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The current use of a single chemical component as the representative quality control marker of herbal food supplement is
inadequate. In this CD80-Quantitative-Pattern-Activity-Relationship (QPAR) study, we built a bioactivity predictive model that
can be applicable for complex mixtures. Through integrating the chemical fingerprinting profiles of the immunomodulating herb
Radix Astragali (RA) extracts, and their related biological data of immunological marker CD80 expression on dendritic cells,
a chemometric model using the Elastic Net Partial Least Square (EN-PLS) algorithm was established. The EN-PLS algorithm
increased the biological predictive capability with lower value of RMSEP (11.66) and higher values of R; (0.55) when compared to
the standard PLS model. This CD80-QPAR platform provides a useful predictive model for unknown RA extract’s bioactivities using
the chemical fingerprint inputs. Furthermore, this bioactivity prediction platform facilitates identification of key bioactivity-related
chemical components within complex mixtures for future drug discovery and understanding of the batch-to-batch consistency for

quality clinical trials.

1. Introduction

A large pool of medicinal plants from Chinese herbal
medicines (CHM) has a long historical clinical practice for
more than 2000 years ago. However, the underlying mecha-
nisms of action of the CHM remain largely unknown except
the few examples of taxol [1] for anticancer, artesunate [2]
for malaria treatment, and arsenic trioxide [3] for leukemia
treatment. While these three herbal derived single com-
pounds are responsible for the effective therapies, however,
for most of the other clinically useful CHM, the mechanisms
of action have been considered as that of “multicompound

multitarget.” The use of herbal formula by combining a few
herbs based on the Chinese medicine theory further adds to
this complexity. Thus, there exists a wide range of possible
chemical compounds in each single herb or complex formula
that may contribute to the clinical efficacy, but this crucial
information is basically unknown at the moment. This lack
of understanding of the active compounds and their targets in
turn makes the quality control aspect of ensuring the batch-
to-batch consistency of CHM difficult if not impossible.

Up to now, a CHM product PHY906 which is undergoing
phase 2 clinical trial and being marketed as an adjuvant
to chemotherapy attempted to address the batch-to-batch
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consistency issue [4, 5]. The researchers established a plat-
form of “Phytoceutica” to address the similarity index of
products of different batches for both of their chemical
fingerprinting using liquid chromatography-mass spectrom-
etry (LCMS) and the biological fingerprinting by microar-
ray profiling. While this platform suffices for the purpose
of quality control, it is not powerful enough to help the
identification of compounds that are actually related to
the mechanism of actions, such as reducing chemotherapy-
induced gastrointestinal toxicity in mice [4] and the clini-
cally favorable outcomes in cancer [5]. Hence, there is an
increasing attention in research development to evaluate the
mixtures of compounds from the CHM extracts as a whole
with the bioactivity for developing modern drugs.

The conventional component-based quality control
approach may overestimate the therapeutic value of some
highly representative components while the minor compo-
nents are ignored for their active roles or masked in the crude
extract [6]. Accordingly selecting only the major chemical
components as the standard markers is not adequate to
explain the total therapeutic effect of the CHM. More
importantly, as different constituents may contribute to
different therapeutic activities, therefore a single CHM may
possess multiple therapeutic activities. Understanding the
quantitative relationship between the multiple chemical
constituents of a single CHM with the corresponding
bioactivity is becoming imperative.

In the last few years, different international research
teams have attempted to address this quality control of
herbal medicines issue by both the chemical and biological
fingerprinting approaches. For instance, in China, Yan and
his colleagues [7] studied 28 samples of Radix Tinosporae for
analgesic bioactivities on mice. Chen and his colleagues used
32 combinations of 5-herb CHM mixture including RA and
studied antiplatelet in SD rats [8]. Another research group
of Jiang is based on 31 batches of curcuma volatile oil to
study antitumor in vitro effects [9]. In Belgium, Tistaert and
his colleagues reported similar approach using 39 Mallotus
extracts and examined the related cytotoxicity [10]. Also in
Singapore, Ching and his colleagues used 6 different solvent
systems to extract the A. elliptica leaves and studied the
corresponding antiplatelet activities [11].

