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Introduction: Overview of branching 
morphogenesis
During embryonic development, simple bud-like organ pre-
cursors undergo dramatic branching to generate the complex 
branched architectures of many organs. This process expands 
an organ’s epithelial surface area by orders of magnitude to 
maximize secretion or absorption by epithelia located in thou-
sands of acini or alveoli and their ducts (Davies, 2005).

Branched structures are common in both plants and ani-
mals. For example, plants have tree branches and leaf veins. In 
animals, branching morphogenesis has been studied extensively 
in Drosophila melanogaster trachea (Ghabrial et al., 2003; Af-
folter and Caussinus, 2008), mammalian lung (Morrisey and 
Hogan, 2010; Warburton et al., 2010; Varner and Nelson, 2017), 
blood vessels (Meadows and Cleaver, 2015), kidney (Costantini 
and Kopan, 2010), pancreas (Shih et al., 2013), mammary gland 
(Gray et al., 2010; Inman et al., 2015), and salivary gland (Patel 
et al., 2006; Larsen et al., 2010). The morphology of these or-
gans can differ dramatically, ranging from predominantly “lob-
ular” in salivary glands to completely “tubular” in blood vessels 
(Fig. 1, A and B). Their appearance largely depends on the aspect 
ratio (length-to-diameter) of branches between branch points, 
as well as the relative size of branch tips compared with stalks.

During development, the lobular versus tubular appear-
ance of some organs can change. For example, the ureteric 
bud of the mouse kidney is relatively lobular at early stages 
of branching morphogenesis, with bulging tips connected by 
relatively short branches (Fig.  1  C, left). However, later in 
development, the branches (future collecting ducts) elongate 
dramatically to become very tubular (Costantini and Kopan, 
2010), resembling a collection of lines radiating from the ureter 
(Fig. 1 C, right). In contrast, the mouse mammary gland begins 
as a tubular network (Fig. 1 D, top) that is later remodeled to 
become lobular during pregnancy and lactation (Hennighausen 
and Robinson, 2005; Fig. 1 D, bottom).

Branching morphogenesis can be stereotypic or sto-
chastic. The branching patterns of both mammalian lung and 
Drosophila tracheal system are highly stereotyped (Ghabrial 
et al., 2003; Metzger et al., 2008), suggesting their branching 
programs are genetically hardwired. The topology of kidney 
branches appear stereotyped, though individual kidneys differ in 
branching patterns (Short et al., 2014; Sampogna et al., 2015). 
In contrast, branching of blood vessels and mammary gland ap-
pears stochastic without defined patterns, presumably because 
of the absence of space constraints (Andrew and Ewald, 2010). 
Other organs, such as the salivary gland, also exhibit stochastic 
branching patterns, at least in organ culture.

Morphogenesis of a branched organ requires both the for-
mation of new branches and remodeling of existing branches. 
Forming new branches in mammalian organs occurs through 
two geometrically distinct processes, “budding” or “clefting” 
(Fig. 2 A and Table 1). In this paper, we define budding as de novo 
branching from the surface of a primordial epithelium or from 
the lateral side of a preexisting branch, whereas clefting splits 
a preexisting branch tip into several tips (usually two or three). 
Topologically, each budding event generates a new branch tip, 
whereas each clefting event simultaneously eliminates an old 
branch tip and generates at least two new tips (Fig. 2 A).

At the cellular level, new branch formation can be driven 
by collective cell migration, patterned cell proliferation, coor-
dinated cell deformation, and/or cell rearrangement. Plant tis-
sues can lack cell migration and cell shape plasticity, so they 
rely on patterned cell proliferation and growth for branching. 
In contrast, animal organs often use multiple cell and tis-
sue remodeling strategies.

In this review, we examine the complex cell biology 
underlying budding and clefting in various branched organs. 

