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Binaural blood flow control by astrocytes: listening
to synapses and the vasculature
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Abstract Astrocytes are the most common glial cells in the brain with fine processes and end-
feet that intimately contact both neuronal synapses and the cerebral vasculature. They play an
important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+-dependent
signalling pathways such as K+ release through BK channels, and the production and release of
arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral
vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in
maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in
blood vessel-to-neuron signalling as posited by the ‘hemo-neural hypothesis’. Thus, astrocytes
are emerging as new stars in preserving the intricate balance between the high energy demand of
active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting
blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become
reactive and many of their key signalling mechanisms are altered, including those involved in NVC.
Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might
exert previously unknown effects on the central nervous system by altering astrocyte function.

Anusha Mishra started her research career in Kristen Harris’s lab at the Medical College of Georgia, studying electron micrographs
of the brain. She then did her PhD with Eric Newman at the University of Minnesota where she investigated changes in retinal
neurovascular coupling in pathology and discovered a drug that reverses the loss of this response in diabetic animals. She is
currently doing her postdoctoral training in David Attwell’s lab at University College London, where she has been studying
capillary level neurovascular coupling in health and disease and the role of astrocytes in mediating this response.
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This review discusses the role of astrocytes in neurovascular signalling in both physiology and
pathology, and the impact of these findings on understanding BOLD-fMRI signals.
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Abstract figure legend Putative signalling pathways between neurons, astrocytes and the vasculature.

Abbreviations AA, arachidonic acid; AD, Alzheimer’s disease; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; ATP, adenosine triphosphate; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic
acid tetrakis(acetoxymethyl ester); BOLD fMRI, blood oxygenation level-dependent functional magnetic resonance
imaging; COX, cyclooxygenase; CNS, central nervous system; CYP, cytochrome P450; EETs, epoxyeicosatrienoic acids;
fNIRS, functional near-infrared spectroscopy; GABA,γ-aminobutyric acid; GECI, genetically encoded calcium indicator;
20-HETE, hydroxyeicosatetraenoic acid; mGluR, metabotropic glutamate receptor; NMDA, N-methyl-D-aspartate; NO,
nitric oxide; NOS, nitric oxide synthase; NVC, neurovascular coupling; PET, positron emission tomography; PGE2,
prostaglandin E2; RNA, ribonucleic acid; TRP, transient receptor potential; VSMC, vascular smooth muscle cell.

Introduction

Astrocytes are a major type of glial cell in the central
nervous system (CNS). They uniformly tile the entire
nervous system and occupy distinct minimally over-
lapping territories in the neuropil, referred to as
astrocyte domains. These domains encompass thousands
of synapses from many neurons (Bushong et al. 2002;
Ogata & Kosaka, 2002; Bushong et al. 2004), suggesting
that each astrocyte can sense the activity of a large number
of neurons. Furthermore, these cells are coupled by gap
junctions that allow direct cell-to-cell communication
(Theis & Giaume, 2012), forming the astrocyte syncytium
(Kirchhoff et al. 2001). This syncytium increases the
spatial buffering capacity for K+ to help regulate neuronal
excitability (Kofuji & Newman, 2004). It may also allow
astrocytes to convey glucose from blood vessels to neurons
(Rouach et al. 2008), and to integrate information over
large areas or act as a diffuse conduit to pass information
to distant neurons (Araque et al. 2014) and, perhaps, to
the vasculature to control cerebral blood flow.

Astrocytes have historically thought to be passive
housekeeping cells, but research over the last few decades
has revealed their multifaceted role in the development
and maintenance of a healthy brain. They are necessary for
synapse formation and maturation during development,
a function likely to be carried over into adulthood,
particularly in the context of learning, and of repair after
injury (Pfrieger & Barres, 1997; Ullian et al. 2001). They
respond to neuronal activity by releasing gliotransmitters
such as glutamate, ATP and D-serine to modulate synaptic
properties (Parpura et al. 1994; Henneberger et al. 2010;
Panatier et al. 2011; Araque et al. 2014), although
the mechanism underlying this release remains highly
controversial (Hamilton & Attwell, 2010; Bazargani &
Attwell, 2016). They maintain the temporal and spatial
precision of synaptic transmission by taking up excess
neurotransmitters (Barbour et al. 1988; Chatton et al.
2003) and buffering K+ from the extracellular space

(Newman et al. 1984). It is also becoming increasingly clear
that astrocytes contribute significantly to the regulation of,
and may even respond to changes in, cerebral blood flow
(Moore & Cao, 2008; Attwell et al. 2010).

Cerebral blood flow

The brain has a very high energy demand compared to
the rest of the body – although it comprises only 2%
of the body weight, it commands 20% of the body’s resting
state energy usage (Kety, 1957; Sokoloff, 1960; Attwell
& Laughlin, 2001; Harris et al. 2012). This high energy
demand is supplied by an extensive cerebral vasculature.
Large pial arteries, covered by multiple layers of vascular
smooth muscle cells (VSMCs), lie on the surface of the
cortex and branch into penetrating arterioles, ensheathed
by a single layer of VSMCs, which enter the cortical
parenchyma. These parenchymal arterioles further branch
into the capillary network and are drained by ascending
venules into the pial veins (Blinder et al. 2013).

To ensure sufficient supplies of oxygen and nutrients
to the brain in the face of varying systemic blood
pressure, cerebral blood flow is tightly controlled via a
process termed autoregulation (Tzeng & Ainslie, 2014).
Despite this regulatory mechanism, and due to a lack of
major energy stores in the brain (besides some glycogen
granules: Holmes & Holmes, 1926), increases in neuro-
nal activity demand a further increase in energy supply,
which is delivered by a corresponding increase in local
blood flow. This coupling between neuronal activity and
cerebral blood flow, termed functional hyperaemia or
neurovascular coupling (NVC), was first described by
Mosso in 1880, and further characterised by Roy and
Sherrington a decade later (1890). NVC has now come to
be accepted as a fundamental aspect of brain function and
many non-invasive brain imaging techniques used in both
clinical and research settings, such as blood oxygenation
level dependent functional magnetic resonance imaging
(BOLD fMRI), functional near-infrared spectroscopy
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(fNIRS) and some forms of positron emission tomography
(PET), exploit these changes in blood flow as a
proxy measure of neuronal activity. Although the
significance of neurovascular coupling for healthy brain
function is widely accepted, the cellular mechanisms
underlying this phenomenon have not yet been fully
characterised.