Our laboratory has also developed comprehensive meth-
ods with multicomponent quantification such as pattern-
based approaches through chemometric data processing
techniques that have been used for the identification of
contributing elements within a mixture [12, 13]. In this
study, we adopted and expanded our laboratory’s chemo-
metric methodology named Quantitative-Pattern-Activity-
Relationship (QPAR) to study an immunomodulatory herbal
medicines, Radix Astragali (RA, or commonly known as
Huangqi) [12].

QPAR is a computer-assisted platform based on the
application of statistics and data analytical methods for
model development [12]. It simply colligates the extract of a
single herb as chemical fingerprint with the corresponding
biological activity. A statistical mathematical model is then
built for revealing the valuable information of CHM related
to the corresponding bioactivity. These developed models can
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also be used for predicting the biological activity of a HM
based solely on its intact chemical fingerprint.

It is well known that RA is one of the most widely
used CHM for the enhancement of “qi” based on Chinese
medicine theory. About its related mechanisms of action,
a few publications have demonstrated that RA is related to
the increase of both humoral immunity [14] and cellular
immunity in our body [15, 16] or immunomodulatory as a
whole [17-20]. RA has also been shown to exert an anti-
carcinogenic effect in carcinogen-treated mice through acti-
vation of cytotoxic activity and the production of cytokines
[21]. We have previously published that dendritic cells (DCs),
as the most important professional antigen presenting cells
in anticancer immunity, have been found to be defective
in cancer patients [22, 23]. Furthermore, this defectiveness
increased when cancer progressed to more advanced stage.
It is known that CD80 is the most important costimulatory
molecules on the surface of DCs to provide the crucial second
signal for the proper stimulation of cancer antigen-specific
naive T cells.

Therefore, in this project, we harness the knowledge of
the prior QPAR methodology and the CD80 flow cytometric
bioactivity platform. By producing more than 70 crude
extracts of RA of varied components, we aimed to build a
CD80-QPAR model of RA. With this model, we can demon-
strate the model’s predictability with the chromatogram
alone of any new RA preparations as an input, and the
corresponding bioactivity can be accurately predicted. This
knowledge is important for the determination of the levels of
bioactivity-related quality control chemical markers in herbal
extracts to be used in clinical trials.

2. Materials and Methods

2.1. Preparation of Radix Astragali (RA) Extracts, Reagents,
and Reference Compound. Three batches of raw RA (RA-
A, RA-B, and RA-C) were used to prepare 72 extracts in
total (24 extracts each) according to a modified extraction
method based on the Chinese Pharmacopoeia. Briefly, 4 g raw
herb was preimmersing with bidistilled water (100, 150, 200,
and 250 mL) for 12 hr and refluxed for 0, 1, 2, 3, and 4 hrs.
The mixtures were then filtered and concentrated under a
rotary evaporator (Brand, Germany). RA extracts were finally
obtained after lyophilisation. Each extract was stored under
low humidity condition and was kept for biological assay
within 3 months. All the extracts before chromatographic
analysis and biological assay were filtered under 0.2 ym
filter. Bidistilled water was produced in-house by Milli-Q®
Advantage A10 water purification systems (Millipore; USA)
and filtered with 0.22 um Millipak®. All other chemicals
and reagents used were of analytical grade unless indicated
otherwise.

2.2. THP-1 Dendentic Cell (DC) Functional Flow Cytometric
Platform. THP-1 was used as a convenient robust source
of DC in this in vitro DC functionality flow cytometric
study based on our previous method [24, 25]. Briefly, THP-
1 cells were cultured in RPMI-1640 (Invitrogen, USA) sup-
plemented with 10% foetal bovine serum (Gibco, USA) and
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100 U/mL penicillin/streptomycin (Caisson, USA) at 37°C
with 5% CO,. A total of 3 x 10> THP-1 cells/well with 200 uL
completed RPMI medium in 96-well flat-bottom plates were
treated with 5 yL dried RA extracts in the final concentration
of L.5mg/mL for 24 and 48 hrs. The untreated cell treated
with DDI was used as a control, whereas Lipopolysaccharide
(LPS) (Sigma, USA), a bacterial cell wall component, was
used as a positive control. The treated cells were harvested
and stained with fluorescence-conjugated monoclonal anti-
bodies of specificity against CD80 (BD, USA) for 20 min
at 4°C and propidium iodide (PI) staining for live cell
discrimination. Data were then acquired on a FC500 Flow
cytometry (Beckman Coulter, USA) and the results were ana-
lyzed using FlowJo software (USA) package. The percentage
change of the effect of each RA extract resulted from the
comparison of the untreated control, which was considered as
0%.

