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ABSTRACT FadR is a master regulator of fatty acid (FA) metabolism that coordinates
the pathways of FA degradation and biosynthesis in enteric bacteria. We show here
that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expres-
sion of the virulence cascade by influencing both the transcription and the post-
translational regulation of the master virulence regulator ToxT. FadR is a transcrip-
tional regulator that represses the expression of genes involved in FA degradation,
activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and
also activates the expression of two operons involved in saturated FA (SFA) biosyn-
thesis. Since FadR does not bind directly to the toxT promoter, we determined
whether the regulation of any of its target genes indirectly influenced ToxT. This
was accomplished by individually inserting a double point mutation into the FadR-
binding site in the promoter of each target gene, thereby preventing their activation
or repression. Although preventing FadR-mediated activation of fabA, which encodes
the enzyme that carries out the first step in UFA biosynthesis, did not significantly
influence either the transcription or the translation of ToxT, it reduced its levels and
prevented virulence gene expression. In the mutant strain unable to carry out FadR-
mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT
and virulence gene expression. Taken together, the results presented here indicate
that V. cholerae FadR influences the virulence cascade in the El Tor biotype by mod-
ulating the levels of ToxT via two different mechanisms.

IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis
and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of
the acute intestinal disease cholera, they also influence virulence by binding into an
N-terminal pocket of the master virulence regulator, ToxT, and modulating its activ-
ity. FadR is a transcription factor that coordinately controls the pathways of FA deg-
radation and biosynthesis in enteric bacteria. This study identifies a new link be-
tween FA metabolism and virulence in the El Tor biotype by showing that FadR
influences both the transcription and posttranslational regulation of the master viru-
lence regulator ToxT by two distinct mechanisms.
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Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the
diarrheal disease cholera. The expression of its two primary virulence factors,

toxin-coregulated pilus (TCP) (1) and cholera toxin (CT), is activated by a transcriptional
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cascade involving a number of regulatory proteins (2). ToxT, an AraC family member,
directly activates the expression of the tcp, ctx, and accessory colonization factor genes
(3). The expression of ToxT, in turn, is activated by cooperation of two homologous
transmembrane protein pairs, ToxRS and TcpPH (4–6). The induction of the virulence
cascade by activation of the tcpPH promoter is dependent upon two additional
regulators, AphA and AphB (7, 8). AphA is a winged helix transcription factor that
facilitates the binding of the LysR-type regulator AphB to the promoter (9–11).

The expression of the V. cholerae virulence cascade is influenced by a wide variety
of environmental stimuli such as pH, temperature, osmolarity, oxygen tension, bile,
unsaturated fatty acids (UFAs), bicarbonate, c-di-GMP, and quorum sensing (2, 12–17).
UFAs, which are a component of bile in the intestinal lumen, have been shown to
inhibit virulence gene expression in V. cholerae (14). This occurs by direct binding of a
UFA into a pocket in the N-terminal domain of ToxT, which prevents the protein from
dimerizing and binding to DNA (18–20). The binding of UFAs to ToxT is thought to
prevent the expression of virulence genes until the bacteria have penetrated the mucus
of the intestine, where the concentrations of UFAs are presumably reduced (18). Thus,
UFAs may serve as an in vivo signal to indicate that V. cholerae has progressed into the
appropriate environment to initiate pathogenesis.

The pathways of fatty acid (FA) degradation and biosynthesis in enteric bacteria are
coordinately controlled at the level of transcription by the master regulator FadR (21,
22). FadR from Escherichia coli is an extensively characterized member of the GntR
family of transcriptional regulators with an N-terminal winged helix DNA binding
domain and a C-terminal acyl coenzyme A (acyl-CoA) binding domain (23–25). In the
absence of exogenous long-chain fatty acids (LCFAs), FadR represses transcription of
the fad genes that encode proteins required for the transport, activation, and �-
oxidation of LCFAs (Fig. 1A) (21). These genes include fadL, fadD, fadBA, fadE, and fadH
(26). FadR also activates the expression of the fabA and fabB genes, which encode
proteins required for the biosynthesis of UFAs (27, 28) as well as genes involved in
saturated FA (SFA) biosynthesis (29, 30). When exogenous LCFAs are present (Fig. 1B),
they diffuse across the outer membrane through FadL and are activated by the inner
membrane-associated acyl-CoA ligase FadD (31) to produce long-chain fatty acyl-CoAs
(LCFA-CoAs). These LCFA-CoAs bind directly to FadR and induce a conformational
change that disrupts the FadR DNA complex (24, 32). This upregulates the expression
of genes involved in FA degradation to utilize the LCFAs and downregulates the
expression of genes involved in FA biosynthesis, which are no longer needed.

In V. cholerae, FadR is also involved in regulating the pathways of FA degradation
and UFA biosynthesis (33). However, unlike E. coli FadR, which has only a single binding
site for acyl-CoA, FadR from V. cholerae has two distinct binding sites for acyl-CoA (33).

FIG 1 Roles of FadR in V. cholerae. (A) In the absence of LCFAs, FadR represses the expression of genes involved
in FA degradation and phospholipid biosynthesis by binding to sites in the promoters of the fadB, fadE, fadH, and
plsB genes and activates the expression of genes involved in UFA and SFA biosynthesis by binding to sites in the
promoters of the fabA, fabB, fabH, and fabF genes. (B) When exogenous LCFAs are present, they diffuse across the
outer membrane through FadL and are activated to LCFA-CoAs by FadD. The resulting activated LCFA-CoAs bind
to FadR, causing a conformational change that releases it from DNA and results in derepression and failure to
activate its regulated promoters. The mechanism by which it controls virulence is the subject of this work.

