of IKr, IKs, and L-type Ca2+ current (ICa,L)

(Nerbonne 2000; Niwa and Nerbonne 2010). Reductions

in Ito are seen in heart failure (HF) and human atrial fib-

rillation, and abnormal Ito regulation may also contribute

to Brugada syndrome (Brandt et al. 2000; Antzelevitch

2006; Niwa and Nerbonne 2010). Indeed, pharmacological

modification of Ito coupled with ICa,L block has recently

been utilized as a way of studying electrogram fractiona-

tion in Brugada syndrome (Szel and Antzelevitch 2014;

Patocskai et al. 2016). On the other hand, action potential

clamping has shown that a loss of Ito in human APs

directly leads to reduced and dyssynchronous Ca2+

release, raising the possibility that pharmacological Ito
activation may have therapeutic value in HF (Cooper

et al. 2010) (see also (Sah et al. 2003)). Consistent with

this idea, data obtained from a canine HF model, using a

single NS5806 concentration of 10 lmol/L to stimulate

Ito, suggest that ventricular Ito stimulation may be able to

mitigate electrophysiological changes in HF (Cordeiro

et al. 2012).

In experiments on recombinant Kv4.x and Kv1.4 chan-

nels, the response of Kv4.3 to NS5806 has been shown to

be modulated by co-expression with KChIP2, while cur-

rent carried by recombinant Kv1.4 channels was inhibited

rather than activated by the compound (Lundby et al.

2010). It follows that the net effect of NS5806 on native

Ito may vary both with the levels of Kv4.x/1.4 isoforms

expressed as well as their possible association with

KChIP2. To our knowledge, all studies to date of NS5806

effects on native Ito have used the dog (Calloe et al. 2009,

2010, 2011; Cordeiro et al. 2012) and the effect of

NS5806 on native human ventricular Ito has yet to be

ascertained. Some differences between canine and human

Ito have been reported (Akar et al. 2004; Jost et al. 2013).

Rabbits are widely used in studies of cardiac electrophysi-

ology and can provide a cost-effective alternative to larger

species such as dog, while possessing ventricular action

potentials closer to human than those from rats or mice

(Milani-Nejad and Janssen 2014; Camacho et al. 2016).

Normal rabbit atrial and ventricular tissue each express

Kv1.4, 4.2 and 4.3 (Wang et al. 1999; Bosch et al. 2003;

Rose et al. 2005), and Kv1.4, Kv4.2, and Kv4.3 have all

been detected by RT PCR in human ventricle (Kaab et al.

1998; Gaborit et al. 2007) although only the presence of

Kv1.4 and Kv4.3 have been confirmed by Western blot-

ting (Akar et al. 2004). While rabbit Ito is known to be

slower than human Ito to recover from inactivation (e.g.,

Fermini et al. 1992; Mitcheson and Hancox 1999), it is

nevertheless instructive to determine the effects of

NS5806 on Ito from this species both to further knowl-

edge of modulation of Ito from a widely used model spe-

cies and for comparison with available information on

canine Ito. The aim of this paper, therefore, was to study

the modulatory effects of NS5806 on rabbit ventricular

and atrial Ito. The results reveal distinct responses of rab-

bit atrial and ventricular Ito to NS5806.

Materials and Methods

Rabbit ventricular and atrial myocyte
isolation and storage

Myocytes were isolated from the right ventricle and left

atrium of hearts of male New Zealand White rabbits

(2–3 kg). All procedures were in accordance with the UK

Home Office Animals (Scientific Procedures) Act, 1986

and had institutional ethical approval. Ventricular and

atrial myocytes were isolated by enzymatic and mechani-

cal dispersion, using previously described methods (Han-

cox et al. 1993; Howarth et al. 1996). Cells were

temporarily stored in a Kraft-Br€uhe solution (Isenberg

and Klockner 1982) at 4°C prior to electrophysiological

recording.

Electrophysiological recording

Myocytes were placed in an experimental chamber

mounted on an inverted microscope (Nikon Eclipse

TE2000-U) and superfused with a standard ‘normal’ Tyr-

ode’s solution containing (in mmol/L): 140 NaCl, 4 KCl,

2 CaCl2, 1 MgCl2, 10 glucose, 5 HEPES (pH 7.4 with

NaOH). This solution was used in all experiments to

obtain the whole-cell recording mode and was also used

as superfusate for action potential measurements. For Ito
measurements, the above solution was modified as previ-

ously described (Mitcheson and Hancox 1999): N-methyl-

D-glucamine (NMDG) chloride was substituted for NaCl

and 20 lmol/L nifedipine was used to inhibit ICa,L. Dur-

ing experimental recordings, the superfusates were applied

to the cell, using a home-built device capable of exchang-

ing solution bathing the cell in <1 sec (Levi et al. 1996).

Borosilicate patch pipettes (A-M Systems Inc, Sequim,

WA) were pulled, using a Narishige vertical puller and

fire-polished (PP-830 and MF83, Narishige Japan) to a

resistance of 2–3 MΩ. For Ito recording, pipettes were

filled with a solution containing (in mmol/L): 113 KCl,
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10 HEPES, 0.4 MgCl2, 5 glucose, 5 K2ATP, 5 K4BAPTA

(pH 7.2 with KOH). For AP recording, the pipette solu-

tion contained (in mmol/L): 110 KCl, 10 NaCl, 0.4

MgCl2, 10 HEPES, 5 glucose, 5 K2ATP, 0.5 GTP-Tris (pH

7.1 with KOH). Series resistance values (typically

4–7 MΩ) were compensated by >70%. All recordings

were made at 35–37°C. NS5806 (1-[3,5-bis(trifluoro-

methyl)phenyl]-3-[2,4-dibromo-6-(2H-tetrazol-5-yl)phe-

nyl]urea) was obtained from Tocris (Bristol, UK) and

dissolved in DMSO to produce stock solutions between 1

and 100 mmol/L (stored at �20°C). Stock solutions were

diluted with the external solutions to obtain the final con-

centrations as given in the Results, with a final DMSO

concentration in the superfusate of 1 in 1000 vv. Higher

concentrations of stock solution in DMSO showed poor

solubility in our hands, limiting the maximum concentra-

tion tested in the experimental solutions to 100 lmol/L.

Flecainide was obtained from Sigma-Aldrich (UK), and

dissolved in distilled water to produce stock solutions

between 1 and 100 mmol/L.