2.3. HPLC Instrumentation and Chromatographic Conditions.
The HPLC system used for chemical fingerprinting consisted
of an Agilent Series 1100 HPLC system (Agilent; USA) and
Agilent series 6300 Ion Trap VL LC-DAD-MS instruments,
with a Hypersil ODS column (250 mm x 4.6 mm, 5pm)
(Thermo Fisher Scientific; USA) and autosampler. The system
was equipped with a HP1100 diode array detector. Chromato-
graphic separation of the RA extracts was performed using a
gradient elution based on a mobile phase consisting of (A)
HPLC graded Acetonitrile (Tedia, USA) and (B) 0.1% acetic
acid in bidistilled water. The gradient elution was carried out
by varying mobile phase (A) from 0 to 10% (0-15 min), from
10 to 30% (15-30 min), followed by isocratic for 15 mins, then
from 30 to 60% (45-60 min), and finally isocratic for 10 min.
The mobile phase was pumped through the column at a flow
rate of 0.8 mLmin~'. Analyses were performed at ambient
temperature and detection wavelength was carried out at 200,
254, 270, 300, and 360 nm. The injection volume was 20 L.
Each extract was run three times in order to validate the
repeatability and linearity.

2.4. QPAR Model Development and Statistical Analysis. The
QPAR model development techniques were based on our
published paper [12] and the workflow was illustrated in
Supplementary Figure 1 (in Supplementary Material available
online at https://doi.org/10.1155/2017/3923865). In brief, data
of chemical fingerprint and immunomodulatory effect of the
72 RA extracts were individually collected. The chemical
fingerprint of each extracts was preprocessed using “The
Fingerprint Analysis Software” developed by the Research
Centre of Modernization of Traditional Chinese Medicine
of the Central South University, Changsha, China. The total
extracts were divided into two sets based on Kennard and
Stones algorithm [26], a training set embracing two-thirds
of the total extracts (48 extracts) for QPAR model building
and a test set consisting of the rest for model validation.
Partial Least Square (PLS) methods were coded and exe-
cuted in MATLAB for building up the QPAR predictive
models.

3. Results

3.1. Scheme of CD80-QPAR Chemometrics Platform Develop-
ment. The workflow of the model development in this study
is presented in Supplementary Figure 1. With the connection
of the known chemical and biological data from RA extracts,
a model was then established. This model was used to predict
the unknown biological activity of any new RA extract by
simply providing the chemical fingerprint of that RA extract.
The details of the data collection, model development and
refinement, and the quantitative assessment are shown in the
following.

3.2. Chemical Data Collection and Preprocessing. It has been
observed that higher amount of potential active ingredients
such as isoflavonoids and astragalosides can be extracted
using reflux system compared with ultrasonication [27].
Therefore, using uniform design technique, the extraction
factors were included reflux time and the solvent volume. By
varying the two factors, a total of 72 extracts from 3 different
batches of RA were prepared for this study. The combination
of the reflux time and the solvent volumes was shown
in Supplementary Table 1. The average extraction yield in
percentage was 37.1 +4.2% of 4 g dry herb. The extracts were
then run through HPLC and the components were showed
as a chromatogram collected by using DAD (Detection
range from 190 to 400 nm). This HPLC-DAD chromatogram
was called chemical fingerprint (Supplementary Figure 2).
Chemical fingerprint preprocessing of each extracts was
essential for baseline correction and peaks alignment before
QPAR data processing. This procedure was carried out by
“The Fingerprint Analysis Software,” as mentioned in the
Method. Supplementary Figure 2 showed the HPLC-DAD
chromatogram of all the RA extracts from the three batches
before and after data preprocessing.