Mechanisms of neurovascular signalling

Much of the initial efforts in NVC research focused on
defining direct signalling from neurons to VSMCs. In
many brain regions, glutamatergic activation of principal
neurons results in the downstream production and release
of nitric oxide (NO) and prostaglandins, vasoactive sub-
stances that can induce arteriole dilation (Meng et al.
1995a,b; Yang et al. 2000; Lacroix et al. 2015). The intra-
cortical vasculature is also innervated by nerve terminals
from subcortical regions that can release vasoactive neuro-
transmitters such as acetylcholine, serotonin, dopamine
and noradrenaline (Krimer et al. 1998; Hamel, 2004,
2006). Adding another layer of complexity, pial arteries
also receive nerve terminals from the peripheral nervous
system which can release agents to dilate or constrict them
(Hamel, 2006). However, this vascular innervation from
subcortical and peripheral axons is distributed widely
throughout the brain and pial vasculature, respectively,
suggesting that this level of regulation will change vascular
tone over large regions rather than mediate local NVC. A
subset of subcortical neuronal inputs may also activate
local interneurons as intermediaries in signalling to the
vasculature (Cauli et al. 2004). Physiological activation
of a cortical region would also activate the interneurons
therein, and signalling through these interneurons may be
one possible mechanism by which local NVC control can
be gained. Indeed, interneurons are the primary neurons
that express neuronal nitric oxide synthase (NOS) in the
brain (Cauli et al. 2004; Jaglin et al. 2012). However,
the contribution of interneurons to activity-evoked NVC
is not completely understood and both dilatory and
constrictory effects have been reported (Hamel, 2006).
A detailed report of the neurogenic signals involved in
regulating the cerebrovasculature can be found elsewhere
(Hamel, 2006; Attwell et al. 2010; Cauli & Hamel,
2010). This review will focus instead on the regulation
of cerebral blood flow by astrocyte-mediated signalling
mechanisms.

The role of astrocytes in mediating NVC

Numerous studies in the last few decades have suggested
a role for astrocytes in regulating cerebral blood flow.
Astrocytes are characterised by a dense cloud of fine
processes (Bushong et al. 2004) which contact hundreds
of synapses (Ventura & Harris, 1999), while specialised

astrocyte processes called endfeet enwrap the vascular
network in the brain parenchyma (Simard et al. 2003;
Mathiisen et al. 2010), making them ideally positioned
to mediate NVC (Fig. 1). Based on observations of the
astrocyte morphology, Ramón y Cajal speculated, as
early as 1895, that they might regulate vascular diameter
(Ramón y Cajal, 1895). More than a hundred years later,
we now know that astrocytes can indeed respond to neuro-
nal activity with rises in intracellular Ca2+ concentration
(Cornell-Bell et al. 1990; Zonta et al. 2003; Hirase et al.
2004; Nimmerjahn et al. 2009) and, in turn, release various
gliotransmitters (Parpura et al. 1994; Parri et al. 2001;
Henneberger et al. 2010; Panatier et al. 2011; reviewed
in Araque et al. 2014) and other factors into the micro-
environment, some of which lead to the alteration of
vascular tone.

One of the first hypotheses regarding astrocyte control
of vascular diameter came from Paulson and Newman
in 1987 (Paulson & Newman, 1987). Neuronal activity
results in an increase in extracellular [K+] ([K+]e), which
is taken up by astrocytes to buffer [K+]e and thus regulate
the excitability of nearby neurons. It was proposed that
glial cells might release this K+ in a directed manner via
their endfeet processes, which are enriched in K+ channels,
thus raising the [K+]e around the vessels and resulting in
VSMC hyperpolarisation (via the unusual dependence of
VSMC inward rectifier K+ channels on [K+]e; Longden &
Nelson, 2015) and thus dilation of blood vessels (Paulson
& Newman, 1987). This K+ siphoning hypothesis was
later disproved by experiments showing that mice lacking
in Kir 4.1 channels, the primary K+ channels on glial
endfeet around vessels, did not affect NVC (Metea
et al. 2007). However, an alternative mechanism of
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Figure 1. Astrocyte endfeet processes enwrap blood vessels in
the central nervous system
Inner surface of a whole mount retina (A) and a cortical slice (B)
immunolabelled for glial fibrillary acidic protein (in green) showing
astrocytes with their endfeet around blood vessels. Stars indicate
astrocyte somata, arrowheads point to endfeet surrounding large
vessels, arrows point to endfeet surrounding capillaries. The cortical
section is also stained with DAPI (blue) for nuclei and isolectin B4

(red) for the vascular basement membrane. Scale bars = 10 µm.
(Image by A. Mishra and Y. Chen.)
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NVC dependent on K+ release from astrocytes was
brought forward by Nelson and colleagues (Filosa et al.
2006). Neuronal activity leads to a rise in astrocyte
[Ca2+]i, which, in turn, can activate large conductance
Ca2+-activated K+ (BK) channels on astrocyte endfeet,
leading to an efflux of K+ onto the vasculature. This rise
in [K+]e results in smooth muscle hyperpolarisation and
dilation of arterioles (Filosa et al. 2006).

A separate mechanism of astrocyte-mediated NVC
was proposed in 1998, which depends on the synthesis
and release of vasoactive agents from astrocytes (Harder
et al. 1998). Astrocytes can metabolise membrane
phospholipids to produce arachidonic acid (AA)
(Stella et al. 1994), which can be used to synthesise
vasodilatory substances such as prostaglandins and
epoxyeicosatrienoic acids (EETs) within astrocytes
(Amruthesh et al. 1993; Alkayed et al. 1996b), or it can
be released onto VSMCs where it can be metabolised
to the vasoconstrictor 20-hydroxyeicosatetraenoic acid
(20-HETE) (Gebremedhin et al. 2000; Roman, 2002).
Furthermore, altering the AA metabolism pathway
was shown to reduce functional hyperaemia in vivo
(Alkayed et al. 1996a). It was thus suggested that neuronal
activation may lead to the release of astrocyte-derived AA
metabolites to mediate NVC.

Evidence soon emerged from in vitro slice experiments
that neuronal stimulation-evoked vasodilation of
cortical arterioles was dependent on prostaglandin
E2 production and associated with rises in astrocyte
[Ca2+]i (Zonta et al. 2003). In hippocampal slices, direct
activation of astrocytes, by Ca2+ uncaging or activation of
metabotropic glutamate receptors (mGluRs), was shown
to evoke 20-HETE-dependent arteriole vasoconstriction
(Mulligan & Macvicar, 2004). Interestingly, in the retina,
light-evoked neuronal activation led to both dilation
(by EETs) and constriction (by 20-HETE) of retinal
arterioles in a manner dependent on glial activation
(Metea & Newman, 2006). Around the same time, an
in vivo study reported that cortical arterioles dilate in
response to both neuronal and glial activation in a
prostaglandin-dependent manner (Takano et al. 2006).
Furthermore, spontaneous glial Ca2+ waves in the retina
were also observed to evoke vasoconstriction when they
propagated across an arteriole (Kurth-Nelson et al. 2009),
although the molecular mechanism for this is as yet
unknown.