Kovacikova et al. Journal of Bacteriology

April 2017 Volume 199 Issue 7 e00762-16 jb.asm.org 2

http://jb.asm.org


One of these is structurally similar to the site in E. coli FadR, whereas the other is unique
and comprised of residues from a 40-amino-acid insertion in the protein that is present
only among Vibrionaceae (33, 34). Binding of ligand to both of these sites in V. cholerae
FadR results in a more dramatic conformational change within the DNA binding
domain than in E. coli FadR, which appears to more fully disrupt DNA binding (33). This
is likely responsible for the enhanced expression of FA utilization genes in the presence
of LCFAs in V. cholerae relative to other bacterial species (34). Since Vibrionaceae are
natural inhabitants of aquatic environments, where they obtain FAs from the sediment,
the acquisition of a second binding site in FadR may provide a more efficient mecha-
nism for utilizing FAs in this environment.

In addition to its roles in FA degradation and UFA biosynthesis (33), FadR represses
the expression of the plsB gene involved in phospholipid biosynthesis in V. cholerae (35)
and, as shown here, activates the expression of two operons involved in SFA synthesis.
Although prior studies in the classical biotype of V. cholerae did not reveal a role for
FadR in the expression of the virulence cascade (36), the results here show that in the
El Tor biotype of V. cholerae, FadR is also required for expression of TCP and CT.
Examination of a V. cholerae strain C6706 ΔfadR mutant revealed a modest reduction in
the transcription of ToxT. However, since FadR does not regulate expression from the
toxT promoter directly, we assessed whether the ability of FadR to directly regulate the
transcription of any of its known target genes indirectly influences ToxT. This was
accomplished by individually preventing FadR-mediated regulation of each of its target
genes by inserting a double point mutation into their FadR binding sites. Interestingly,
disrupting FadR-mediated regulation of fabA, which encodes the enzyme that catalyzes
the first step in UFA biosynthesis, decreased the levels of ToxT via a posttranslational
mechanism. These results indicate that FadR influences the levels of ToxT in V. cholerae
indirectly through two different mechanisms.

RESULTS
FadR influences the expression of the virulence cascade in the El Tor, but not

in the classical, biotype of V. cholerae. It has previously been shown that loss of FadR
does not influence the expression of the virulence cascade in the classical biotype of V.
cholerae (36). Since the conditions that induce the expression of the virulence cascade
in the El Tor biotype (static growth in a peptone-based medium, AKI [37], at 37°C in the
presence of bicarbonate) are different from those that induce its expression in the
classical biotype, we assessed the loss of FadR in both biotypes on the expression of
the virulence cascade under AKI conditions. As shown in Fig. 2A, in the classical biotype,
both the wild-type and ΔfadR mutant strains showed high-level expression of a
tcpA-lacZ fusion, indicating that FadR does not have an influence on the expression of
the virulence cascade under this condition. Although the wild-type El Tor biotype
fusion showed a 3-fold reduction in expression relative to the wild-type classical
biotype fusion, consistent with the lowered expression of the virulence cascade in this
biotype (38), the El Tor ΔfadR mutant showed an 8-fold reduction in expression relative
to the wild type, indicating that FadR does have an influence on the expression of the
virulence cascade in this biotype. Under AKI conditions, as well as when subjected to
shaking, the growth rate of the El Tor biotype ΔfadR mutant (see Fig. S1 in the
supplemental material) is only slightly reduced compared to that of the wild type.
Introducing a plasmid expressing FadR into the El Tor ΔfadR mutant restored expres-
sion of tcpA-lacZ to wild-type levels (Fig. 2B). The expression of an El Tor biotype
ctx-lacZ fusion was also reduced 8-fold by the ΔfadR mutation, and this effect was
similarly complemented by the FadR expression plasmid (Fig. 2C). These findings
indicate that FadR influences the expression of both tcpA and ctx in the El Tor biotype
under AKI conditions. This effect is independent of quorum sensing, since a C6706
ΔfadR ΔhapR mutant still showed reduced expression of the virulence cascade (data not
shown). Since the amino acid sequence of FadR is identical for classical and El Tor
biotypes, the above-described findings indicate that the loss of FadR influences the
expression of the virulence cascade differently in the two biotypes of V. cholerae.
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Loss of FadR reduces the transcription of toxT but not that of tcpP or toxR.
Given that ToxT directly activates the expression of both tcpA and ctx in V. cholerae, the
observation that the ΔfadR mutation reduced the expression of both of these genes
suggested that FadR influences ToxT. Consistent with this finding, the El Tor biotype
ΔfadR mutant strain does not produce detectable levels of ToxT by Western blotting
(Fig. 3A). Since the expression of the virulence cascade is highly regulated at the level
of transcription, we first examined the expression of a toxT-lacZ transcriptional fusion
in wild-type and ΔfadR backgrounds. The ΔfadR mutation reduced the transcription of
toxT approximately 3-fold under static incubation conditions (Fig. 3B). In contrast, the
ΔfadR mutation did not significantly influence the transcription of either of its two
activators, TcpP or ToxR, under these conditions (Fig. 3C and D). These results indicate
that the expression of ToxT is the first point in the virulence cascade that is influenced
by FadR. High-level CT production can be achieved in the El Tor biotype when static