3.3. Similarity Analysis within Different RA Batches. To
examine the variation of individual extracts prepared from
different condition within the same batch, similarity analysis
was employed to compare their chemical fingerprints. A
median chemical fingerprint was computed as a reference
fingerprint from each batch for this similarity analysis and
three of them were shown in Figure 1. Each extract was then
compared with the reference fingerprint of the same batch
and the degree of the similarity was calculated quantitatively
as similarity index or SI (%). The result showed that the
SI value of each extract within the same batch was in the
range of 88.3%-99.0%. The average SI value within extracts
from three batches is 95.8 + 3.0% (RA-A); 96.1 + 2.3% (RA-
B); and 95.8 + 2.1% (RA-C), respectively (Supplementary
Table 2 and Supplementary Figure 3). This result indicated
the low variation of component difference between extracts
from their respective batch. The extracts shared similar chro-
matographic patterns in comparison with their three groups,
although they were obtained under different preparation
conditions including refluxing time and solvent volume.

To compare the similarity between batches, the SI values
of them were also calculated. Low variances were found
between batches; batches B (99.9%) and C (98.8%) have
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FI1GURE 1: The HPLC-DAD chromatographic profiles of each RA extract from batches A, B, and C.

higher similarity on average than batch A (96.5%). This is
not surprising, since batches B and C are from the same
raw material; however, batch A is a stock from another
source. This may explain the slight differences of chemical
composition of batch A from that of batches B and C.

3.4. Biological Data Collection: Immunomodulatory Activity
Represented by the Change of CD80 Expression Level. The
biological activity in this study was the immunomodulatory
effect of the RA extracts on THP-1 cell (Figure 2). It was
showed as the expression level surface marker CD80. THP-
1 is a human acute monocytic leukemia cell line and was
used as a convenient robust dendritic cell (DC) platform
for in vitro DC functionality flow cytometric study [25].
The immunomodulatory effect (relative change of CD80
expression to the blank, %, after standardization) of each RA
extract from three batches on THP-1 cells were showed in
Table 1. Interestingly, using the post hoc, LSD or Bonferroni
analysis the biological activities were differences between
three batches significantly, although similarity analysis indi-
cated the similar chemical composition between batches
(Supplementary Table 3).

3.5. Pivotal Role of Dendritic Cells in Regulation of Tumor-
Specific Immune Responses by the Expression of the Costim-
ulatory Surface Molecule CD80. The aqueous RA extracts

were cocultured with THP-1 cells for 48 hours and the
level of CD80 expression of the cells was detected by FACS
analysis. The geometrical means (G means) of the relative
fluorescence intensity indicated the CD80 expression level,
and the normalized percentage change in CD80 expression
from the treatment of various RA extracts was calculated
by dividing the CD80 expression level of the treated assay
with that of the one treated with double distilled water (DDI)
(Figure 2). Lipopolysaccharide (LPS) was used to treat the
cells as the positive controls. There was no activity found in
the assay treated with DDI (0%), whereas the expression level
of CD80 on THP-1 cells treating with the positive control,
LPS, was upregulated to 51.2%+ 12.8. The ranges of the CD80
expression change in RA-A, RA-B, and RA-C are -14.7 to
+30.7%, —19.3 to +20.6%, and 7.2 to +57.3%, respectively
(Table 1).

Although the similarity analysis indicated the common
pattern of chemical component in 72 RA extracts, the
immunological activities were significantly different among
three batches (Supplementary Table 3). The immunomodu-
latory effect of the RA extracts from batch C was significantly
different from that of batch A (p < 0.001) and batch B
(p = 0). The modulating effect of CD80 expression on THP-
1 cells was also significantly different between batches A and
B. This t-test analysis strongly indicated that the bioactivity
capacities from batch C were significantly higher than that
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FIGURE 2: The immunomodulatory effect (relative percentage change of CD80 expression to the blank, after standardization) of each RA
extract from three batches on THP-1 cell.

TaBLE 1: The immunomodulatory effect (relative change of CD80 expression to the blank, %, after standardization) of each RA extract from
three batches on THP-1 cell.