The fact that glial activation evoked dilations in
some studies but constrictions in others opened up the
possibility of bidirectional control of the vasculature
by astrocytes and raised new questions regarding the
conditions that define the polarity of the neurovascular
response. These studies also suggested possible regional
differences in the molecular signals mediating NVC, for
example EETs might mediate dilation in the retina but
prostaglandin E2 might be the predominant dilating agent

in the brain (Attwell et al. 2010; Macvicar & Newman,
2015). More recent studies, however, have also found a
role for glial-derived PGE2 in mediating retinal arteriole
dilation (Mishra & Newman, 2010) and EETs in mediating
cortical arteriole dilation (Peng et al. 2002, 2004; Lecrux
et al. 2011; Liu et al. 2011).

To further establish the role of astrocytes in NVC,
some researchers have also used models of glial ablation.
In one such study, increases in cerebral blood flow
produced by basal forebrain stimulation were reduced by
�50% when the gliotoxins fluorocitrate and fluoroacetate
(Paulsen et al. 1987) were used to damage astrocytes in
the cortex (Lecrux et al. 2011). Based on pharmacology,
the authors concluded that basal forebrain stimulation
evokes the release of EETs onto blood vessels by activating
astrocytes (Lecrux et al. 2011). Another study found
that ablation of glial cells with L-2-aminoadipic acid,
another potent gliotoxin (Huck et al. 1984), significantly
reduced light-evoked retinal blood flow without altering
electroretinograms in the cat retina in vivo (Song et al.
2015). Although these studies support the idea of
astrocyte-mediated NVC, they should be interpreted with
caution as ablation of glial cells will also undoubtedly
have some indirect effects on neurons due to changes
in homeostatic mechanisms such as glutamate–glutamine
cycling (Hassel et al. 1992), K+ buffering (Lian & Stringer,
2004a,b) and extracellular pH regulation (Stringer & Aribi,
2003). These neuronal effects, however, are likely to be
minimal or only present at high doses (Paulsen et al.
1987; Virgili et al. 1991; Hassel et al. 1992), which is
also demonstrated by the maintenance of the electro-
retinogram in the study by Song et al. (2015).

Taken together, these findings have established
astrocytes as being important players in regulating
cerebrovascular blood flow (Fig. 2) and lent credence to
the concept of neuro-glio-vascular coupling, as originally
posited by Cohen et al. (1997). However, they also raise
a number of new questions. (i) How is the polarity of
the astrocyte-mediated NVC determined? (ii) How is the
balance between dilation vs. constriction regulated to
achieve the desired response? (iii) What is the relative
contribution of BK channels vs. AA metabolites to
astrocyte-mediated NVC? (iv) What is the precise role of
astrocyte [Ca2+]i? (v) What is the relative contribution of
neurons vs astrocytes in the haemodynamic response?

Additionally, it is worth noting that although functional
hyperaemia has been traditionally thought to be mediated
exclusively at the arteriole level, evidence now suggests that
pericyte-mediated dilation of capillaries also contributes
to this response (Peppiatt et al. 2006; Hall et al. 2014;
Kornfield & Newman, 2014). Given the large relative
resistance of capillaries in the vascular network in vivo
(Blinder et al. 2013), they may contribute significantly
to neurovascular coupling at the local level compared to
arterioles alone (Hall et al. 2014). The contribution of
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astrocytes to capillary blood flow regulation has yet to be
explored in more detail.

Bidirectional control of blood vessel diameter
by astrocytes

Why brain activity should sometimes result in vaso-
constriction as observed by several groups (Zonta et al.
2003; Mulligan & Macvicar, 2004; Metea & Newman,
2006), conceivably producing a reduction in energy
supply, became a point of contention in the field.
Some of these findings might be due to the variables
of slice work. In the retina, light-evoked dilation of

retinal arterioles was enhanced and constriction was
suppressed when the NO concentration in the tissue
was lowered (Metea & Newman, 2006). This seems
counterintuitive at first because NO is an established
vasodilating agent, having been initially identified as the
endothelium-derived relaxing factor (Palmer et al. 1987).
However, it can be explained when the effect of NO on AA
metabolism is considered. The enzymes that metabolise
AA (epoxygenases which produce EETs, cyclooxygenases
which produce prostaglandins and ω-hydroxylases which
produce 20-HETE) are susceptible to modulation by NO
(Roman, 2002; Attwell et al. 2010). It is possible that
damage caused during dissection induces an increase in
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Figure 2. Pathways mediating NVC
Neuronal activity results in synaptic release of glutamate, activating both postsynaptic neurons and astrocytes.
Neuronal messengers such as NO and PGE2 may directly dilate cerebral arterioles. Activation of astrocytes results
in a cascade of several signalling pathways. Ca2+-dependent activation of BK channels can release K+ to dilate
vessels. Ca2+ can also activate phospholipase A2, leading to the synthesis and release of AA metabolites such as
EETs and PGE2 to dilate vessels (both arterioles via VSMCs, and capillaries via pericytes). AA can also be released from
astrocytes onto vascular smooth muscle cells, where it can be metabolised to the vasoconstrictor 20-HETE. Release
of ATP from astrocytes can directly cause constriction of the vessels, or it can be metabolised by ectonucleotidases
to raise the level of adenosine, a vasodilator. A dilation evoked at the capillary level may propagate to upstream
arterioles via gap junctions between endothelial cells (dashed arrows). Some of the astrocyte-generated vasoactive
factors (e.g. ATP and PGE2) may contribute to the maintenance of basal tone, whereas others (EETs, PGE2, 20-HETE,
K+ efflux from BK channels) are involved in activity-evoked changes in vascular diameter, which lead to increases
in blood flow to bring O2 and glucose to supply the energy demand of active neurons. (Image by A. Mishra.)

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



1890 A. Mishra J Physiol 595.6

the activity of nitric oxide synthases (NOS) in the retina,
resulting in abnormal NO levels and altering the relative
balance of AA metabolites produced.