Data analysis

Data are presented as mean � SEM, except for EC50/IC50

values derived from concentration-response plots, for

which 95% confidence intervals are given. Statistical anal-

yses were performed, using Microsoft Excel (Microsoft)

and Prism (GraphPad Software Inc.) and fits to particular

datasets were made using either Prism or the Clampfit

module of pClamp 10 (Axon Instruments, Molecular

Devices). Statistical comparisons employed paired or

unpaired t-test, 1 or 2-way ANOVA (with Bonferroni

post-test) as appropriate (P < 0.05 was taken as statisti-

cally significant).

Results

Concentration-dependent effects of NS5806
on ventricular and atrial Ito

Prior canine studies have employed a single NS5806 con-

centration of 10 lmol/L for Ito experiments. Here, a wide

range of concentrations (10 nmol/L to 100 lmol/L) was

investigated against ventricular Ito. An exemplar ventricu-

lar Ito activated by depolarization from �80 mV to

+40 mV in control solution, in the presence of 10 lmol/L

NS5806 and following washout is shown in Figure 1A.

The marked augmentation of Ito amplitude by NS5806 is

apparent; this effect was largely reversible on drug wash-

out. Current remaining after the initial time-dependent,

inactivating component was not altered by NS5806 at this

concentration. Figure 1B shows the mean time course for

augmentation of time-dependent (peak minus end-pulse)

ventricular Ito at +40 mV by 10 lmol/L NS5806 (n = 26):

the maximal response was seen within 1 min of drug

application. The increase in Ito amplitude was accompa-

nied by acceleration of Ito inactivation time course (mean

inactivation thalf = 30.3 � 2.4 msec in control and

21.5 � 1.2 msec in 10 lmol/L NS5806; P < 0.01,

n = 26). Despite this modest acceleration, the integral of

the inactivating current was increased to 150.7 � 10.5%

of control (P < 0.01). Four additional concentrations of

NS5806 were tested. At 1 lmol/L and 10 nmol/L, qualita-

tively similar but smaller responses to that with 10 lmol/

L were seen. However, at higher concentrations (30 and

100 lmol/L), the response of peak Ito to NS5806 became

biphasic with an initial increase in peak Ito followed by a

decrease. Figure 1C shows representative traces for the

effects of 100 lmol/L NS5806. The initial peak Ito (trace

at 5 sec) showed a rapid increase in amplitude compared

to control, but then declined to a level below that in con-

trol solution (trace at 2 min); this effect was poorly rever-

sible. An additional effect of this concentration was a

progressive increase in outward current following the ini-

tially inactivating current component. This secondary

effect was partially reversible on washout. Figure 1D

shows the time course of the biphasic effect of 100 lmol/

L NS5806 on peak minus end-pulse current amplitude

(n = 10). In order to quantify the concentration-depen-

dence of NS5806 action, two concentration-response rela-

tions were constructed: Figure 1E shows the relationship

for the maximal stimulatory effect of the compound,

whilst Figure 1F shows the relationship at steady-state

effect. The derived EC50 for augmentation of peak minus

end-pulse Ito (Fig. 1E) was 1.6 lmol/L (LogEC50

mean � SEM: �5.80 � 0.12; 95% C.I: 0.6–3.9 lmol/L),

with a Hill slope of 0.55 � 0.08. For a similar plot for

augmentation of the peak current amplitude (not shown),

the derived EC50 was also 1.6 lmol/L (LogEC50 mean

�SEM: �5.81 � 0.21; 95% C.I: 0.3–7.1 lmol/L), with a

Hill slope of 0.58 � 0.14. The peak minus end-pulse data

in Figure 1F could not be described by a single Hill equa-

tion, but could be fitted by two site model in which the

EC50 describing augmentation of Ito was fixed to the value

obtained from Figure 1E (1.6 lmol/L), whilst the IC50

value derived for the descending phase of the relationship

was 40.7 lmol/L (LogIC50 mean � SEM: �4.39 � 0.13;

95% C.I: 11.7–112.2 lmol/L), with a Hill slope of

�1.15 � 0.22. A similar analysis of the biphasic effect of

NS5806 on the peak current amplitude (not shown),

again utilizing an EC50 of 1.6 lmol/L for augmentation

of Ito, yielded an IC50 for the descending phase of the

relationship of 21.2 lmol/L (LogIC50 mean � SEM:

�4.67 � 0.30; 95% C.I: 10 lmol/L to 143 mmol/L), with

minimum of 74% of control and a Hill slope of

�1.09 � 0.50.
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Figure 2A shows representative traces of atrial Ito acti-

vated by depolarization from -80 mV to +40 mV in con-

trol solution, in the presence of 10 lmol/L NS5806 and

following washout. In contrast to the effects seen on ven-

tricular Ito, NS5806 reduced atrial Ito amplitude and this

was accompanied by a modest slowing of Ito inactivation

time course (inactivation thalf in control of

13.5 � 0.9 msec and in 10 lmol/L NS5806 of

17.3 � 1.0 msec; P < 0.01, n = 21). The current remain-

ing after the initial time-dependent inactivating current

was little affected by this concentration of NS5806. The

integral of inactivating current in 10 lmol/L NS5806 for

atrial cells decreased to 70.9 � 6.6% of control

(P < 0.01) and inhibitory effects of this NS5806 concen-

tration did not fully reverse on washout. Figure 2B shows

the mean time course of action of 10 lmol/L NS5806

(n = 21) on peak minus end-pulse Ito. Figure 2C contains

representative traces showing the effect of 100 lmol/L

NS5806. The rapidly activating peak Ito was strongly sup-

pressed at this concentration of NS5806. Residual current

was somewhat elevated but no progressively activating

outward current was seen at this concentration, in con-

trast to the effect seen in ventricular cells (compare

Fig. 1C and 2C). Figure 2D shows the mean time course

of action of 100 lmol/L NS5806 (n = 9) on peak minus

end-pulse Ito. Figure 2E shows mean concentration-

Figure 1. NS5806 modulation of Ito from rabbit ventricular cells. (A) Representative current records in control, after application of 10 lmol/L

NS5806 and after washout with control solution. The voltage protocol is shown as an inset. (B) Mean (� SEM, n = 26) time course of response

to 10 lmol/L NS5806 of Ito (measured as peak minus end-pulse current), using protocol shown in A. (C) Representative current records in

control, after application of 100 lmol/L NS5806 and after washout with control solution. The voltage protocol is the same as that used for

panel A. (D) Mean (� SEM, n = 10) time course of response of Ito (peak minus end-pulse current) to 100 lmol/L NS5806, using protocol

shown in A. Note the initial stimulation followed by inhibition. (E) Concentration-dependence of the maximal agonist effect of NS5806 on Ito.