Batch A Batch B Batch C
Sample Act. activity (%) Sample Act. activity (%) Sample Act. activity (%)
Al +12.70 B1 +1.87 C1 +15.58
A2 +8.33 B2 -2.25 C2 +20.29
A3 +15.48 B3 +2.25 C3 +20.29
A4 +14.68 B4 +17.23 C4 +43.48
A5 +15.08 B5 +8.61 C5 +35.14
A6 +9.52 B6 —-4.87 Cé +26.45
A7 +15.08 B7 +20.60 C7 +22.46
A8 +5.95 B8 =712 C8 +57.25
A9 +7.54 B9 +16.10 C9 +25.36
Al0 0 B10 -112 C10 +25.36
All 0 B11 —4.12 C1 +29.35
Al2 +2.38 B12 -8.24 C12 +2717
Al3 +0.79 B13 -15.36 C13 +27.54
Al4 +2.78 B14 -10.11 Cl4 +19.20
Al5 0 B15 -7.87 C15 +27.17
Al6 +3.57 B16 712 Cl16 +26.81
Al7 -10.32 B17 —-7.49 C17 +21.38
Al8 -8.73 B18 -8.24 C18 +19.20
Al9 -6.35 B19 —4.87 C19 +19.20
A20 —-14.68 B20 -12.36 C20 +19.93
A21 +25.00 B21 -11.75 C21 +1717
A22 +13.86 B22 -1717 C22 +5.12
A23 +30.72 B23 -19.28 C23 +2.41
A24 +6.02 B24 -17.47 C24 -7.23
Avg +6.23 Avg —-4.17 Avg +22.75
$D10.75 $D10.78 SD 12.66
Max +30.72 Max +20.60 Max +57.25

Min —14.68 Min —19.28 Min —7.23
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TABLE 2: The results of the models built by three algorithms (PLS and EN-PLS).
Model # of variables Optimum # of PLS components 5 Iraining set ) Testset
R; RMSET RMSECV Rp RMSEP
PLS 10493 8 0.87 5.95 16.63 0.34 12.70
EN-PLS 309 7 0.93 4.34 6.93 0.55 11.66

R? is correlation coefficient of regression between the predicted and experimental activities of the extracts (t refers to training set and p refers to the test set);
RMSET is the fitting error of the model in the training; RMSECYV is the Root Mean Squared Errors of Cross-Validation; RMSEP is Root Mean Squared Errors
of Prediction of the test set; qz is the cross-validated R* which is calculated by the equation: q2 =1-2Vprea — Yact)z/ S (Yact = Yimean)*-
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FIGURE 3: Plots of predicted versus experimental activity from training set data and test set data on (a) PLS and (b) EN-PLS. Open blue
diamond and the open red triangle represent training set data and the test set data, respectively.

from batch A or batch B. We demonstrated that even the
extracts of the same herb had different effects in modulating
the CD80 expressions. This result indicated the diversity of
the immunological effects as a result of the different chemical
compositions of different extracts of the single herb RA.

3.6. Chemical and Biological Data Postprocessing and QPAR
Model Development Using PLS. As discussed above, the
chemical fingerprints of 72 RA extracts as an original dataset
were described as data points or independent variables for
construction of a model to get the relationship with their
activities. Based on the Kennard and Stones algorithm [26],
this original dataset was split into training set (48 samples,
two-thirds of the total extracts) and external test set (24 sam-
ples, remaining one-third of the total extracts). Developed
models were used to predict the CD80 immunomodulatory
activity based on the chemical fingerprints provided in the
test set. All the modeling analyses were carried out by MAT-
LAB. To determine the degree of homogeneities of chemical
fingerprints in the datasets, principle component analysis
(PCA) was performed within the calculated descriptors space
for all the chemical fingerprints.

Using the whole chromatographic retention time points
as the variables, the first model was built by standard
Partial Least Square (PLS). The PLS yielded a model having
two correlation coeflicients of regression values: Root Mean
Squared Errors of Training (RMSRT) and Root Mean Squared
Errors of Cross-Validation (RMSECV) of Rf = 0.87 and

RMSET = 5.95, respectively (Table 2). The PLS model had
eight components with more than ten thousands variables.

3.7. Chemometric Model Refinement by EN-PLS. Due to the
complexity of the chemical fingerprint with a large number
of variables, further optimization by shrinkage methods
was previously used to constrict the number of these vari-
ables. This optimization step was carried out to select those
variables with high correlation with the biological activity.
A selection method named Elastic Net (EN) was used to
get a better predictive model [28]. To prove the ability of
the model for QPAR study, internal cross-validation and
external validation set (Test set) were applied to verify the
predictability of the model (Supplementary Figure 4).