Furthermore, these aforementioned studies were
conducted in 95% O2-bubbled perfusate, a widely
accepted practice in neuroscience, which results in the
abnormally high tissue [O2] of > 500 mmHg (Mishra et al.
2011) compared to physiological measurements ranging
between �15–20 mmHg in the cortex (Metzger et al.
1971), 12.7–64.4 mmHg in the cerebellum (Offenhauser
et al. 2005) and �5–40 mmHg in the retina (Cringle
& Yu, 2010). When slices are exposed to 20% O2,
tissue [O2] ranges between 10–20 mmHg at depths
of 50–90 μm in the hippocampus (Gordon et al.
2008) and 30–60 mmHg in the retina (Mishra et al.
2011), approximating physiological concentrations. When
neurovascular coupling experiments were repeated under
these conditions mimicking physiological [O2], astrocyte
stimulation led to dilation of hippocampal arterioles
(Gordon et al. 2008) while also inducing an increase
in glycolytic metabolism and raising the concentration
of lactate in the tissue. Lactate inhibits the PGE2 trans-
porter (Chan et al. 2002) and thus raises the extracellular
PGE2 concentration, leading to dilations (Gordon et al.
2008). On the other hand, O2 is also a strong modulator
of haem enzymes (see Attwell et al. 2010 for review)
and when experiments were conducted in 20% O2,
20-HETE-mediated constrictions were suppressed and a
prostaglandin-mediated dilation component was revealed
in the retina (Mishra et al. 2011). This is probably
because of the different O2 affinities of the enzymes
synthesising 20-HETE and prostaglandins (Attwell et al.
2010). Thus, it appears that O2 can modulate NVC by
changing the metabolic state of the tissue and altering
the AA metabolites synthesised. However, high levels
of inspired O2 in vivo did not alter the neurovascular
response in either the retina (Mishra et al. 2011) or
the cortex (Lindauer et al. 2010), perhaps because auto-
regulatory mechanisms constrict the vasculature and
reduce cerebral blood flow upon exposure to high [O2]
in order to maintain tissue PO2 within the physiological
range despite high arterial PO2 (Torbati et al. 1978; Omae
et al. 1998; Floyd et al. 2003; Lu et al. 2009; Mishra et al.
2011).

Given these effects of NO and O2 on NVC, it is
noteworthy that the NOS enzymes themselves are also
sensitive to [O2] (Stuehr et al. 2004) and that NO can
act as either a mediator (in the cerebellum: Akgören
et al. 1996; Yang et al. 2000) or a modulator of NVC
(in the cortex: Lindauer et al. 1999), depending on the
brain region being studied. We must also consider the
possibility that other factors that are altered in slice
preparations bathed with artificial cerebrospinal fluid,
such as glucose and other metabolic products (Yamanishi
et al. 2006; Puro, 2007), may also alter NVC. Even

more importantly, vessels in brain slices completely lack
perfusion pressure and physiological tone. A few studies
have overcome this limitation by artificially perfusing
the vasculature in slices via cannulation (Lovick et al.
2005; Kim & Filosa, 2012); however, due to the difficult
nature of this technique, it is not widely practiced.
Thus, although slice experiments are a necessity for
the ease of carrying out pharmacological experiments
and observing active dilation of the vasculature (as
opposed to passive dilation resulting from an upstream
increase in blood flow), the pitfalls and confounds of in
vitro experiments should be taken into account in data
interpretation.

Bidirectional modulation of NVC may also be
explained, in part, by the extracellular [K+] that the
vascular smooth muscle cells are exposed to. Although
moderate increases in [K+]e induces VSMC hyper-
polarisation and thus dilation (Filosa et al. 2006),
concentrations above 20 mM can result in VSMC
depolarisation and constriction of cerebral arterioles
(Knot et al. 1996; Horiuchi et al. 2002), which is expected
from the [K+]e dependence of the current that flows
through VSMC inwardly rectifying K+ channels (Farr &
David, 2011; Longden & Nelson, 2015). Following neuro-
nal stimulation or astrocyte Ca2+ uncaging, moderate
increases in astrocyte [Ca2+]i correlate with dilation but
large increases correlate with vasoconstriction (Girouard
et al. 2010), suggesting that the magnitude of the
astrocyte [Ca2+]i signal may determine the polarity of
vasomotor response, possibly by altering [K+] in the
extracellular space surrounding the vessels. It has also
been suggested that vasoconstriction might be physio-
logically relevant in certain instances in vivo, whereby
increases in blood flow to active brain regions may be
assisted by the active constriction of blood vessels in the
surround or the contralateral hemisphere, a hypothesis
further supported by the observation of negative BOLD
signals in the periphery of activated regions (Devor et al.
2007).

The controversies surrounding the role of astrocytes
in NVC

Astrocyte-mediated mechanisms of NVC are believed to
be dependent on astrocyte Ca2+ signalling. Activation of
neurons results in the synaptic release of neurotransmitters
such as glutamate which, in addition to acting on post-
synaptic receptors, can also activate astrocytic group I
metabotropic glutamate receptors (mGluR1 and mGluR5),
leading to inositol trisphosphate (IP3)-dependent Ca2+
release from internal stores (Panatier & Robitaille,
2015). Until recently, this was thought to be the main
neuron-to-astrocyte signalling mechanism responsible for
the downstream release of vasoactive agents. However,
recent studies have questioned this conclusion. Whisker
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stimulation-evoked haemodynamic responses were found
to be independent of mGluR5 activation (Calcinaghi
et al. 2011), a finding supported by the lack of group I
mGluR expression in adult astrocytes (Sun et al. 2013).
Furthermore, mice lacking IP3R2, the predominant IP3

receptor in astrocytes, were shown to have normal NVC
(Takata et al. 2013; Bonder & McCarthy, 2014) and fMRI
responses (Jego et al. 2014), challenging the idea that
astrocytes are required for NVC. There is also controversy
regarding whether astrocyte Ca2+ signals, when they do
occur, are fast enough (Nizar et al. 2013) or reliable
enough (Winship et al. 2007) to generate functional
hyperaemia.