Data (for peak minus end-pulse current effects) were fitted with a standard Hill-equation to get the EC50 and nH values given in the ‘Results’

text. Values in parentheses denote number of independent replicates at each concentration. (F) Concentration–response relation for the steady-

state effect of NS5806 on Ito. For each cell, the effect of NS5806 at 120 sec was recorded and current amplitude expressed as a % of control.

Data (for peak minus end-pulse current effects) were fitted with a two site (agonist and antagonist) Hill-equation to get the EC50/IC50 and nH
values. Values in parentheses denote number of independent replicates at each concentration.
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response data for 1, 10 and 100 lmol/L on peak minus

end-pulse current. A fit to these data with a one site Hill

equation yielded an IC50 of 18.2 lmol/L (LogIC50

mean � SEM: �4.74 � 0.05; 95% C.I: 4.2–80.0 lmol/L;

Hill coefficient: �0.74 � 0.06). Analysis of peak current

inhibition gave an IC50 of 34.7 lmol/L (LogIC50

mean � SEM: �4.46 � 0.04; 95% C.I: 11.9–101.8 lmol/

L; Hill coefficient: �0.54 � 0.03).

Effects of NS5809 on voltage-dependent
activation and inactivation of Ito

The voltage dependence of activation and inactivation of

Ito were determined, using a classical Hodgkin-Huxley

protocol ((Mitcheson and Hancox 1999); see Figure 3

and Figure 4 legends for details). Figures 3Ai and Aii

show families of ventricular Ito elicited by depolarization

to a range of membrane potentials both in the absence

and presence of 10 lmol/L NS5806. Peak Ito was

increased by 10 lmol/L NS5806 (n = 7) at all potentials

greater than 0 mV, as shown the current-voltage (I-V)

plots in Figure 3Aiii (data normalized to cell capacitance).

No significant difference in mean end-pulse current was

seen between control and 10 lmol/L NS5806 between

�60 and +50 mV (P > 0.05). Figure 3Aiv shows the volt-

age dependence of Ito activation derived from normalized

conductance voltage (G-V) plots, with Boltzmann fits

used to derive half-maximal activation voltage (V0.5) and

slope factor (ka). In control solution, ventricular Ito acti-

vation V0.5 was +25.3 � 2.6 mV (ka=25.4 � 3.1 mV),

Figure 2. NS5806 inhibition of Ito from rabbit atrial cells. A: Representative current records in control, 10 lmol/L NS5806 and washout with

control solution elicited by the protocol shown as an inset (same protocol as Figure 1). B: Mean (� SEM, n = 21) time course of response to

10 lmol/L NS5806 of Ito (measured as peak minus end-pulse current, using protocol shown in A. C: Representative current records in control,

after application of 100 lmol/L NS5806 and after washout with control solution. The voltage protocol is the same as that used for panel A. D:

Mean (� SEM, n = 9) time course of response of Ito (peak minus end-pulse current) to 100 lmol/L NS5806, using protocol shown in A. E:

Isochronal concentration–response relation for the inhibition of atrial Ito by NS5806. For each cell, the effect of NS5806 at 180 s (on peak

minus end-pulse currents) was recorded and current amplitude expressed as a % of control. Data were fitted with a Hill-equation to get the

IC50 and nH values given in the ‘Results’ text.
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whilst in 10 lmol/L NS5806 V0.5 was �3.4 � 2.7 mV

(P < 0.01 versus control; ka = 16.7 � 1.1 mV, also

P < 0.01 versus control).

Figures 3Bi and Bii show families of atrial Ito during

depolarizations to a range of voltages and demonstrate

that, in marked contrast to ventricular myocytes, peak Ito
was decreased by 10 lmol/L NS5806 over the range of

potentials tested. Mean I-V relations in control and after

application of 10 lmol/L NS5806 (n = 8; normalized to

cell capacitance) are shown in Figure 3Biii and NS5806

significantly reduced Ito amplitude at all voltages greater

than 0 mV. No significant difference in mean end-pulse

current was seen between control and 10 lmol/L NS5806

between �60 and +50 mV (P > 0.05). Figure 3Biv

shows normalized G-V plots of atrial Ito fitted with

a Boltzmann function to derive activation parameters.

The activation V0.5 for atrial Ito in control was

2.8 � 2.5 mV (ka=16.7 � 1.3 mV), whilst in NS5806 it

was -8.6 � 1.5 mV (P < 0.01 versus control; ka =
12.3 � 0.9 mV, also P < 0.01 vs. control).

Thus, NS5806 produced a leftward shift and decrease

in slope in the voltage dependence of activation of Ito in

both cell types, though the magnitude of this effect was

much greater in ventricular than atrial myocytes.

Figures 4Ai and Aii show families of Ito elicited by

the test depolarization in ventricular myocytes following

different conditioning steps in both control (Fig. 4Ai)

and after adding 10 lmol/L NS5806 (Fig. 4Aii). Under

both conditions, Ito was greater at more negative condi-

tioning voltages. After normalizing the test pulse Ito to

the maximal test Ito observed following the different

conditioning pulses protocol and fitting a Boltzmann

function (Fig. 4Aiii; n = 7) the half-maximal inactiva-

tion voltage (V0.5) and slope factor (ki) values were not

significantly changed by NS5806 (Control: V0.5 of

-40.9 � 2.7 mV; ki = 9.1 � 1.7 mV and with NS5806: V0.5

of �36.2 � 2.0 mV; ki = 6.9 � 1.1 mV; P > 0.1 for both).

Figure 4Bi and Bii shows equivalent data for atrial Ito
in control and NS5806 and Figure 4Biii shows mean data

and Boltzmann fits. In eight experiments the mean atrial

Ito inactivation V0.5 in control was -42.3 � 1.4 mV which

was shifted to �45.6 � 1.6 mV in 10 lmol/L NS5806

(P < 0.01). The slope factors appeared unchanged; in

control ki was 8.0 � 1.0 mV and in NS5806 ki was

9.1 � 1.1 mV (P > 0.05 vs. control). Thus, NS5806 pro-

duced a modest but significant leftward shift in voltage-

dependent inactivation of atrial Ito, with no significant

shift in inactivation of ventricular Ito.