FIG 2 Influence of a ΔfadR mutation on the expression of tcpA and ctx promoter-lacZ fusions in V.
cholerae. From left to right: MBN135, GK1536, KSK979, and GK1502 (*, P � 0.006) (A); KSK979, GK1502 (*,
P � 0.003), GK1502/pKAS178 (*, P � 0.005), and GK1502/pWEL231 (B); KSK2325, GK1954 (*, P � 0.0006),
GK1954/pKAS178 (*, P � 0.007), and GK1954/pWEL231 (C). Cultures were grown in AKI medium statically
for 3.5 h.
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incubation is followed by an aerobic shaking phase (37). As shown in Fig. S2 in the
supplemental material, both the wild-type and ΔfadR mutant strains showed a reduc-
tion in toxT expression after the aerobic phase of growth. However, the ΔfadR mutant
still showed a 2-fold decrease in expression relative to the wild type that is statistically
significant.

It has recently been shown that the fatty acyl-CoA ligase FadD (Fig. 1) influences the
virulence cascade in V. cholerae by promoting the localization of TcpP into the
membrane (36). In the absence of FadD, induction of the �E-dependent extracytoplas-
mic stress response results in proteolysis of membrane-localized TcpP by the integral
membrane protease RseP and reduces expression from the toxT promoter (39). To
determine whether the effects of FadR on the virulence cascade shown here are
independent of FadD and TcpP, we introduced a ΔrseP mutation into both the
wild-type and ΔfadR toxT-lacZ fusions. As shown in Fig. 3B, the absence of RseP alone
did not influence the expression of toxT and in the presence of the ΔfadR mutation did
not restore the expression of toxT as it did in a ΔfadD mutant (39). These results suggest
that FadR influences the virulence cascade in a manner independent of FadD and the
�E-dependent extracytoplasmic stress response.

FadR directly regulates the expression of genes involved in UFA biosynthesis
and FA degradation but not toxT. We have previously shown that in V. cholerae,
similar to the situation in E. coli, FadR represses the expression of the fadBA (VC2758-
59), fadE (VC2231), and fadH (VC1993) genes, involved in FA degradation, and activates
the expression of the fabA (VC1483) and fabB (VC2109) genes, involved in UFA
biosynthesis (33). Each of these promoters contains a 17-bp palindromic motif (Fig. 4A)
that matches the consensus sequence established for E. coli FadR binding (40–42). In
contrast, a similar motif was not detected in the toxT promoter, and consistent with this,
purified FadR was unable to bind to the toxT promoter (Fig. 4B), although it bound to
the fadBA promoter (Fig. 4C). These findings suggest that the influence of FadR on toxT
expression is indirect and may be due to its effects on genes that it directly regulates.

In an attempt to understand how FadR influences the expression of toxT, we wanted
to determine whether the ability of FadR to directly regulate the transcription of any of

FIG 3 A ΔfadR mutation reduces the transcription of toxT but not that of tcpP or toxR. (A) Western blot with strains
C6706 str2, KSK1184, and GK1257. (B to D) Influence of ΔfadR on the transcription of toxT, tcpP, and toxR. From left
to right: KSK1267, GK1499 (*, P � 0.0001), JAS273, and GK2136 (*, P � 0.0001) (B); KSK725 and WL982 (C); WL124
and GK1504 (D). Cultures were grown in AKI medium statically for 3.5 h.
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its known target genes indirectly influences the toxT promoter. This was accomplished
by individually preventing FadR-mediated regulation of each of its regulated promoters
by inserting a double point mutation into their FadR binding sites (GG at positions 7
and 8 of the consensus, shown by asterisks in Fig. 4). This mutation has previously been
shown in E. coli to eliminate FadR binding in vitro and prevent transcriptional regulation
in vivo (40). Since the putative site at the fabB promoter, which shows a very poor
match to the consensus (42), naturally contains a G at position 7 of the consensus, a
different double point mutation (GG at positions 12 and 13 of the consensus, shown by
dots in Fig. 4) was used to inactivate this binding site. As shown in Fig. 5, the ability of
FadR to repress expression from the fadBA, fadE, and fadH promoters, as well as its
ability to activate expression from the fabA and fabB promoters, was lost in the
presence of the GG mutations. In addition, introduction of the ΔfadR mutation into
each GG mutant strain did not further alter expression from the promoters, indicating
that the FadR binding sites were no longer functional. These results indicate that FadR
uses these binding sites to directly regulate the expression of these genes in V. cholerae.

FadR activates the expression of SFA biosynthesis genes in V. cholerae. It has
been shown that in addition to its roles in FA degradation and UFA biosynthesis, FadR
activates the expression of genes involved in SFA biosynthesis in E. coli (29, 30). Unlike
in mammals, where FAs are synthesized by a large multifunctional protein known as
type I synthase (22, 43), bacteria produce a type II synthase composed of individual
enzymes that catalyze discrete steps in the process, with each intermediate attached to
the universal and highly conserved acyl carrier protein (ACP) (22, 43). Specifically, it has
been shown that FadR activates the expression of the fabH promoter, which drives the
expression of the fabHDG operon, encoding three enzymes involved in SFA biosynthe-
sis, and shows a modest activation of the acpP promoter, which controls the expression
of the gene encoding ACP, acpP, coexpressed with another SFA biosynthetic enzyme
encoded by fabF (29). Since the arrangement of the SFA genes in V. cholerae is similar
to that in E. coli (Fig. 6), we assessed whether these genes were also regulated by FadR.
We identified a putative FadR binding site (Fig. 4) upstream of fabH (VC2023) within the