3.8. Quantitative Assessment of the QPAR Model Stability and
Predictability. The QPAR models (training set) were built
by PLS algorithms and the number of PLS components
was determined by cross-validation. Figure 3 depicts the
correlation regression figures of the experimental versus the
predicted values for the training set data (open blue diamond)
and the test set data (open red triangle) on PLS and EN-PLS
models. From a leave-one-out cross-validation test applied
to the training set, the best model, which gave the minimal
sum value of the squared differences between predicted and
experimental dependent variable, was determined.

The results obtained using PLS and EN-PLS for the
training and the test sets were summarized in Table 3. The
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TABLE 3: The actual CD80 activity (Act.) and the predicted values (Pred.) of the test set predicted by PLS and EN-PLS.

Number Act PLS EN-PLS

Pred. REP PRESS Pred. REP PRESS
1 108.33 100.04 -8.29 68.72 95.66 -12.67 160.53
2 105.95 109.26 3.31 10.96 101.16 -4.79 22.94
3 107.54 121.08 13.54 183.33 150.84 43.30 1874.89
4 100.00 95.54 -4.46 19.89 110.57 10.57 111.72
5 100.79 94.68 -6.11 37.33 97.03 -3.76 14.14
6 89.68 103.86 14.18 201.07 101.68 12.00 144.00
7 91.27 105.41 14.14 199.94 87.64 -3.63 13.18
8 85.32 121.30 35.98 1294.56 103.43 18.11 32797
9 101.87 85.91 —-15.96 254.72 104.86 2.99 8.94
10 102.25 111.26 9.01 81.18 104.34 2.09 4.37
11 108.61 96.89 -11.72 137.36 112.05 3.44 11.83
12 116.10 102.6 -13.50 182.25 107.22 —-8.88 78.85
13 91.76 96.31 4.55 20.70 90.37 -1.39 1.93
14 92.13 99.56 7.43 55.20 100.61 8.48 71.91
15 82.83 82.06 -0.77 0.59 86.56 3.73 13.91
16 82.53 85.69 3.16 9.99 82.04 -0.49 0.24
17 115.58 120.84 5.26 27.67 122.50 6.92 47.89
18 120.29 115.73 -4.56 20.79 125.46 517 26.73
19 135.14 126.63 -8.51 72.42 136.89 1.75 3.06
20 126.45 110.55 -15.90 252.81 121.62 —4.83 23.33
21 122.46 104.37 -18.09 327.25 116.8 -5.66 32.04
22 121.38 129.29 7.91 62.57 113.11 -8.27 68.39
23 119.20 122.39 3.19 10.18 133.17 13.97 195.16
24 102.41 120.91 18.50 342.25 99.67 -2.74 7.51

REP = relative error of prediction = (calculated value-measured value)/measured value.

PRESS = predicted error sum of square for test set = 3 (Ypreq — Y02

performance of the model was firstly evaluated by R? that rep-
resented the correlation coefficient of regression between the
fitted and experimental activities of the extracts in training
set. In order to reflect the predictability power of a model,
other parameters were used to avoid the overoptimistic
error rate estimation and the model overfitting [29]. Both
models demonstrated good fitting between predicted and
experimental values in training set, where R’ value was close
to 0.9. The model built by EN-PLS (Rf = 0.93) has better Rf
value compared with the standard PLS (R} = 0.87). Similarly,
the model built by EN-PLS has better R; value of 0.55 when

compared with the standard PLS (R; = 0.34, Table 2).

3.9. Computational Confirmation of the Predictability of the
QPAR Models. Another quantitative measure of the stability
and predictability of the PLS versus the EN-PLS was by
comparing the RMSET and the RMSECYV for the training
set. The results showed that the EN-PLS model obtained the
lowest values of RMSET and RMSECV of 4.34 and 6.93,
respectively, in comparison to 5.95 and 16.63 for the standard
PLS methodology (Table 2). For the test set of 24 samples,
EN-PLS also generated a lower value of Root Mean Squared
Errors of Prediction (RMSEP) of 11.66 in comparison with

12.70 when using the PLS (Table 2). In summary, PLS based
on the Elastic Net variable selection method increased the
biological predictive capability with lower value of RMSEP
(11.66) and higher values of RIZ) (0.55) when compared to the
models developed by the standard PLS.