Effects of NS5806 on Ito restitution

In order to measure restitution of ventricular Ito (recovery

from inactivation) a paired-pulse protocol (shown

schematically in the insets to Fig. 5A and B) was used

(Mitcheson and Hancox 1999). Figure 5A shows mean

data from six experiments in which restitution of Ito from

ventricular cells was measured in control solution and fol-

lowing exposure to 10 lmol/L NS5806. In both control

and NS5806, Ito restitution followed a single exponential

time course, with time constants of 2417 � 117 msec and

1814 � 82 msec in control and NS5806, respectively

(P < 0.01, n = 6). Restitution of Ito from atrial cells

(Fig. 5B) was best described by a bi-exponential time

course: the fast component had time constants of

452 � 146 msec and 521 � 287 msec in control and with

NS5806, respectively, while for the slow component the

corresponding values were 3023 � 241 msec and

3045 � 400 msec, respectively. The fraction of fast atrial

Figure 3. Effects of NS5806 on voltage dependence of Ito activation. Ai-Aii: Representative ventricular current traces with control solution (Ai)

and 10 lmol/L NS5806 (Aii) at the potentials indicated (protocol shown as lower panel of Aii). From the holding potential of -80 mV, an initial

1-second duration ‘conditioning’ step was applied to potentials between �90 and +50 mV in 10 mV increments. The conditioning step both

enabled activation of Ito (on depolarization) and also enabled subsequent inactivation during the maintained depolarization. A second 500 msec

‘test’ step to +40 mV was applied to determine how availability (inactivation) of Ito was influenced by the conditioning pulse. A brief (3-msec)

step at �80 mV was included between the first and second steps to ensure that any residual capacitance artefacts that occurred during the

test depolarization were not influenced by differing conditioning voltages. Interpulse interval was 5 sec. Aiii: Mean I-V relations (normalized to

cell capacitance) for ventricular Ito elicited by the initial 1s step of protocol described above, in control and in 10 lmol/L NS5806 (same protocol

as Ai,Aii; n = 7). Control data are shown in black; NS5806 data are shown in gray (error bars indicate SEM). ** denotes significant difference

at P < 0.01. Aiv: Voltage-dependence of conductance for ventricular Ito (same experiments as shown in Aiii). Data were fitted with a Boltzmann

equation of the form: G/Gmax=1/[1 + exp[(V0.5-V)/ka]], where G=conductance at test voltage V, Gmax= maximal conductance, V0.5=half-maximal

activation voltage, and ka=activation slope factor. V0.5 and ka values are given in the ‘Results’ text. Bi-Bii: Representative atrial current traces

with control solution (Bi) and 10 lmol/L NS5806 (Bii) at the potentials indicated. The protocol was the same as for ventricular cells as shown in

Ai. Biii: Mean I-V relations (normalized to cell capacitance) for atrial Ito in control and in the presence of 10 lmol/L NS5806 (same protocol as

Bi,Bii; n = 8). Control data are shown in black (and with +SEM bars); NS5806 data are shown in gray (and with -SEM bars). ** denotes

significant difference between control and NS5806 at P < 0.01. Biv: Voltage-dependent activation curves for atrial Ito (data from same

experiments as Biii). For each experiment and each recording condition (control and NS5806) macroscopic conductance values were calculated

at each voltage, normalized to maximal conductance during the protocol and pooled data fitted with the Boltzmann equation as described

above.
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Ito restitution was 21.2 � 6.0% in control and

20.0 � 10.8% in NS5806. None of these values differed

significantly between control and NS5806 (n = 7). When

restitution of atrial cell Ito was additionally fitted with

monoexponential function to facilitate comparison with

ventricular Ito, this yielded time constants in control and

NS5806, respectively of 2147 � 57 msec and

2253 � 71 msec (n = 7; P > 0.05). Taken together, these

data indicate that NS5806 significantly accelerated

restitution of Ito from rabbit ventricular cells, but did not

significantly affect restitution of Ito from atrial cells.

Effect of flecainide on ventricular and atrial
Ito

Since Ito arises from multiple channel isoforms the atrial-

ventricular differences in response to NS5806 might

reflect different functional Kv1.4 and Kv4.x tissue

Figure 4. Effect of NS5806 on voltage-dependent inactivation of Ito. Ai–Aii: Representative ventricular current traces with control solution (Ai)

and 10 lmol/L NS5806 (Aii) elicited by protocol shown as lower panel of Aii. Full protocol contained 1 sec conditioning steps in 10 mV

increments between �90 mV and +20 mV, followed by a 500 msec test pulse to +40 mV. Conditioning and test steps were separated by a

brief (3 msec) period at �80 mV. The figure focuses on currents elicited by the test step following conditioning steps to the voltages indicated.

Currents at selected voltages are shown for clarity of display. Aiii: Mean (� SEM) plots of inactivation variables against conditioning voltage in

control and in the presence of 10 lmol/L NS5806 (n = 7). For each experiment and each condition, currents during each test command were

normalized to the maximal test current observed during the protocol, pooled and plotted against conditioning voltage. Data were fitted by a

Boltzmann function: I/Imax=1-[1/[1 + exp((V0.5-V)/ki)]], where I=current during the test pulse (+40 mV), V= conditioning voltage, Imax= maximal

test current, V0.5=half-maximal inactivation voltage, and ki=inactivation slope factor. V0.5 and ki values are given in the Results text. Bi–Bii:

Representative atrial current traces with control solution (Bi) and 10 lmol/L NS5806 (Bii) elicited by protocol shown as lower panel of Bii.

Voltage protocol as described for ‘A’. The figure shows currents elicited by the test step after selected conditioning steps (voltages indicated on

traces). Biii: Mean (� SEM) plots of atrial inactivation variables against conditioning voltage in control and NS5806 (n = 8). Data were fitted by

the Boltzmann equation described in ‘A’. V0.5 and ki values are given in the Results text.
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expression. Flecainide has been reported to discriminate

between Kv4.x and 1.4 channels, with the latter exhibiting

lower sensitivity to inhibition by the drug (Yeola and

Snyders 1997; Singarayar et al. 2003; Herrera et al. 2005).