FIG 4 FadR binding sites in V. cholerae. (A) The FadR consensus determined from E. coli (40) is shown at
the top. Within the consensus sequence, upper- and lowercase letters represent nucleotides found more
and less frequently, respectively. Mismatches from the consensus are in red. Asterisks show the position
of the GG mutations in the fadBA, fadE, fadH, fabA, fabH, and acpP promoters. Dots show the position of
the GG mutation in the fabB promoter. (B, C) Binding of purified FadR to toxT and fadBA promoter
fragments. The first lane in each set has no protein added, the second lane has 80 ng FadR, and the third
lane has 160 ng FadR.
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V. cholerae plsX gene and, as shown in Fig. 6A, FadR activated a fabH-lacZ promoter
fusion 3.6-fold. Inserting a GG mutation into the putative binding site reduced this
activation to a level similar to that of the ΔfadR mutant. We also identified another
putative FadR binding site (Fig. 4) upstream of the acpP and fabF (VC2020-VC2019)
genes (Fig. 6B). FadR activated the expression of this promoter nearly 2-fold, and
inserting a GG mutation into the putative binding site also reduced this activation to a
level similar to that of the ΔfadR mutant. These results indicate that in addition to its
roles in regulating the expression of genes involved in FA degradation and UFA
biosynthesis, FadR activates the expression of two SFA biosynthesis operons in V.
cholerae.

Altered FA content of FA biosynthesis FadR binding site mutants. Only two
enzymes, encoded by the fabA and fabB genes, are required for the biosynthesis of
UFAs (44, 45). Since the expression of both of these genes is dependent on FadR, ΔfadR
mutants in both E. coli and Vibrio vulnificus contain lower levels of UFAs (46, 47). To
determine whether the levels of UFAs are reduced in the V. cholerae ΔfadR, fabAGG, and
fabBGG mutants, these strains were analyzed for total FA content. As shown in Table 1,
the levels of UFAs in wild-type C6706 were reduced from 59% to 43% by the ΔfadR

FIG 5 FadR regulates the expression of genes involved in FA degradation and UFA biosynthesis. The genetic organization of each of
the genes is shown. The red boxes indicate the positions of the FadR binding sites (shown in Fig. 4), and the arrows show the putative
transcriptional start sites. The positions of the GG mutations are shown by asterisks and dots. From left to right: WL1031, WL1035 (*,
P � 0.003), WL1060 (*, P � 0.005), and WL1062 (*, P � 0.005) (A); WL1027, WL1029 (*, P � 0.002), WL1056 (*, P � 0.0001), and WL1058
(*, P � 0.002) (B); WL1040, WL1042 (*, P � 0.005), WL1064 (*, P � 0.01), and WL1066 (*, P � 0.0001) (C); WL1005, WL1007 (*, P � 0.0007),
WL1020 (*, P � 0.002), and WL1022 (*, P � 0.002) (D); GK1609, GK1610 (*, P � 0.002), GK1669 (*, P � 0.02), and GK1672 (*, P � 0.02)
(E). Cultures were grown in tryptone broth for 5 h with aeration.
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mutation. In the fabAGG mutant, they were reduced to 39%, and in the fabBGG mutant,
they were reduced to 23%. In addition, for each of these mutants, the levels of SFAs
correspondingly increased (Table 1). These findings confirm that in V. cholerae, as in E.
coli and V. vulnificus, the intracellular levels of UFAs are dependent upon FadR. In
contrast, the intracellular levels of SFAs in V. cholerae do not appear to depend on FadR
since the FA content of the fabHGG and acpPGG mutants was not appreciably different
from that of the wild type (Table 1).

Preventing FadR-mediated activation of UFA biosynthesis decreases the ex-
pression of the virulence cascade. The above findings show that FadR directly
regulates the expression of genes involved in FA degradation, UFA biosynthesis, and
SFA biosynthesis in V. cholerae. To determine whether disruption of FadR-mediated
regulation of any of these genes is responsible for the altered expression of the
virulence cascade in the ΔfadR mutant, the GG-disrupted FadR binding sites in the
promoters of these genes were individually introduced into a tcpA-lacZ fusion strain. As
shown in Fig. 7A, the GG mutation in the fabA promoter strongly reduced the
transcription of tcpA (approximately 8-fold) to a level similar to that of the ΔfadR
mutant, whereas the GG mutations in the promoters of the genes involved in FA
degradation or SFA biosynthesis did not. In addition, introduction of the fabAGG

mutation into wild-type C6706 significantly reduced the levels of TcpA as observed by
Western blotting (Fig. 7B). To confirm that a functional fabA gene is required for the
expression of tcpA, a merodiploid fabAGG tcpA-lacZ mutant strain that contains a
wild-type copy of the fabA gene and its promoter inserted at the lac locus was
constructed. As shown in Fig. 7C, the wild-type copy of fabA in this strain fully restored
the expression of tcpA. These results indicate that FadR-mediated activation of UFA
biosynthesis influences the expression of the virulence cascade in V. cholerae.

FIG 6 FadR activates the expression of genes involved in SFA biosynthesis. Genetic organization of the fab-acpP
locus. The red boxes indicate the positions of the FadR binding sites (shown in Fig. 4) and the arrows show the
putative transcriptional start sites. The positions of the GG mutations are shown by asterisks. From left to right:
GK2017, GK2020 (*, P � 0.01), GK2039 (*, P � 0.009), and GK2040 (*, P � 0.01) (A); GK1630, GK1632 (*, P � 0.02),
GK2035 (*, P � 0.02), and GK2037 (*, P � 0.02) (B). Cultures were grown in tryptone broth for 5 h with aeration.