Many embryonic organs undergo branching morphogen-
esis to maximize their functional epithelial surface area. 
Branching morphogenesis requires the coordinated inter-
play of multiple types of cells with the extracellular matrix 
(ECM). During branching morphogenesis, new branches 
form by “budding” or “clefting.” Cell migration, prolifer-
ation, rearrangement, deformation, and ECM dynamics 
have varied roles in driving budding versus clefting in dif-
ferent organs. Elongation of the newly formed branch and 
final maturation of the tip involve cellular mechanisms that 
include cell elongation, intercalation, convergent exten-
sion, proliferation, and differentiation. New methodolo-
gies such as high-resolution live imaging, tension sensors, 
and force-mapping techniques are providing exciting 
new opportunities for future research into branching 
morphogenesis.
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Budding in blood vessels and Drosophila trachea occurs by an 
invasive form of collective cell migration, by which a leader cell 
forms extensive protrusions and migrates outward, followed by 
other cells (Fig. 2, B and C; Scarpa and Mayor, 2016). Budding 
in mammalian epithelial organs, however, appears to be pow-
ered by a noninvasive form of collective cell migration along 
with cell proliferation (Fig. 2, D and E; Ewald et al., 2008).

In contrast, clefting at the branch tip in lung and kidney re-
quires proliferation to enlarge the tip, which deforms and splits 
(Fig. 3, A and B; Watanabe and Costantini, 2004; Schnatwin-
kel and Niswander, 2013). In salivary gland, clefting can occur 
without cell proliferation, and cytoskeletal and ECM remodel-
ing mediate cell rearrangement and epithelial bud deformation 
(Fig. 3 C; Daley and Yamada, 2013; Harunaga et al., 2014).

Other processes, such as branch elongation, lumen forma-
tion, and tip maturation, help to shape branched organs by ad-
justing the aspect ratio of branch stalks and tips. At the cellular 
level, branch elongation can occur through cell rearrangement 
by intercalation or convergent extension, cell elongation, and/
or cell proliferation (Fig. 4, A–C; Andrew and Ewald, 2010). 
Lumen formation occurs concomitantly with branching in many 
organs, though is substantially delayed in salivary glands (An-
drew and Ewald, 2010). Tip maturation in lung and glandular 
organs is driven by cell proliferation and deformation to form 
alveoli or acini (Fig. 4, D and E), whereas the kidney represents 
a special case in which tips of ureteric bud branches or collecting 
ducts need to fuse with nephrons developed from the surround-
ing metanephric mesenchyme (Costantini and Kopan, 2010).

Patterning of cell behavior in branching 
morphogenesis
Branched organs contain multiple cell types plus their ECM. 
The core structure of all branched organs consists of tightly as-
sociated epithelial cells. The epithelium is surrounded by the 
basement membrane, a dense network of ECM glycoproteins 
and proteoglycans. Beyond the basement membrane is usually 
a loosely organized mixture of mesenchymal cells and their 

ECM. In addition to these common structures, the presence 
and morphogenetic roles of other cell types including smooth 
muscle cells, neurons, and blood vessels have been described 
in multiple epithelial organs. During branching morphogene-
sis, the epithelial cells actively interact with the ECM and these 
other cell types, both biochemically and biophysically.

Patterning of cell behavior is thought to involve patterned 
signaling. To date, numerous growth factors and regulatory sig-
naling pathways have been implicated in branching morpho-
genesis. We have cataloged the loss-of-function phenotypes of 
major signaling pathway genes in Table S1 and transcription 
factors in Table S2. Despite this extensive knowledge, how 
these different regulators are integrated into patterns governing 
the various branching mechanisms remains poorly understood. 
A fundamental requirement for one or more receptor tyrosine 
kinase (RTK) signaling pathways has been established for most 
branched organs (Schuchardt et al., 1994; Luetteke et al., 1999; 
De Moerlooze et al., 2000; Olsson et al., 2006). The ligands 
of these core RTK signaling modules are usually produced by 
the mesenchyme, whereas the corresponding RTK receptors are 
expressed in the epithelium. Modulators of RTK signaling have 
been identified in the mesenchyme, ECM, and epithelium it-
self. The regulation and cross talk of these pathways has been 
reviewed extensively (Hennighausen and Robinson, 2005; Cos-
tantini and Shakya, 2006; Olsson et al., 2006; Patel et al., 2006; 
Jørgensen et al., 2007; Lu and Werb, 2008; Affolter et al., 2009; 
Costantini and Kopan, 2010; Blake and Rosenblum, 2014). In 
this review, we will limit our discussion of signaling pathways 
to their roles in pattern formation.