Effects of flecainide on rabbit ventricular and atrial Ito
were therefore examined to probe the functional expres-

sion of these channel subunits. Figure 5Ci shows

representative ventricular Ito traces in the absence and

presence of 10 lmol/L flecainide, whilst Figure 5Cii

shows comparable data for atrial Ito. The bar charts in

Figure 5D show mean fractional block for Ito from the

two cell types with 1, 10 and 100 lmol/L flecainide

(n ≥ 6 for each concentration). At no concentration did

the inhibitory effect of flecainide differ significantly

Figure 5. Effect of NS5806 on recovery of Ito from inactivation (“restitution”) in atrial and ventricular myocytes and response to flecainide. The

protocol for studying restitution is illustrated in the insets to panels A and B: an initial 500 msec depolarizing step from �80 mV to +40 mV

was followed by varying intervals (Dt, 20 msec to 5000 ms) at �80 mV followed by a ‘test’ depolarization to +40 mV. Each pair of pulses was

separated by 10 sec. For each pulse-pair, the magnitude of Ito elicited by the second command (ITest) was expressed as the fraction of that

elicited by the first (IControl). A: Mean (� SEM) data (n = 6) for recovery of Ito from inactivation for ventricular myocytes, in control (black) and

10 lmol/L NS5806 (gray). Data were fitted by a single exponential function to get time constant values given in the Results. *difference

between Control and NS5806 at P < 0.05; ** P < 0.01. B: Mean (� SEM) data (n = 7) for recovery of Ito from inactivation for atrial myocytes,

in control (black) and 10 lmol/L NS5806 (gray). Data were fitted by a bi-exponential function to get time constant values given in the Results

text. C: Representative traces of Ito in control and following exposure to 10 lmol/L flecainide (same protocol as used in Figures 1 and 2) for

ventricular (Ci) and atrial (Cii) myocytes. D: Bar chart plots for flecainide inhibition of ventricular and atrial Ito (n = 6–7 cells for each

concentration for both cell types). 2-way ANOVA with Bonferroni’s post-test confirmed that for each cell type the concentration dependence of

the inhibitory effect was significant (P < 0.05), whilst at no concentration did the extent of inhibition differ significantly between atrial and

ventricular cells.
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between atrial and ventricular cells. When the data for

each cell type were fitted to standard concentration-

response relations to estimate IC50 values (constraining

minimal and maximal possible fractional block values to

0 and 1, respectively; plot not shown) the derived value

for ventricular Ito was 14.7 lmol/L, (LogIC50

mean � SEM = �4.83 � 0.03, 95% C.I = 5.6–39.0 lmol/

L; nH = 0.83 � 0.05), whilst for atrial Ito, the derived

IC50 was 13.8 lmol/L (LogIC50 mean � SEM =
�4.86 � 0.05, 95% C.I = 3.2 to 60.3 lmol/L; nH of

0.79 � 0.07). Thus, in contrast to their distinct responses

to NS5806, ventricular and atrial Ito exhibited similar sen-

sitivity to inhibition by flecainide.

Effects of NS5806 on ventricular and atrial
APs

In a final set of experiments, the action of 10 lmol/L

NS5806 on ventricular and atrial AP profiles was com-

pared. For both cell types, APs were elicited in membrane

potential (current clamp) recording mode, by brief

(5–7 msec) duration suprathreshold depolarizing current

pulses (0.6-1 nA for ventricular myocytes and 0.4–0.5 nA

for atrial myocytes) at a stimulation frequency of 0.5 Hz.

Figure 6A shows representative ventricular APs in control

and following application of 10 lmol/L NS5806. The

compound had no significant effect on the AP upstroke

or initial overshoot (see Table 1); however, AP duration

(APD) was abbreviated in the presence of the drug. We

evaluated AP shortening at 20%, 50% and 90% repolar-

ization (APD20, APD50, APD90), respectively. NS5806

shortened APD20 by 36.5 � 5.0%, APD50 by 31.2 � 3.3%

and APD90 by 24.7 � 3.0% (n = 7 for all; see Table 1 for

absolute APD values). Figure 6B shows representative

atrial APs in control solution and following application of

10 lmol/L NS5806. In contrast to the AP shortening seen

for ventricular APs, atrial APD was prolonged by the

drug, particularly during early repolarization. APD20,

APD50 and APD90 were prolonged by 90.9 � 14.7%,

88.6 � 18.8% and 30.7 � 12.0%, respectively (n = 7 for

all; see Table 1). In addition, and in contrast to ventricu-

lar myocytes, atrial AP overshoot and upstroke were also

affected (Table 1), with a marked (77.4 � 3.8%) reduc-

tion in upstroke velocity in accord with dog atrial data in

a previous report (Calloe et al. 2011). Further experi-

ments with a higher concentration (100 lmol/L) of

NS5806 were not attempted, because the likely lack of

selectivity of this concentration for ventricular Ito
(Fig. 1C) would have make its effects on APs difficult to

interpret.

Figure 6. Effect of 10 lmol/L NS5806 on ventricular and atrial action potentials Ai–Aii: Representative ventricular action potentials in control

(Ai, black) and in 10 lmol/L NS5806 (Aii, gray, with control action potential superimposed as dashed black line). Bi–Bii: Representative atrial

action potentials in control (Bi, black) and in 10 lmol/L NS5806 (Bii, gray, with control action potential superimposed as dashed black line). For

A and B, depolarizing stimuli were applied at 2 sec intervals. Mean ventricular cell resting potential of �81.5 � 0.7 mV was obtained with zero

current injection. Atrial cell resting membrane potential was somewhat depolarized (~�50 to �40 mV) with zero current and so a small

hyperpolarizing (�50 pA) current was injected to give the mean resting potential of �79.9 � 1.9 mV. Mean action potentials parameters for

both cell types in Control and NS5806 are given in Table 1.
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Discussion

Comparison with prior canine ventricular
and atrial Ito data

To our knowledge, this is the first study to investigate the

concentration-dependent effects of NS5806 on native car-

diac Ito. Previous work in dogs has shown that NS5806

increases the depth of phase 1 repolarization in both left

and right ventricles in a concentration-dependent fashion

between 5 and 15 lmol/L and, when phase 1 repolarization

became very pronounced, could lead to AP collapse (Calloe

et al. 2009). A lack of concentration-response data on

canine ventricular Ito for NS5806 means that direct com-

parison with our data is limited to the typical 10 lmol/L

concentration used in most prior dog studies (Calloe et al.