TABLE 1 FA content of strains with GG mutations in FA biosynthesis promoters

Strain % unsaturated % saturated Ratio

C6706 str2 (wild type) 59 � 2 40 � 2 1.4
GK1257 (ΔfadR) 43 � 0.5 56 � 0.8 0.8
GK1689 (fabAGG) 39 � 0.2 60 � 0.4 0.7
GK1691 (fabBGG) 23 � 0.6 77 � 0.6 0.3
GK2043 (fabHGG) 59 � 0.2 40 � 0.2 1.4
GK2041 (acpPGG) 60 � 0 39 � 0 1.5
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We next determined whether the fabAGG mutation influences the expression of the
virulence cascade in a manner similar to that of the ΔfadR mutant. Consistent with the
reduced level of tcpA expression observed in the fabAGG mutant as described above,
introduction of this mutation into wild-type C6706 prevented the production of ToxT
(Fig. 8A), but unlike the ΔfadR mutation, it did not influence the transcription of toxT
(Fig. 8B). This finding suggests that the fabAGG mutation influences ToxT posttranscrip-
tionally, by reducing its translation and/or by decreasing its stability. To address the
former possibility first, a translational fusion of ToxT to �-galactosidase (toxT‘-’lacZ) in
the chromosome was made by fusing the first 44 amino acids of ToxT to amino acid 9
of �-galactosidase. Since this reporter is expressed under the control of the native toxT
promoter, it measures transcription as well as translation. As shown in Fig. 8C, the ΔfadR
mutation reduced the transcription of the toxT‘-’lacZ fusion similar to what is shown in
Fig. 8B, whereas the fabAGG mutation did not influence either the transcription or the
translation of ToxT. These findings suggest that preventing FadR from activating fabA
expression reduces the levels of ToxT via a posttranslational mechanism. Taken to-
gether, the results shown here indicate that loss of FadR reduces the expression of the
virulence cascade by two distinct mechanisms that influence ToxT. One is a reduction
in the transcription of toxT, which occurs via an unknown process, and the second is a
posttranslational reduction in the levels of ToxT due to an inability to activate fabA
expression and UFA biosynthesis.

DISCUSSION

FadR is present in a variety of bacterial species, where it plays a role in the
transcriptional regulation of genes involved in FA metabolism (41, 42). Although no role
for FadR in the regulation of virulence was observed in the classical biotype of V.
cholerae (36), we show here that FadR is required for the expression of the cascade in
the El Tor biotype. The influence of FadR on the expression of both the tcpA and ctx
genes in this biotype suggested a possible effect on ToxT, the regulator that directly
activates both of these genes. Since it has previously been shown that UFAs are capable
of binding directly to ToxT and inhibiting its activity (18), it seemed possible that the
altered regulation of UFAs in the ΔfadR mutant influences the activity of ToxT. However,

FIG 7 A fabAGG mutation reduces the expression of tcpA. (A) Influence of GG mutations on the expression of tcpA. From left to right:
KSK979, GK1502 (*, P � 0.001), GK1675 (*, P � 0.0006), GK1657, GK1982 (*, P � 0.02), GK1687, GK1981 (*, P � 0.003), GK2022, and
GK2016 (*, P � 0.03). (B) Western blot with strains C6706 str2, KSK1184, GK1257, and GK1689. (C) Ectopic expression of wild-type fabA
restores the expression of tcpA to the fabAGG mutant. From left to right: KSK979, GK2207, GK1675 (*, P � 0.0008), and GK2209. Cultures
were grown in AKI medium statically for 3.5 h.
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as we show here, the ΔfadR mutation appears to influence ToxT at two different levels:
(i) by reducing its transcription by an unknown mechanism and (ii) by reducing its levels
posttranslationally due to an inability to activate the expression of fabA, encoding the
enzyme that catalyzes the first step in the biosynthesis of UFAs.

FadR was originally identified in E. coli as a transcriptional repressor controlling the
genes of FA metabolism (48) and later shown to also function as a transcriptional
activator of genes involved in UFA biosynthesis (27, 28). We previously demonstrated
that FadR also regulates both of these processes in V. cholerae (33) and have now
extended these studies to show that sequences with similarity to the E. coli FadR
binding site consensus are necessary for the FadR-dependent expression of these
genes in V. cholerae. FadR has recently been shown to activate the expression of two
operons involved in SFA biosynthesis in E. coli (29). We have similarly found that FadR
also plays a role in activating the expression of these operons in V. cholerae. In E. coli,
FabH is essential for the initiation of FA synthesis and is a regulated step thought to
play a key role in determining the amount of FAs produced by the pathway (49).
Despite the dependence of FadR on expression from the fabH and acpP promoters in
V. cholerae, the GG mutations in these promoters did not strongly influence the
intracellular levels of SFAs. One explanation to account for this is that the fabH operon
(fabHDG) is transcribed from two different promoters; in addition to the FadR-

FIG 8 The fabAGG mutation reduces the levels of ToxT but does not influence either its transcription or its
translation. (A) Western blot with strains C6706 str2, KSK1184, GK1257, and GK1689. (B and C) Left to right:
transcriptional toxT-lacZ fusions in KSK1267, GK1499 (*, P � 0.0004), and WL1231 (B) and translational
toxT‘-’lacZ fusions in WL1268, WL1271 (*, P � 0.0001), and GK1790 (C). Cultures were grown in AKI medium
statically for 3.5 h.
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dependent promoter within plsX, fabH is expressed from a FadR-independent promoter
that is located further upstream (29, 50). A similar situation appears to occur with acpP.
In addition to the FadR-dependent promoter immediately upstream of its gene, acpP
has been shown to be coexpressed with fabG (51). Thus, other factors in addition to FA
availability appear to be involved in regulating the levels of SFAs in bacteria (45).