To provide further evidence that higher amount of
predicted bioactive chemicals may induce corresponding
biological CD80 expression, we first selected 13 regions from
the chromatogram through detailed analyzed correlation
coefhicients of the PLS and EN-PLS models (Table 4). Six
regions selected from the high positive correlation coeffi-
cients category, five regions from the high negative corre-
lation coefficient category, and two regions from the zero
correlation coefficient category have been selected. Based on
the averaged chemical fingerprint of all 72 RA preparations,
we increased the spectrophotometric intensities of each of
these 13 selected regions (representing the amount of the
specific compounds) by 50%, 100%, and 200% while keeping
all other regions of the chromatogram unchanged, and the
overall CD80 prediction was recalculated. Importantly, the
results show that our model is able to predict correctly for
both PLS and EN-PLS chemometrics approaches. All regions
yielded a dose-response increase, decrease, or zero change in
output according to their coefficient values. Furthermore, we
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TaBLE 4: The changes of CD80 expression related to % changes of chromatogram regions with different correlation coefficients.
Colirelation cqefﬁcient geperated % changes in CD80 expression when chromatogram region intensity (quantity of
y the prediction algorithm . .

Chromatogram based on corresponding compound) was increased by 50, 100, or 200%
region

8 PLS EN-PLS PLS - EN-PLS -

50% increase 100% increase increase 50% increase 100% increase increase

1 8.08 12.76 0.42 0.83 2.91 0.38 0.76 2.66
2 -10.59 -10.92 -0.98 -1.95 -3.90 -0.50 -1.01 -2.01
3 11.85 33.57 18.47 36.93 73.87 3175 63.51 127.02
4 -9.07 -93.96 -1.19 -2.38 —4.76 —-6.93 -13.86 =2772
5 -10.29 -9.32 -0.14 -0.27 0.54 -0.06 -0.12 -0.25
6 9.07 30.64 0.14 0.28 0.56 0.23 0.47 0.93
7 -12.66 -55.19 -1.41 -2.82 —-5.64 -3.30 -6.59 -13.18
8 -13.81 -56.59 -6.53 -13.05 -26.10 -14.00 —-28.00 -56.00
9 10.63 41.34 0.62 1.25 2.50 1.34 2.68 5.36
10 12.19 48.64 0.15 0.31 0.61 0.34 0.68 1.37
11 -10.78 -30.46 -0.17 -0.35 -0.70 -0.24 -0.48 -0.95
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0

observed that, for one particular positive coefficient region,
a 2-fold peak increase was related to a corresponding 127%
CD80 expression increase. These calculations of changes of
CD80 expression in relation to hypothetical modification of
selected regions from the averaged chromatogram showed
that higher amounts of bioactive chemicals induce stronger
immune response.

4. Discussion

DCs play an important role in the regulation of tumor-
specific immune responses [30]. However, cancer-associated
microenvironment may adversely affect DC-related immune-
surveillance system leading to defective DCs, which fail to
upregulate important costimulatory surface molecule, CD80,
and consequently ensue tumor escape and tolerogenicity [22,
23, 31]. According to the State Pharmacopoeia Commission
of China, RA has been traditionally used in China to enhance
human body's general well being. This effect on modulating
the CD80 expression on THP-1 cells has been shown by our
group [32].

In this study, we ultimately aimed to develop a predictive
model of bioactivity for RA. Based on the CD80-QPAR
approach, a model was built in association with the chemical
compositions of the nonfractionated RA extract as repre-
sented by the fingerprint and the corresponding biological
activity of CD80 expression modulation.

In our previous work, we used Target Projection (TP) to
explore the bioactive components from a synthetic mixture
system [33]. TP is good at eliminating “orthogonal variation”
from inactive or weak bioactive components [34]. TP could
reduce the QPAR model to a single component model based
on an assumption if the total bioactivity is approximately
additive in the bioactive molecular components.