2010, 2011; Cordeiro et al. 2012). Table 2 compares the

effects of NS5806 on rabbit and normal canine ventricular

Ito. The agonist effect of NS5806 at 10 lmol/L is similar

between the two species. However, concentration-response

data are not available for canine ventricular Ito to determine

whether or not the biphasic concentration response relation

we obtained at steady-state is shared by the two species.

Voltage-dependent activation data are also lacking for dog

Ito, precluding comparison with the marked leftward shift

in activation V0.5 found here for rabbit Ito. Differences

between the dog and rabbit Ito response to NS5806 are: (1)

an apparent acceleration, not slowing of rabbit ventricular

Ito inactivation time course with the compound (either as a

result of direct inactivation modulation or some modest

open channel block during the inactivating phase of the

current); (2) no significant shift in voltage-dependent inac-

tivation V0.5 with NS5806 was seen in rabbit.

The effects of NS5806 on rabbit atrial Ito differed signifi-

cantly both from those seen in rabbit ventricular myocytes

in this study and in canine atrial cells (summarized in

Table 3). We observed a concentration-dependent inhibi-

tion of atrial Ito amplitude (Fig. 2), accompanied by a

~�11 mV shift in voltage-dependent activation (Fig. 3), a

~�3 mV shift in voltage-dependent inactivation (Fig. 4),

slowed inactivation time course, but unchanged restitution

(Fig. 5). Canine atrial Ito was modestly increased (25%) by

NS5806, and its restitution was accelerated – effects that

differ markedly from those seen here in rabbit. No canine

data are available on effects on voltage dependence of atrial

Ito activation, whilst effects on Ito inactivation time course

and voltage dependence are similar between the two spe-

cies. The marked inhibitory effect of NS5806 on Ito
accounts for atrial AP prolongation seen in our experi-

ments (Fig. 6, Table 1). 10 lmol/L NS5806 was reported

to not alter phase 1 repolarisation in perfused dog atrial

preparations, but shortened the APD90 (Calloe et al. 2011).

In atrial, but not ventricular myocytes, NS5806 pro-

duced a substantial slowing of AP upstroke velocity and

amplitude (Fig. 6, Table 1), consistent with a selective

reduction in atrial INa. Such ‘off target’ actions of NS5806

on AP upstroke velocity were noted in dog atrial tissue

and found to correlate with intrinsic atrial-ventricular dif-

ferences in INa inactivation kinetics that may favor atrial

INa inhibition by the compound (Calloe et al. 2011).

Thus, our own observations in respect of effects of

NS5806 on atrial AP upstroke velocity are consistent with

previously reported atrial-ventricular differences in INa
and atrio-selectivity of drug INa modulation (Burashnikov

et al. 2007; Calloe et al. 2011; Suzuki et al. 2013).

On the mechanism of NS5806 action

The decrease in the slope factor for voltage-dependent

activation of ventricular Ito suggests that NS5806 either

Table 1. Effect of 10 lmol/L NS5806 on action potentials from rabbit ventricular and atrial myocytes.

Ventricular cells (n = 7) Atrial cells (n = 7)

Control 10 lmol/L NS5806 Control 10 lmol/L NS5806

Overshoot (mV) 56.0 � 2.0 54.8 � 2.0 43.5 � 3.2 �2.3 � 4.4 **

AP amplitude (mV) 137.5 � 1.9 137.0 � 2.0 123.2 � 2.8 73.9 � 3.8 **

Upstroke velocity (mV/msec)

(percentage change,%)

128.4 � 8.6 134.3 � 7.0 120.9 � 8.3 27.4 � 4.9 **

(�77.4 � 3.8)

APD20 (msec)

(percentage change,%)

73.6 � 8.0 46.0 � 4.9 **

(�36.5 � 5.0)

8.2 � 1.1 16.0 � 2.8 **

(90.9 � 14.7)

APD50 (msec)

(percentage change,%)

133.8 � 8.4 91.6 � 6.4 **

(�31.2 � 3.3)

18.0 � 2.8 32.9 � 5.8 **

(88.6 � 18.8)

APD90 (msec)

(percentage change,%)

167.4 � 9.7 125.9 � 8.8 **

(�24.7 � 3.0)

101.8 � 7.3 128.6 � 5.9 *

(30.7 � 12.0)

*P < 0.05.
**P < 0.01, paired t-test.
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effectively alters the membrane field sensed by the Ito
voltage sensor or decreases the net effective charge of the

voltage sensor. The positive residues in the S4 region play

a key role in forming the voltage sensor of Kv channels

(for review see Swartz 2004), and since NS5806 should be

negatively charged at pH7.2, it could decrease the slope of

the activation curve by binding near the voltage sensor.

However, NS5806 may also bind and exert effects outside

the immediate S4 region. Consistent with this, NS5806

has been reported to produce an agonist action on Kv4.3/

KChIP2/DPP6 channels expressed in mammalian CHO-

K1 cells and a smaller agonist effect on Kv4.3/DPP6 in

Xenopus oocytes, whilst peak current carried by Kv4.3

alone was reduced by NS5806 (Lundby et al. 2010). The

effects of NS5806 on inactivation (and recovery from

inactivation) of Kv4.3 also seem to be sensitive to the

interaction of NS5806 with KChIP2 (Lundby et al. 2010).

Moreover, in canine ventricular myocytes, variation in

response to NS5806 across the ventricular wall correlated

with varying transmural KChIP2 expression levels in the

presence of similar transmural levels of Kv4.3 (Calloe

et al. 2010). Thus, to stimulate Ito, it seems likely that

NS5806 either interacts directly with the Kv4.3-KChIP2

accessory subunit complex, or the interaction between

Kv4.3 and KChIP2 exposes an interaction site for NS5806

on the Kv4.3 protein. In this regard, it is notable that a

recent study investigating effects of NS5806 on the inter-

action between Kv4.3 and the KChIP2 relative KChIP3

has provided evidence that NS5806 binds at a hydropho-

bic site on the C terminus of KChIP3 and increases the

affinity between KChIP3 and the N terminus of Kv4.3

(Gonzalez et al. 2014). Significantly, alignment of KChIP3

Table 2. Comparison of effects of NS5806 on normal rabbit and dog ventricular Ito.