To shed light on how FadR influences the virulence cascade in V. cholerae, the FadR
binding site GG mutations that abolished regulation of its target genes were individ-
ually assessed in a tcpA-lacZ reporter strain. Only one of these, the fabAGG mutation,
strongly reduced tcpA expression. The fabA gene encodes the enzyme �-hydroxy-
decanoyl-ACP dehydratase, which introduces a double bond at the C-10 level and is an
essential step in the formation of UFAs (52, 53). The second step in the pathway, carried
out by the fabB gene, encodes �-ketoacyl-ACP synthase I, which is capable of elongat-
ing the product synthesized by FabA (54). Null mutations in either one of these genes
are lethal in E. coli, as they both encode enzymes that are essential for UFA biosynthesis
(54). This appears to be the case in V. cholerae as well, since we were not able to isolate
deletions of these genes. In view of the fact that both the V. cholerae fabAGG and fabBGG

mutants have reduced levels of UFAs relative to the wild type, the finding that the
former, but not the latter, exhibits reduced tcpA expression suggests that it is not the
absolute level of UFAs in these mutants that influences the expression of the virulence
cascade. Since the profiles of FA species produced in these two strains are not identical,
it is possible that one or more of these differences are responsible for the effects on the
virulence cascade. Experiments to assess this are currently in progress.

Since the fabAGG mutation reduced the expression of tcpA to a level similar to that
of the ΔfadR mutation, it was surprising to find that, unlike the ΔfadR mutation, it did
not influence the transcription of toxT. Since the fabAGG mutation also did not influence
the translation of toxT, this suggests that the inability to activate fabA expression
reduces the levels of certain UFAs in the cell that, in turn, reduce the levels of ToxT.
ToxT has previously been shown to undergo proteolysis when V. cholerae is shifted to
conditions that do not support virulence (i.e., from 30°C to 37°C, or when the pH
increases from pH 6.5 to pH 8), but the specific proteases involved in this process are
unknown (55). ToxT appears to be specifically cleaved in a recently structured region of
the protein that lies in the N-terminal domain of the protein between amino acids 100
and 109 (56, 57). Moreover, it has also been shown that the addition of the UFA linoleic
acid to ToxT prevents its proteolysis (56), possibly by promoting the “closed” confor-
mation of ToxT that is unable to bind to DNA or to activate gene expression (18). These
findings raise the possibility that in the absence of UFA biosynthesis in the ΔfadR and
fabAGG mutants there is more ToxT present in the “open” conformation that lacks UFAs
and this increases its susceptibility to proteolysis (see the model in Fig. 9). It is also
possible that in the ΔfadR and fabAGG mutants there is an increase in the expression

FIG 9 Model for the influence of FadR on the expression of the virulence cascade. (A) In wild-type V.
cholerae, FadR activates the expression of fabA, encoding the enzyme that catalyzes the first step in UFA
biosynthesis. In the presence of UFAs, ToxT forms a “closed complex” that is unable to activate gene
expression or to be proteolyzed. (B) In a ΔfadR or fabAGG mutant, the levels of certain UFAs are reduced
and ToxT is locked into the “open complex” that is capable of activating gene expression but is also able
to be proteolyzed. In the ΔfadR and fabAGG mutants, there may also be an increase in the expression
and/or activity of the proteases. Model based on that previously described (56). CTD, C-terminal domain;
NTD, N-terminal domain.
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and/or activity of proteases that facilitates the degradation of ToxT. Further work is
necessary in order to elucidate the specific mechanism involved in reducing the levels
of ToxT in the fabAGG mutant.

It is still unclear how FadR influences the transcription of ToxT. The toxT promoter
does not contain a FadR binding site that matches the consensus sequence observed
in the promoter of its other regulated genes, and the purified protein does not appear
to bind to it. The most likely explanation is that the influence of FadR on toxT
transcription is indirect. However, none of the genes involved in FA degradation or UFA
or SFA biosynthesis examined in this study strongly influenced the transcription of toxT
when their expression was altered by FadR binding site mutations. Although we were
unable to demonstrate repression of plsB by FadR in V. cholerae C6706, we ruled out a
possible effect of this gene on virulence gene expression in this strain by inserting a GG
mutation into the FadR binding site (35) and determined that it did not affect the
expression of tcpA (data not shown). However, FadR clearly regulates the expression of
additional genes in V. cholerae and one or more of these may influence the transcrip-
tion of toxT. Since the toxT promoter is responsive to changes in central metabolism
(58), it is also possible that global metabolic changes that occur in the ΔfadR mutant
result in altered transcription of ToxT.