However, it is important to consider the possibility
that astrocyte Ca2+ signals important for neurovascular
signalling might be mediated by pathways other than
mGluR-mediated IP3 release, or may not have been
detected using traditional methods of imaging using bulk
loading of Ca2+ indicator dyes. In addition, most previous
reports investigated [Ca2+]i changes within astrocyte cell
bodies alone, but the signals that are important for neuro-
glial communication and NVC probably occur in their fine
processes near synapses and/or endfeet. Indeed, astrocyte
fine processes display Ca2+ transients and localised
process-wide Ca2+ waves that are not always reflected by
soma measurements (Di Castro et al. 2011; Panatier et al.
2011; Shigetomi et al. 2013a) and are poorly detected by
bulk loaded indicators (Reeves et al. 2011). Observations
made in vivo have achieved some degree of success in
demonstrating stimulation-evoked rapid [Ca2+]i rises in
astrocyte cell bodies and endfeet in the somatosensory
cortex (Lind et al. 2013). The development of genetically
encoded calcium indicators (GECIs) such as GCaMP has
further aided the detection of these astrocyte Ca2+ signals.
Using astrocyte specific expression of GCaMP6f, it was
recently shown that although large Ca2+ fluctuations
in astrocyte soma are absent in the IP3R2 knockout
mouse, Ca2+ transients in astrocyte processes are still
present (Srinivasan et al. 2015), indicating that alternative
mechanisms that raise astrocyte [Ca2+]i must exist.
Similarly, using GCaMP3 expression, Otsu et al. (2015)
also detected the presence of mGluR-independent [Ca2+]
signals in astrocyte processes in the olfactory bulb of adult
mice and found them to precede neuronally evoked vessel
dilation (Otsu et al. 2015). In contrast, another study
using GCaMP6f found that neuronal stimulation-evoked
arteriole dilations were preceded by a [Ca2+]i rise in
astrocyte processes only when the stimulation was above
a certain threshold (Institoris et al. 2015), implying that
NVC may be mediated by astrocytes in conditions of
high activity but is generated perhaps by neurons directly
following mild activation. It has also been proposed that
the initiation and maintenance of the NVC response
might be mediated differentially, whereby neuronal or
Ca2+-independent astrocyte signalling pathways may

initiate vascular dilation and Ca2+-dependent astrocyte
signalling component may be important only in the
maintenance phase of the response (Martindale et al.
2005; Calcinaghi et al. 2011; Rosenegger & Gordon,
2015). A computational model of neuro-glio-vascular
coupling also suggested an astrocytic contribution only
during high levels of neuronal activity (Blanchard et al.
2016), supporting this hypothesis. However, this study
only included astrocytic neurotransmitter uptake in their
model. Incorporating astrocytic mechanisms involved in
NVC such as K+ buffering and AA production/release
into such models may offer more significant insights into
this process.

In addition, astrocyte [Ca2+]i signalling can be driven
by other mechanisms that do not require a dependence
on IP3, including AMPA receptors (Seifert & Steinhauser,
1995), NMDA receptors (Lalo et al. 2006), purinergic
receptors (Lalo et al. 2008), TRPA1 channels (Shigetomi
et al. 2013b), Na+–Ca2+ exchangers and ryanodine
receptors (Kirischuk et al. 1997). These mechanisms
should be considered as possible alternatives when
investigating neuroglial communication. In particular,
ATP has long been known to raise astrocyte [Ca2+]i

(Fellin et al. 2006; Newman, 2006) and is often used as a
positive control in experiments studying astrocyte [Ca2+]i

(Sun et al. 2013; Otsu et al. 2015). Glial Ca2+ waves are
primarily propagated by ATP release from glial cells acting
on purinoceptors on neighbouring cells (Newman, 2001;
Bowser & Khakh, 2007), and ATP also plays a role in
direct neuroglial communication, as demonstrated in the
retina (Newman, 2006), cerebellum (Piet & Jahr, 2007)
and the cortex (Ase et al. 2010; Lalo et al. 2011). Recently,
overexpression of an ectonucleotidase to break down
extracellular ATP was shown to significantly decrease the
BOLD signal evoked by electrical forepaw stimulation
(Wells et al. 2015), suggesting that purinergic signalling
may be involved in NVC. However, the source(s) of
endogenously released ATP, and the specific receptor(s)
involved in mediating its possible neurovascular effects,
have yet to be defined.

It is also important to keep in mind that NVC may
involve Ca2+-independent astrocyte signalling. Due to
their electrically passive nature, the biology of astrocytes
was largely unexplored until the middle of the twentieth
century when researchers started characterising them
electrophysiologically (Hild et al. 1958; Tasaki & Chang,
1958; Kuffler & Potter, 1964), but the field really bloomed
only in the 90s when Ca2+ indicators were used to show
astrocyte Ca2+ waves in response to glutamate and neuro-
nal stimulation (Cornell-Bell et al. 1990; Dani et al. 1992).
Measuring Ca2+ is, to date, the best method we have to
study astrocyte activity, but this should not lead us to
believe that this is the only way that signalling within
or via astrocytes can be achieved. The development of
new methods to study astrocytes is therefore required

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



1892 A. Mishra J Physiol 595.6

to improve our understanding of their function, both
Ca2+-dependent and -independent.

Astrocyte control of pial arterioles

Although pial vascular tone is largely mediated by end-
othelial and myogenic factors, astrocytes have also been
implicated in neurovascular signalling to pial arteries.
Neuronally evoked dilation of pial arterioles is partly
dependent on purinergic signalling from the glia limitans,
a layer of specialised astrocyte processes that form a
barrier around the brain and abut pial vessels (Xu
et al. 2008). In this study, interrupting the signalling
along the astrocytic syncytium, by damaging the glia
limitans with the gliotoxin L-2-aminoadipic acid, reduced
neuronally evoked pial arteriole dilation, but endothelial
damage induced by photoactivation of an intravascular
dye had little effect (Xu et al. 2008). In contrast, a
more recent study reported that damaging endothelial
cells locally using a similar photoactivated dye method
stopped the propagation of dilation along pial arterio-
les beyond the region of damage and, when the damage
is induced over a broader region, caused a reduction in
the haemodynamic response (Chen et al. 2014). Perhaps
the different observations reported by these two studies
can be explained by differences in stimulation protocol
or the anaesthesia regime, but, at this point in time, the
relative contribution of astrocytes and the endothelium
in propagating dilations to upstream arterioles is still
unclear and a role for astrocytes cannot be ruled out. In
addition, factors other than ATP have also been suggested
in astrocyte signalling to pial arterioles, for example
AA metabolites (Ellis et al. 1990), and have yet to be
investigated in more detail.