Ito property Rabbit Source Dog Reference

Ventricle

Current amplitude Initial: ↑ EC50 1.6 lmol/L

Steady state: “bell-shaped”

EC50 1.6 lmol/L; IC50 40 lmol/L

This study ↑ at 10 lmol/L

↑ at 10 lmol/L (Epi by 80%,

Mid by 82% Endo by 16%)

Calloe et al. 2009

Calloe et al. 2010, 2011

Voltage dependence

of activation

Negative shift in V0.5 of ~ �29 mV This study No data

Time course of

inactivation

Accelerated: thalf at +40 mV

decreased from 30.3 msec

to 21.5 msec (by 29%)

This study Slowed: Tau at +40 mV increased

from 12.6 to 20.3 ms (by 61%)

Ito integral increased to 227%,

192% and 83% of control in

EPI, MID and EPI

Calloe et al. 2009

Calloe et al. 2010;

Voltage dependence

of inactivation

No statistical difference This study Negative shift in V0.5 of �6 mV

EPI, �5 mV MID, �3.4 ENDO

Calloe et al. 2010

Calloe et al. 2011

Restitution Accelerated: tau from 2417 msec

to 1814 msec (by ~25%)

This study Accelerated EPI and MID and

biexponential to single

exponential time course

Calloe et al. 2009

Calloe et al. 2010

Table 3. Comparison of effects of NS5806 on normal rabbit and dog atrial Ito.

Ito property Rabbit Source Dog Reference

Atrium

Current amplitude ↓ IC50 18.2 lmol/L This study ↑ at 10 lmol/L (25%) Calloe et al. 2011

Voltage dependence

of activation

Negative shift in V0.5

of ~ 11 mV

This study No data

Time course of

inactivation

Slowed: thalf at +40 mV

increased from 13.5 msec

to 17.3 msec (by 28%)

This study Slowed: Tau at +50 mV

increased from 20 to

26.5 ms (by 32.5%)

Calloe et al. 2011

Voltage dependence

of inactivation

Negative shift in V0.5

of ~ -3.3 mV

This study Negative shift in V0.5 of -7.3 mV Calloe et al. 2011

Restitution No significant change This study Accelerated and

biexponential changed

to single exponential time course

Calloe et al. 2011
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and KChiP2 (Uniprot Q9Y2W7 and Q9NS61, respec-

tively) indicates that hydrophobic amino acid residues in

KChiP3 (Tyr-174 and Phe-218) identified to be important

for NS5806 binding (Gonzalez et al. 2014) are present in

analogous positions in KChIP2, making it likely that the

two interact similarly with NS5806.

Our data on ventricular Ito showed a biphasic concen-

tration response relation to NS5806, with higher concen-

trations producing an initial stimulation followed by

inhibition. In prior investigation of recombinant Kv chan-

nels, the response of Kv4.3/KChIP2/DPP6 to 100 lmol/L

NS5806 was smaller than that at 10 lmol/L (see Fig. 2B

in Lundby et al. 2010 at 100 lmol/L –although this data-

point was excluded from the concentration-response fit).

In the same study, for Kv4.3/KChIP2 and Kv4.3/KChIP2/

DPP6, concentrations up to 10 lmol/L increased current

amplitude and 30 lmol/L produced some reduction

(Fig. 3 in Lundby et al. 2010). In a different study direc-

ted toward the molecular pharmacology of hippocampal

A-current (based on Kv4.2 rather than Kv4.3), NS5806

increased Kv4.2/KChIP2 current amplitude at concentra-

tions up to 20–60 lmol/L, with an EC50 of 5.6 lmol/L,

but was inhibited at 200 lmol/L (Witzel et al. 2012).

Importantly, when Kv4.2/DPP6S or Kv4.2/KChiP3/DPP6a

were co-expressed, NS5806 produced a low-affinity

monophasic inhibition of the A current. These results

support the idea that NS5806 interacts at more than one

site to affect Kv4.x channels, with a lower affinity site,

possibly on accessory subunits, mediating the inhibitory

action. However, as Kv1.4 is inhibited by NS5806

(Lundby et al. 2010), an additional factor to be consid-

ered is contribution of Kv1.4 to the overall macroscopic

rabbit Ito. As shown in Fig. 5 (and discussed in more

detail below), the similar sensitivity of ventricular and

atrial Ito to flecainide argue against the differential effect

of NS5806 on atria and ventricles being solely due to the

presence of Kv1.4 in atria. Instead, it seems more likely

that stimulation and inhibition combine, so that NS5806

acts as both an agonist and antagonist for ventricular Ito
on the same channel complex(es). An additional unex-

pected feature of the response of ventricular cells to

100 lmol/L NS5806 was the induction of a time-depen-

dent increase in outward current following initial inacti-

vation of Ito (Fig. 1C). In principle, this could result

from: (1) induction of an additional low NS5806 affinity

gating mode of Ito or (2) some other off target effect

(such as effects on the membrane or another current).

The overall profile of the current in 100 lmol/L NS5806

makes (1) unlikely; it seems improbable that Ito would

inactivate then reactivate slowly during a test pulse to a

fixed voltage. Off target membrane effects also seem less

likely because 100 lmol/L NS5806 did not produce a

similar slow outward current in atrial cells (Fig. 2C). In

addition, we tested for membrane effects in a limited

number of additional experiments with a structurally

closely related compound NS11021 (N0-[3,5-Bis(trifluoro-
methyl)phenyl]-N-[4-bromo-2-(2H-tetrazol-5-yl)phenyl]-

thiourea), which would be expected to have similar

interactions with the cell membrane to NS5806. At

100 lmol/L this compound did not produce a compara-

ble slowly activating current to that with NS5806 in ven-

tricular cells. Thus, it seems most likely that 100 lmol/L

NS5086 both affected ventricular Ito with biphasic time

dependence (an increase followed by subsequent decrease

in amplitude) and had an additional nonselective effect of

activating another (unidentified) current. This secondary

effect mitigates against the use of high concentrations of

NS5806 for the selective enhancement of ventricular Ito.

Our data on ventricular Ito inactivation and its modifi-

cation by NS5806 have some notable similarities to those

reported for Kv4.3 + KChIP2 expression in CHO cells by

Calloe et al. (Calloe et al. 2010) in terms of V0.5 and k.