The strategy that we used here to try to elucidate why the ΔfadR mutant shows
reduced expression from the toxT promoter in the El Tor biotype unexpectedly led to
the discovery of a second route by which FadR impacts ToxT, via the activation of fabA
expression. Since both ToxT and FadR are responsive to the presence of UFAs, it is
possible that the intracellular levels of certain UFAs need to be optimal to promote the
expression of the virulence cascade. High levels of exogenous UFAs bind directly to
ToxT and inhibit its activity. In contrast, low levels of intracellular UFAs caused by the
downregulation of fabA expression may promote the proteolysis of ToxT. In V. vulnifi-
cus, FadR was found to be essential for the organism to cause disease and the addition
of the UFA oleate restored virulence to the ΔfadR mutant (47). However, the addition
of oleate or other UFAs to either the V. cholerae ΔfadR or fabAGG mutants do not restore
the levels of ToxT in these strains. We are currently in the process of trying to
understand the reasons for this.

The work presented here identifies a new link between the expression of genes
involved in UFA biosynthesis that are regulated by FadR and virulence in V. cholerae.
Since the amino acid sequences of FadR from the classical and El Tor biotypes are
identical, it is not yet clear why FadR influences the expression of the virulence cascade
in the latter but not in the former. Previous transcriptome analyses have revealed a
large number of differences in gene expression between the classical and El Tor
biotypes (59). Thus, a novel way of regulating the expression of the virulence cascade
in response to UFAs appears to have evolved in the El Tor biotype, and future work will
be directed toward elucidating these mechanisms.

MATERIALS AND METHODS
Bacterial strains and media. The bacterial strains used in this study are described in Table 2. Strains

were maintained at �70°C in Luria-Bertani (LB) medium (60) containing 30% (vol/vol) glycerol. Cultures
were grown in either AKI medium (37) or tryptone broth (60). Antibiotics were used at the following
concentrations in LB medium: ampicillin, 100 �g/ml; kanamycin, 45 �g/ml; polymyxin B, 50 units/ml;
streptomycin, 1 mg/ml. X-Gal (5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside) was used in LB agar at
40 �g/ml.

Construction of lacZ fusion strains. The various lacZ fusions were constructed by amplifying DNA
fragments upstream and downstream of each gene from C6706 str2 chromosomal DNA using primers as
follows (see Table S1 in the supplemental material): for ctx, CTX1a/CTX1b and CTX3/CTX4; for toxT,
RT19/TX5 and TX6/TX7; and for toxR, MN27/TXR21 and MN30/TXR22. The fragments, together with a
promoterless lacZ fragment from pVC200 (61), were inserted into either pKAS46 (62) or pKAS154 (63),
and the resulting plasmids were used for allelic exchange (62) into V. cholerae strain KSK262 (8). The
tcpA-lacZ and tcpP-lacZ fusions were previously described (8, 64). The toxT‘-’lacZ translational fusion was
constructed by amplifying a DNA fragment from the toxT gene using RT12ET with TX14 and a DNA
fragment from plasmid pVC200 (61) using T-LacZ10 with T-LacZ11. The fragments were ligated into
pKAS154 (63), and the resulting plasmid was used for allelic exchange into V. cholerae strain KSK1267. The
wild-type fabH-lacZ and acpP-lacZ fusions were constructed using primers VC2023FabH8/VC2023FabH2
and FabF1/FabF2, respectively. The resulting fragments were inserted into pWEL236 (33), and the fusions
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TABLE 2 Bacterial strains used in this study

V. cholerae strain Description/relevant genotype Reference or source

C6706 str2 El Tor Inaba; streptomycin resistant Lab collection
GK1257 C6706 ΔfadR This work
GK1499 KSK1267 ΔfadR This work
GK1502 KSK979 ΔfadR This work
GK1504 WL124 ΔfadR This work
GK1536 MBN135 ΔfadR This work
GK1545 KSK262 with lacZ from E. coli 33
GK1609 GK1545 ΔlacZ::fabB-lacZ 33
GK1610 GK1609 ΔfadR 33
GK1630 GK1545 ΔlacZ::acpP-lacZ This work
GK1632 GK1630 ΔfadR This work
GK1657 KSK979 fabBGG This work
GK1669 GK1545ΔlacZ::fabBGG-lacZ This work
GK1672 GK1669 ΔfadR This work
GK1675 KSK979 fabAGG This work
GK1687 KSK979 fadEGG This work
GK1689 C6706 fabAGG This work
GK1691 C6706 fabBGG This work
GK1790 WL1268 fabAGG This work
GK1954 KSK2325 ΔfadR This work
GK1981 KSK979 fadHGG This work
GK1982 KSK979 fadBGG This work
GK2016 KSK979 acpPGG This work
GK2017 GK1545ΔlacZ::fabH-lacZ This work
GK2020 GK2017 ΔfadR This work
GK2022 KSK979 fabHGG This work
GK2035 GK1545 ΔlacZ::acpPGG-lacZ This work
GK2037 GK2035 ΔfadR This work
GK2039 GK1545ΔlacZ::fabHGG-lacZ This work
GK2040 GK2039 ΔfadR This work
GK2041 C6706 acpPGG This work
GK2043 C6706 fabHGG This work
GK2136 JAS273 ΔfadR This work
GK2207 KSK979 ΔlacZ::fabA This work
GK2209 GK1675 ΔlacZ::fabA This work
JAS273 KSK1267 ΔrseP This work
KSK262 C6706 str2 ΔlacZ3 8
KSK725 KSK262 tcpP-lacZ 8
KSK979 KSK262 tcpA-lacZ This work
KSK1184 C6706 str2 ΔtoxT This work
KSK1267 KSK262 toxT-lacZ This work
KSK2325 KSK262 ctx-lacZ This work
MBN135 ΔtcpA-lacZ classical 68
WL124 KSK262 toxR-lacZ This work
WL982 KSK725 ΔfadR This work
WL1005 KSK262 ΔlacZ::fabA-lacZ 33
WL1007 WL1005 ΔfadR 33
WL1020 KSK262 ΔlacZ::fabAGG-lacZ This work
WL1022 WL1020 ΔfadR This work
WL1027 GK1545 ΔlacZ::fadE-lacZ 33
WL1029 WL1027 ΔfadR 33
WL1031 GK1545 ΔlacZ::fadBA-lacZ 33
WL1035 WL1031 ΔfadR 33
WL1040 GK1545 ΔlacZ::fadH-lacZ 33
WL1042 WL1040 ΔfadR 33
WL1056 GK1545 ΔlacZ::fadEGG-lacZ This work
WL1058 WL1056 ΔfadR This work
WL1060 GK1545 ΔlacZ::fadBAGG-lacZ This work
WL1062 WL1060 ΔfadR This work
WL1064 GK1545 ΔlacZ::fadHGG-lacZ This work
WL1066 WL1064 ΔfadR This work
WL1231 KSK1267 fabAGG This work
WL1268 KSK1267 toxT’-‘lacZ This work
WL1271 WL1268 ΔfadR This work
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were introduced into the lacZ locus of KSK262 by allelic exchange. The construction of the wild-type
fadBA, fadE, fadH, fabA, and fabB fusions were previously described (33).