However, if the total bioactivity of a whole extract is
contributed also by interactions between molecules, that
is, synergistic or antagonistic activities, it implies that the
approach of reduction to a single predictive target component
is no longer feasible. This study examining CD80 bioactivity
of the RA extracts therefore adopted the PLS based on the
Elastic Net variable selection method and considered that
the overall sample bioactivities derived from the diverse
chemical compositions of RA were contributed by each of
the individual compounds as well as the multiple interactions
between different compounds.

The EN model represents a useful grouping effect for
model fitting and feature extraction, which selects those vari-
ables that have strong correlation with the bioactivity [28]. A
regression model may exhibit the grouping effect when the
regression coeflicients of the highly correlated variables tend
to be equal. In other words, the highly correlated variables will
be selected. The performance and the predictability power of
the EN-PLS were found to be superior to the conventional
PLS methodology.

This study not only demonstrated the model’s accurate
predictability with the chromatogram alone of any new RA
chemical preparations as input, it also facilitates greatly future
drug discovery aiming to identify each of those components
that contribute to these related CD80 expression modifica-
tions. In addition, future development of this CD80-QPAR
platform should extend to the identification of those chemical
compounds that presents in its native form to the metabolic
derivatives [35]. Furthermore, this study sheds light on future
laboratory studies on critical arenas of the synergistic [36]
or antagonistic [37] effects in herbal mixtures and also the
bioavailability and site-specificity issues [38, 39].

This study provides a clear illustration that AR may
upregulate or downregulate the CD80 surface expression
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of DC depending on different ways of preparations of RA,
distinct compartments of the AR plant (batch B of outer part
of RA versus batch C representing the inner core part of
the RA), and different batches of RA purchased at different
times. Our laboratory has previously shown that blood
dendritic cells from patients with myeloma are numerically
normal but functionally defective as they fail to upregulate
CD80 (B7-1) expression after huCD40LT stimulation. This
DC dysfunctionality is due to the high levels of inhibitory
transforming growth factor- 51 and interleukin-10 in plasma
[22, 23]. It is therefore important to understand that some
RA preparations may have the desirable CD80 enhancement
effect for cancer patients, whereas for autoimmunity patients
RA preparations that have the biological effects of CD80
reduction are useful.

Other than the ability to affect the dendritic cells, the
triterpene saponins extracted from RA have previously been
shown to upregulate and activate T cells as shown by
increased IL-2 production [40]. Some aqueous fractions of
RA have shown to enhance allogenic T cell activity as shown
by increased graft-versus-host reaction [41]. Furthermore,
polysaccharides extracted from RA have shown to affect
mouse B cells and macrophages but not the T cells [42].
Therefore, in future more bioactivity platforms of these key
mechanisms of action of RA are required to have a more
complete understanding of important compounds that are
related to the overall immunomodulatory effects of RA.

5. Conclusions

In this CD80-QPAR study on a commonly used herb
RA, we successfully explored and exploited the relationship
between the chemical and biological fingerprints to establish
a chemometric predictive model. Comparison between the
statistical results, those obtained by Elastic Net variable
selection method of Partial Least Square Method (EN-PLS),
indicates the highest accuracy of QPAR study in describing
the immunomodulatory activity of the ingredients from a
commonly used food supplement of RA. PLS based on the
Elastic Net variable selection method increased the biological
predictive capability with lower value of RMSEP (11.66) and
higher values of R; (0.55) when compared to the models
developed by the standard PLS. The standard PLS approach
can predict the CD80 bioactivity for unknown sample with an
average of 10.05% difference; while the EN-PLS can predict
the CD80 bioactivity with an average within only 7.59%
difference, thus when using the EN selection method, there
is a 25% improvement in the prediction capability.

With this CD80-QPAR platform, many herbal medicines
in their entire crude extract without the need of tedious and
time consuming immunomodulation bioactivity-guide frac-
tionation can be screened for their bioactivities in moderating
the CD80 expression using this robust THP-1 dendritic cell
bioactivity platform. This study may bring novel insights into
herbal vaccination-adjuvants preparation and may lead to
correcting the defective dendritic cell CD80 costimulatory
capacity. This paper also highlights the importance of how
information technology may help the quality control process

of the multiple components of the complex mixtures such as
food supplements and herbal medicines for consistent batch-
to-batch clinical usage in health and disease.
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