However, the recovery from inactivation was slowed by

NS5806 in that expression system unlike the acceleration

seen both here and in dog (Calloe et al. 2009, 2010). This

difference might be explained by heteromultimeric chan-

nel assembly (Po et al. 1993; Wang et al. 1999) which is

encountered in many Kv channel families (for review see

(Birnbaum et al. 2004)). In connection with this, heterol-

ogous expression produced by adding Kv1.4 subunits to

an amphibian Kv4.3 expression system resulted in

NS5806 speeding the recovery from inactivation (Lundby

et al. 2010). However, in that expression system NS5806

had little effect on Ito amplitude which makes any simple

translation of those results to the behavior of mammalian

native cardiac Ito problematic.

The previously reported inhibitory effect of NS5806 on

Kv1.4 (Lundby et al. 2010) together with our atrial Ito data

might suggest a dominant role for Kv1.4 in rabbit atrial Ito
as Kv4.3, 4.2 and 1.4 are all expressed in atria (e.g., Rose

et al. 2005; Abd Allah et al. 2012)). However, antisense

oligodeoxynucleotide probes show a slightly larger effect

when directed against Kv4.3 than Kv4.2 and 1.4 (Wang

et al. 1999; Bosch et al. 2003; Rose et al. 2005), so one

would not expect a purely inhibitory effect of NS5806 in

atria. In some preliminary experiments (not shown),

3 lmol/L CP-339,818, a compound which exerts preferen-

tial inhibition of Kv1.4 over 4.2 channels (Nguyen et al.

1996), partially inhibited both atrial and ventricular Ito.

Furthermore, the similar inhibitory potency of flecainide

(as a probe to differentiate between Kv1.4 and Kv4.x chan-

nels) on ventricular and atrial Ito (Fig. 5) is not consistent

with a more dominant role for Kv1.4 in atria as a lower

atrial potency (compared to ventricle) should then occur

(Yeola and Snyders 1997; Singarayar et al. 2003; Herrera

et al. 2005) and this was not seen. An alternative
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explanation for the monophasic inhibitory effect of NS5806

on atrial Ito would be that KChIP2 has a weaker association

with the Kv4.3 isoform in atria, a possibility that could be

tested by examining the effect of NS5806 in KChIP2 native

knockdown/overexpression systems in a future study.

Although rabbit ventricular Ito restitution time course

is slower than reported for dog (Akar et al. 2004; Jost

et al. 2013), the accelerated restitution of rabbit ventricu-

lar Ito produced by NS5806 (Fig. 5) is qualitatively similar

to that seen in prior canine studies (Calloe et al. 2009,

2010). In contrast, the compound did not affect rabbit

atrial restitution. These results differ markedly from the

slowing of restitution by NS5806 seen for recombinant

Kv4.3, even when KChIP2 is co-expressed (Calloe et al.

2010; Lundby et al. 2010). This difference underscores

present uncertainty as to the precise molecular makeup of

native Ito, and that caution is needed in the extrapolation

of data obtained in expression systems to actual tissues.

Functional relevance?

In our ventricular AP experiments, APs showed rapid ini-

tial repolarisation, but lacked an inscribed notch. Rabbit

ventricular APs lacking a pronounced notch have also been

seen in other studies (e.g., Giles and Imaizumi 1988; Kelly

et al. 2013; Meedech et al. 2015). In our experiments,

10 lmol/L NS5806 produced significant AP shortening at

APD20-APD90, an effect distinct from phase 1 repolariza-

tion (Fig. 6, Table 1). Incorporation of baseline rabbit Ito
kinetics and of the Ito effects of NS5806 into a human ven-

tricular AP model (O’Hara et al. 2011) qualitatively repro-

duced the experimentally observed AP shortening reported

here (data not shown). In some respects, the ability of

NS5806 to increase phase 1 and shorten phase 2 would

oppose some of the deleterious changes seen in APs from

failing human hearts. The restoration of the phase 1 notch

in human should increase Ca2+ release synchrony (Cooper

et al. 2010), whilst shortening of the AP should also reduce

the duration of the Ca2+ transient (Cannell et al. 1987), via

suppression of late release events (Cooper et al. 2010) as

well stimulation of Ca2+ extrusion via sodium-calcium

exchange (Crespo et al. 1990). Consistent with this notion,

recent data have shown that a dual Ito and IKr activator,

NS3623, restores both the AP notch and protects against

early after-depolarisations in ventricular myocytes with

reduced repolarisation reserve (Calloe et al. 2016).

Conclusions

This study has demonstrated a biphasic concentration-

dependent modulation of rabbit ventricular Ito by NS5806

and a monophasic inhibitory effect of the compound on

atrial Ito. As both prior canine data and the present rabbit

study indicate that NS5806 acts as a ventricular Ito agonist

at the lower end of the lmol/L range, it seems likely that at

such concentrations the compound would also stimulate

human native ventricular Ito. However, at the same con-

centration as used in prior canine studies (Calloe et al.

2009, 2010, 2011; Cordeiro et al. 2012), NS5806 produced

unexpected opposite effects on rabbit ventricular and atrial

APD. Our ventricular data indicate that the consequences

of Ito stimulation on ventricular repolarization can vary

between species, depending on underlying Ito kinetics. The

discordance between our rabbit atrial Ito data and prior

canine atrial Ito data complicates extrapolation of these

results to human atrial Ito. With that caveat, whilst ventric-

ular Ito activation might be anticipated to be beneficial in

heart failure, concomitant atrial Ito inhibition could in

principle promote initiation of re-entrant arrhythmia in

healthy atrial tissue if it promoted dispersion of atrial APD

(Aslanidi and Hancox 2015). On the other hand, in a set-

ting of electrically remodeled atria the APD lengthening

effect of NS5806 could be beneficial and protect against

sustained re-entry (Aslanidi and Hancox 2015). Our data

support the previously proposed notion that NS5806 addi-

tionally exerts atrio-selective Na+ channel inhibitory effects

(Calloe et al. 2011) and effects of combined atrial Ito and

INa inhibition may well differ from those of Ito inhibition

alone. Concomitant atrial INa inhibition by a ventricular Ito
agonist may not be desirable unless abnormal atrial

excitability is also present, and should be considered care-

fully during future design/development of such agents.

Finally, the uncertainty as to the precise composition of

native Ito channels means that the underlying basis of

action of NS5806 and related molecules may best be fur-

ther elucidated by the study of native rather than recombi-

nant Ito, combined with genetic modification of Kv and

KChiP isoform expression.
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