Construction of FadR binding site mutations. The various mutations in the FadR-regulated
promoters were constructed by PCR amplifying two DNA fragments from C6706 str2 using primers (Table
S1) as follows: fabA, FabA3/FabA6 and FabA4/FabA5; fabB, FabB15/FabB13 and FabB12/FabB14; fadBA,
FadB4/FadB7 and FadB8/FadB9; fadE, FadE3/FadE4 and FadE5/FadE6; fadH, FadH6/FadH4 and FadH5/
FadH7; fabH, FabH4/FabH5 and FabH6/FabH7; and acpP, FabF4/FabF5 and FabF6/FabF7. The fragments
were inserted into pKAS154. The resulting GG mutant promoter plasmids were then used as a source of
DNA for PCR amplification using the same primers that were initially used to construct the wild-type
fusions (33): fabA, FabA1/FabA3; fabB, FabB3/FabB4; fadBA, FadB1/FadB4; fadE, FadE1/FadE3; fadH,
FadH1/FadH3; fabH, VC2023FabH8/VC2023FabH2; and acpP, FabF1/FabF2. The fragments were inserted
into either pKAS180 (65) or pWEL236 (33), and the resulting fusions were introduced into the lacZ locus
of KSK262 by allelic exchange.

Construction of deletion mutations, expression plasmids, and merodiploid. The ΔtoxT and ΔrseP
mutations were constructed by amplifying DNA fragments upstream and downstream of the genes from
C6706 str2 using RT19/TX5 and TX6/TX7 for the former and YaelA/YaelB and YaelC/YaelD for the latter
(Table S1). The fragments were inserted into pKAS46 (62), and the resulting deletions were introduced
into V. cholerae by allelic exchange. The ΔfadR mutation was constructed as previously described (33).
The FadR overexpressing plasmid pWEL231 was constructed by amplifying fadR from C6706 str2
chromosomal DNA with primers FadR7 and FadR8 and ligating the resulting product into pKAS178 (66).
The fabA merodiploid strain was constructed by PCR amplifying a DNA fragment containing the fabA
gene along with upstream and downstream sequences using primers FabA9 and FabA10 and inserting
this fragment into pGKK344, constructed similarly to pKAS180 (65) except that the fragments were
ligated into pKAS154 (63). It was then introduced into V. cholerae by allelic exchange.

Fatty acid analysis. Strains were grown in tryptone broth at 37°C with aeration for 5 h. Cells were
pelleted by centrifugation, washed with fresh tryptone broth, and frozen on dry ice. Fatty acid content
was determined by Microbial ID, Inc. (Newark, DE).

Immunoblot analysis. Whole-cell extracts from the various cultures were prepared, and equiv-
alent amounts of total protein as determined by the bicinchoninic acid (BCA) protein assay (Pierce)
were analyzed on a 16% SDS-PAGE gel. Proteins were visualized by transferring to nitrocellulose and
probing with either anti-ToxT antibody or anti-TcpA antibody using the ECL detection system
(Amersham).

Gel mobility shift assays. FadR was purified using the Impact-CN protein fusion and purification
system (New England BioLabs) as previously described (33). The DNA fragments for the assays were
amplified by PCR as follows: for fadBA, FadB1/FadB2; for toxT, TX11/TX12. The fragments were gel purified
and end labeled with digoxigenin as described previously (67). Binding reactions for FadR were carried
out with 20 mM Tris (pH 7.5), 10 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol (DTT), and 1 �g poly(dI-dC).
The samples were applied to a 5% polyacrylamide gel and subjected to electrophoresis. The DNA was
transferred to nylon membranes by electroblotting, probed with anti-digoxigenin-alkaline phosphatase
antibody (Amersham Pharmacia), and visualized using chemiluminescence.

�-Galactosidase assays. �-Galactosidase assays (60) were carried out by growing cultures either in
AKI medium statically for 3.5 h at 37°C or in tryptone broth with aeration for 5 h at 37°C. Assays were
done in duplicate for each culture, and the data are representative results from at least two separate
experiments.

SUPPLEMENTAL MATERIAL
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