Astrocytes and resting vessel tone

Cerebrovascular tone is generated largely by auto-
regulatory means, including pressure-induced (Faraci
et al. 1989) and flow-induced (Pohl et al. 1991) myo-
genic mechanisms. Regulation of cerebral vessels by peri-
vascular nerve terminals (both peripheral, in the case
of extracerebral pial vessels, and subcortical, in the
case of parenchymal vessels) also contributes to neuro-
genic vascular tone (Hamel, 2006). Recently, however,
a role for astrocytes in maintaining the resting tone of
arterioles has also been unveiled. In the in vivo retina,
increasing extracellular ATP constricted arterioles while
breakdown of extracellular ATP, inhibition of purinergic
receptors and application of the gliotoxin fluorocitrate
all dilated arterioles (Kur & Newman, 2014). A purinergic
signalling mechanism also contributed to the development
of pressure-evoked vasomotor tone in the cortex (Kim et al.
2015). The development and maintenance of this vascular
tone was found to be dependent on TRPV4-mediated

astrocytic [Ca2+]i rises both in vivo and in vitro, pre-
sumably leading to ATP release from astrocytes to constrict
vessels (Kim et al. 2015).

Rosenegger et al. (2015) reported that Ca2+-dependent
mechanisms in astrocytes contribute to COX1-mediated
tonic dilation of cortical arterioles. When they used
the Ca2+ chelator BAPTA to arrest Ca2+ fluctuations
within the astrocyte syncytium surrounding arterioles, the
resting diameter of the arterioles decreased significantly
(Rosenegger et al. 2015). However, another group found
that similarly arresting astrocyte Ca2+ with BAPTA-filling
from a patch pipette led to a decrease in pressure-induced
vascular tone, i.e. dilation (Kim et al. 2015). It
is highly probable that these opposing mechanisms
(COX1-mediated dilation and purinergic constriction)
may operate together to maintain the right balance of
constrictory and dilatory factors to stabilise vascular tone
in the face of changing microenvironment (Fig. 2), both
within the brain and the blood, an effect that is well known
elsewhere in the vascular system (Meininger & Davis,
1992) and in extracerebral pial arteries (Faraci et al. 1989).

Vascular signalling to astrocytes

Cortical astrocytes have been reported to respond with
a [Ca2+]i rise to pressure changes in arterioles both in
vitro and in vivo (Kim et al. 2015). This suggests two
interesting possibilities: (i) the nervous system can sense
vascular changes and may be able to adjust them in
turn; and (ii) the cardiovascular system may be able
to alter neuronal function. In the Kim et al. study,
changes in vascular pressure raised [Ca2+]i in astrocytes,
which contributed to the maintenance of pressure-evoked
cerebrovascular tone, thus providing some support to
the first conjecture (Kim et al. 2015). There is also
evidence that astrocytes in the brain stem sense blood
pH to activate chemoreceptor neurons and alter breathing
rate (Gourine et al. 2010), and those in the subfornical
organ sense blood Na+ levels to control salt intake
behaviour (Shimizu et al. 2007). Similarly, it is possible
that astrocyte sensing of vascular pressure may, directly
or via astrocyte-mediated neuronal activation, lead to the
regulation of cardiovascular function. On the other hand,
signals from blood vessels might also be altering neuro-
nal function. An example of direct signalling from blood
vessels to neurons via NO production and release has
been demonstrated in the optic nerve (Garthwaite et al.
2006). As Ca2+-dependent signalling within astrocytes can
regulate neuronal activity by releasing gliotransmitters
(Parpura et al. 1994; Henneberger et al. 2010; Panatier
et al. 2011; Araque et al. 2014), it is plausible that
vascular-evoked changes in astrocyte Ca2+ may modulate
neuronal function, as proposed by the ‘hemo-neural
hypothesis’ (Moore & Cao, 2008; Kim et al. 2015). All
these possibilities ought to be further explored, especially
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in the context of altered vascular tone in cardiovascular
diseases such as hypertension that accompany, or may
lead to, neurodegenerative disorders (Bloch et al. 2015).

Astrocytes and cerebrovascular dysfunction in CNS
pathology

Astrocytes respond to almost all forms of CNS dysfunction
with a process termed reactive astrogliosis (Barres, 2008;
Anderson et al. 2014), during which their morphology and
protein expression patterns change drastically (Hamby
et al. 2012; Zamanian et al. 2012). This suggests
that the function of astrocytes may evolve during
disease, although it is unclear whether these changes
contribute to the progression of pathology or exist as
protective mechanisms. Challenging cultured astrocytes
with inflammatory mediators alters the expression of
many proteins involved in neuron-to-astrocyte signalling
and, accordingly, astrocyte Ca2+ signalling is markedly
altered (Hamby et al. 2012). Reactive astrocytes change
their expression of neurotransmitter receptors and trans-
porters such as mGluRs (Aronica et al. 2000) and GLT-1
(Rothstein et al. 1995; Bramlett & Dietrich, 2004). They
also alter the expression of the inwardly rectifying K+
channels, altering their ability to buffer extracellular
K+ (Bordey et al. 2000, 2001; Tong et al. 2014). Such
changes in astrocyte physiology, particularly in their Ca2+
dynamics and K+ buffering ability, are expected to alter
their role in the regulation of cerebral blood flow with
possible negative effects on neuronal function. The need
to address the neurovascular unit as a therapeutic target
in the context of diseases with a vascular component,
including Alzheimer’s disease (AD), cortical spreading
depression, traumatic brain injury and hypertension, has
been recently highlighted (Calcinaghi et al. 2013; Iadecola,
2013; Bloch et al. 2015; Lok et al. 2015; Ostergaard
et al. 2015). Astrogliosis-induced changes in NVC deserve
further attention in this regard. Indeed, a recent report
showed that an angiotensin II type 1 receptor blocker
can improve the cognitive and cerebrovascular deficits
in AD by reducing astrogliosis and inflammation, while
leaving Aβ pathology intact (Ongali et al. 2014). Another
study reported that glioma cells invade the space between
astrocyte endfeet and the vasculature, disrupting NVC
(Watkins et al. 2014). Such structural changes are likely
to alter the generation of vasoactive signals as well as
the response of the neurovascular unit to these signals
and perhaps also lead to blood–brain barrier dysfunction,
although these ideas have not yet been investigated.
Together, these findings imply that CNS pathology may
partly comprise a deficit in gliovascular coupling and
commands more attention.

In diabetic patients, a reduction in functional hyper-
aemia precedes clinical retinopathy (Garhofer et al. 2004;
Mandecka et al. 2007). In a rodent model of diabetes,

a similar deficit in NVC was reported. This seemed to
be mediated by altered glial AA metabolism due to high
NO levels produced by increased inducible NOS (iNOS)
expression (Mishra & Newman, 2010). This deficit could
be pharmacologically reversed in diabetic animals by
acute I.V. or chronic oral administration of an iNOS
blocker (Mishra & Newman, 2011). As iNOS upregulation
is associated with inflammatory responses that occur
after injury throughout the body, including in the brain
following stroke (Iadecola et al. 1995; Garry et al. 2015),
and can alter glial derived vascular messengers (Metea
& Newman, 2007; Mishra & Newman, 2010), its role in
glial-mediated NVC in neuropathology needs to be further
explored.

Another factor to consider in disease is the tissue O2

level. Although high levels of O2 exposure have no effect
on NVC responses in the healthy brain in vivo (Lindauer
et al. 2010; Mishra et al. 2011) because of autoregulatory
mechanisms that maintain tissue PO2 within an acceptable
range (Torbati et al. 1978; Omae et al. 1998; Floyd et al.
2003; Lu et al. 2009; Mishra et al. 2011), this might be
altered in disease states. In injuries such as ischaemic
stroke, subarachnoid haemorrhage and traumatic brain
injury, a breakdown of the blood–brain barrier often
ensues (Doczi, 1985; Germano et al. 2000; Price et al.
2016; Ueno et al. 2016), and indeed is being recognised
as another common hallmark of CNS pathology (Zhao
et al. 2015). It is plausible that this breakdown, combined
with a lack of autoregulatory compensation, exposes the
brain to pathological levels of O2 and contributes to the
observed reduction (Fordsmann et al. 2013) or inversion
(Koide et al. 2012; Pappas et al. 2015) of the neuro-
vascular response. In light of the astrogliosis following
brain injury and the ensuing changes in their [Ca2+]i

dynamics (Hamby et al. 2012) and K+ uptake (Bordey
et al. 2000), astrocyte-mediated neurovascular pathways
such as those dependent on BK channels (Pappas et al.
2015) or 20-HETE synthesis (Fordsmann et al. 2013)
might be altered in disease. This is a particularly attractive
hypothesis in the context of reperfusion injury, where
reinstatement of blood flow after a stroke beyond a limited
therapeutic time window results in further damage to the
nervous tissue (Bai & Lyden, 2015; Marshall, 2015). The
sudden rise in tissue oxygenation produced by the return
of blood, especially in the absence of a healthy blood–brain
barrier, is known to induce oxidative stress (Bai & Lyden,
2015) but it might also result in the production of
glial-derived vasoconstricting factors (Fordsmann et al.
2013), limiting the supply of oxygen and glucose to
neurons and resulting in further injury.

Furthermore, autoregulation and NVC are both
dependent on the resting tone of cerebral vessels (Aaslid
et al. 1989; Blanco et al. 2008). Given that astrocytes play
a role in both these processes and that the resting tone of
vessels is altered or disrupted in CNS pathologies such as
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subarachnoid haemorrhage (Terpolilli et al. 2015), glioma
(Watkins et al. 2014) and cortical spreading depression
(Ayata & Lauritzen, 2015), understanding the role of
astrocytes in cerebrovascular function in both healthy
and pathological conditions is essential for unravelling
disease mechanisms and developing novel therapeutic
targets.

Development of the neuro-glio-vascular unit

Although neurogenesis is largely complete before birth
in rodents, their connections take longer to mature.
Astrocytes and the vasculature, integral members of the
neurovascular unit, begin development late in the embryo
and continue for the first few weeks of life (Caley &
Maxwell, 1970; Bayraktar et al. 2015). Astrocyte density
and morphology in the rat matures to adult levels
differentially in different brain regions: at about postnatal
day 8 in cortical layer I (Stichel et al. 1991), 2–3 weeks
in the hippocampus (Nixdorf-Bergweiler et al. 1994) and
cortical layer VI (Stichel et al. 1991), and approximately
6 weeks in cortical layers II–V (Stichel et al. 1991). This is
reflected in the K+ buffering capacity of the brain, which
does not reach mature levels until 4 weeks after birth
(Nixdorf-Bergweiler et al. 1994). The diffuse cloud of fine
astrocyte processes mature and form astrocyte territories
during the third week after birth (Bushong et al. 2004) and
synthesis of vasoactive mediators such as AA metabolites
in the brain also reaches adult levels at the same time,
probably as a result of the establishment of adult levels
of enzyme expression in the astrocytes (Seregi et al.
1987). Existence of the morphologically complete neuro-
vascular unit, comprising the vasculature, neurons and the
fine processes and endfeet of astrocytes, is only apparent
3 weeks after birth in the cortex (Caley & Maxwell, 1970).
Accordingly, hindpaw stimulation in rodents younger than
2 weeks (mimicking neonatal age in humans) evokes a
decrease in blood flow and pial arterial constrictions in vivo
(Zehendner et al. 2013; Kozberg & Hillman, 2016). This
response evolves to display stimulation-evoked localised
increases in blood flow and pial dilations in a time course
parallel to the structural development of the neurovascular
unit, starting at around 3 weeks of age (Zehendner et al.
2013; Kozberg & Hillman, 2016). This early inverted
vascular response is thought to be an important factor
in the development of a healthy, mature cerebrovascular
architecture and perhaps also the blood–brain barrier
(reviewed in Lacoste & Gu, 2015).

Besides the inversion of the neurovascular response,
other age-related factors may also contribute to the
discrepancies found in NVC research. Studies that use
in vitro experiments to investigate NVC are largely
conducted on tissue from young animals, while in
vivo studies primarily use adult animals, presenting a
co-confound of age and experimental preparation. For

example, mGluR-dependent astrocyte-mediated NVC was
demonstrated in slices from young animals (P9–21; Zonta
et al. 2003; Mulligan & Macvicar, 2004; Gordon et al. 2008)
but, perhaps owing to the developmental downregulation
of mGluR I expression in astrocytes (Sun et al. 2013),
this mechanism did not appear to play a role in adults
animals in vivo (Calcinaghi et al. 2011). Therefore, the age
of animals should be carefully considered in the design
and interpretation of NVC studies.

Implications of astrocyte control of NVC for BOLD
signals

The BOLD signal, used in most functional imaging studies
as a proxy measure of brain activity, measures the relative
concentration of deoxyhaemoglobin, which rises during
activity due to oxygen consumption by active neurons
but falls as the increase in blood flow brings in more
oxyhaemoglobin. Because the blood flow response is
much greater than the fall in deoxyhaemoglobin, BOLD
signals primarily reflect the increase in blood flow evoked
by neuronal activation (Attwell & Iadecola, 2002). As
outlined in this review, astrocytes play a complex role
in generating the neurovascular response as well as
maintaining the baseline tone of the cerebral vasculature,
which influences the magnitude of the BOLD response.
This has important implications for the interpretation of
functional imaging studies, particularly with reference to
different arousal states, disease and development stages.
Subcortical neuronal mechanisms that are responsible for
modulating brain activity during sleep or arousal states
also exert control of the cerebral parenchymal arterioles
over large regions of the cerebrum (Hamel, 2004, 2006)
and appear to be at least partly mediated by glial cells
(Cauli & Hamel, 2010; Lecrux et al. 2011). Depending
on the arousal state of the subject, the relationship
between neuronal activity, astrocyte activity and vascular
responses might be differentially modulated by these sub-
cortical nerve terminals, and therefore impact the BOLD
signal.

In most CNS diseases, neuronal activity is noticeably
altered, but less perceptible are the changes that occur in
astrocytes and vascular reactivity. This is partly due to our
lack of complete understanding of the disease processes
and partly because these components of the nervous
system have not been studied in as much detail as neurons.
It is very likely that neurovascular signalling pathways
might be altered in disease due to altered signalling
from reactive astrocytes (as discussed above) or a change
in vascular rigidity or reactivity (Hamel, 2015; Tong &
Hamel, 2015), leading to a reduction in the coupling or
even a complete uncoupling of neuronal activity from
vascular responses. Furthermore, conditions like tissue
damage and oedema might change the water component
of the tissue, which can also alter the BOLD signal (Krings
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et al. 2002; Kim & Ogawa, 2012). BOLD may still be a
powerful tool in identifying a disease or measuring signals
that correlate with symptoms, but it would be impractical
to use BOLD signals as a measure of neuronal activity per
se under these conditions.

The use of BOLD signals to study developmental
processes also comes with severe limitations (Harris et al.
2011; Lacoste & Gu, 2015). As discussed above, the
development of the neuro-glio-vascular unit, which is
essential for the proper execution of neurovascular signals
that give rise to activity-evoked blood flow changes,
continues for weeks after birth in rodents. In humans,
gliogenesis is essentially complete within the first few
months after birth (Roessmann & Gambetti, 1986), but
synaptogenesis and synaptic pruning continue into the
teenage years while myelination can last into the twenties
in humans (reviewed in Semple et al. 2013). Anatomical
studies suggest that although the human brain is 95%
of its adult size by age 6, it is still developing into the
teenage years (Lenroot & Giedd, 2006). The ‘mature’
neuro-glio-vascular unit in the rat is only apparent after
3 weeks of age and continues to develop until at least
6 weeks of age (Caley & Maxwell, 1970). Using a simplistic
model to compare the developmental stages of rodent and
human brains, this suggests a minimum age of 1.5 years
before the neurovascular response can be expected
to mature in humans (http://www.translatingtime.net).
Indeed, activity-evoked blood flow and BOLD responses
are inverted in young rodents and neonatal humans
(Anderson et al. 2001; Born et al. 2002; Zehendner et al.
2013; Kozberg & Hillman, 2016), probably reflecting
the large oxygen consumption of the developing brain
combined with a decrease in blood flow (Lacoste &
Gu, 2015). This developmental negative relationship
between neuronal activity and blood flow is thought to
be important in patterning the cerebrovasculature and,
ultimately, brain maturation (Lacoste & Gu, 2015). Given
these developmental changes, our ability to effectively
decipher BOLD signals during childhood and adolescence
is severely hampered by a lack of systematic studies
investigating the neurovascular relationship during the
course of early life in humans (further discussed in Harris
et al. 2011) and should be carefully considered in inter-
preting data from these populations.

The transcriptome as a resource for future directions

Many aspects of the astrocytic regulation of cerebral
blood flow are as yet uncharted territory. One possible
strategy to develop new hypotheses and guide future
experiments would be to use published transcriptome
analyses (Cahoy et al. 2008; Hamby et al. 2012; Zamanian
et al. 2012; Zhang et al. 2014). A quick study of the genes
expressed at a > 15-fold higher level in astrocytes than
in all other cell types in the transcriptome published

from the Barres lab (Zhang et al. 2014) identified the
adenosine receptor A2b, mGluR3, small and intermediate
conductance K+ channels, many enzymes (of particular
interest were phospholipases, epoxide hydrolases and CYP
enzymes) and a large number of transporters including
those for glutamate, GABA, glucose, zinc and cationic
amino acids. Many of these proteins, such as mGluRs,
adenosine receptors, K+ channels and enzymes involved
in AA metabolism, are already known to be expressed
in astrocytes and play important roles in maintaining
homeostasis of the extracellular environment and NVC,
as discussed in this review. Many others probably play an
important role in astrocyte-specific functions and would
be of interest to future neuroglial and neurovascular
studies. Furthermore, astrocyte-specific genes that help
them associate with the vasculature, such as vascular cell
adhesion molecule 1, or play a role in their response
to disease, such as pentraxin 3 and fibroblast growth
factors (particularly FGF8 and FGF3 and their respective
receptors) (Rosenman et al. 1995; Ravizza et al. 2001;
Rubio et al. 2010; Kang et al. 2014), might be of particular
interest with respect to alterations in cerebrovascular tone
and NVC following disease. Although the transcriptome
provides a measure of the level of RNA transcribed and
not protein expression, it may prove to be an important
starting point in understanding the functions of astrocytes
and other glial cells.

Conclusion

The evidence undeniably favours a multifaceted role
for astrocytes in cerebrovascular regulation. NVC occurs
to supply the energy demand of active neurons and,
therefore, it is indisputable that neurons initiate the
response, but increasing evidence supports a role for
astrocytes as mediators of neurovascular signals. However,
controversies still exist regarding the relative contribution
of vasoactive signals arising directly from neurons (such
as NO and prostaglandins) versus those released by
astrocytes (AA metabolites, K+ release), as well as the
location and timing of astrocytic Ca2+ signalling. The
pattern of astrocyte Ca2+ signalling (for example, localised
transients in processes compared to global intracellular
waves) may also be important in defining the vascular
response generated. We must endeavour to develop better
experimental designs and [Ca2+] detection techniques to
resolve these outstanding questions. Astrocytes also play a
role in regulating the resting tone of arterioles by releasing
both dilating and constricting agents. They can respond
to alterations in cardiovascular factors such as pressure
and flow which, given their role in neuronal homeostasis,
may alter neuronal activity. This suggests a novel binaural
role for astrocytes whereby they listen to signals from
both neurons and vessels and, accordingly, orchestrate
signalling to the cerebral vasculature to maintain a healthy
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blood supply to the brain. Their role in maintaining this
intricate balance in healthy brains, and how it is altered
in pathology, must be explored further with a view to
developing new therapeutic targets for diseases of the CNS
where the cerebrovasculature is affected.
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