New branch formation by invasive collective 
cell migration
An invasive form of collective cell migration can drive budding 
of new branches in Drosophila trachea (Samakovlis et al., 1996) 
and mouse retina blood vessels (Gerhardt et al., 2003). In both 
cases, a protrusive leader cell migrates outward at the vanguard 
of a group of follower cells that rearrange to form a new branch 

Figure 1.  Varying morphology of branched organs. 
(A) Schematics of mouse submandibular glands from 
embryonic day (E) 13.5 and E16 stage embryos. 
Submandibular gland morphology is predominantly 
lobular. (B) Schematic of blood vessels from a mouse 
retina. The branched vascular network is completely 
tubular. (C) Schematics of the ureteric bud of mouse 
kidney from E13.5 and E18.5 stage embryos. At 
E13.5, mouse kidney is relatively lobular. At E18.5, 
the elongated collecting ducts convert kidney morphol-
ogy to predominantly tubular. (D) Schematics of mouse 
mammary gland at young adult stage and lactation 
stage. At the young adult stage, the mammary gland 
is a tubular network. During pregnancy and lactation, 
dramatic remodeling occurs in the mammary gland so 
that lactating alveoli form at branch tips, which trans-
forms the structure to primarily lobular.
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(Fig. 2, B and C; Scarpa and Mayor, 2016). The identity of the 
leader cell is specified by RTK signaling in both systems: FGF 
(Branchless/Bnl) in Drosophila trachea and VEGF in blood 
vessels (Gerhardt et al., 2003; Ghabrial and Krasnow, 2006). In 
addition, a Delta-Notch–mediated lateral inhibition mechanism 
prevents the follower cells from becoming leader cells in both 
systems (Ghabrial and Krasnow, 2006; Hellström et al., 2007; 
Suchting et al., 2007; Lebreton and Casanova, 2014).

Differences exist in the responses of stalk cells to RTK 
signaling. In Drosophila trachea, FGF/Bnl activation is only im-
portant in the leader cell at the tip, whereas the follower stalk 
cells respond passively to pulling forces generated by leader 
cells (Caussinus et al., 2008; Lebreton and Casanova, 2014). 
During blood vessel branching, both tip and stalk cells respond 
to VEGF, which regulates tip cell migration and stalk cell pro-
liferation (Gerhardt et al., 2003).

New branch formation by noninvasive 
collective cell migration
A noninvasive form of collective migration has been described 
in budding of the mammary gland, where multilayered termi-
nal end buds (TEBs) grow out from an epithelial cyst ex vivo 
(Ewald et al., 2008). However, unlike blood vessels and Dro-
sophila trachea, cells at the leading edge of the TEB lack inva-
sive protrusions penetrating the basement membrane (Fig. 2 D; 
Ewald et al., 2008; Huebner et al., 2016). Moreover, cells 
within the TEB can dynamically switch positions at the mi-
gration front. Whether outward migration of the TEB is driven 
by pushing forces from the stalk (Friedl and Gilmour, 2009) 
could be tested by analyzing TEB behavior after laser ablation 
of the stalk versus the tip.

Cell behavior similar to mammary gland TEB budding oc-
curs in budding of mouse lung (Schnatwinkel and Niswander, 
2013) and ureteric bud of kidney (Fig. 3 B; Chi et al., 2009; 

Riccio et al., 2016), although the term “collective migration” 
was not used. Live imaging of sparsely labeled lung and ureteric 
bud cells reveal a group of cells that remain at the tip and are 
apparently pushed outward by cell division and rearrangement 
of the forming stalk. Unlike mammary gland TEB, branch tips 
in both lung and ureteric bud (kidney) are both single-layered, 
although the newly formed ureteric bud tip is pseudostratified 
(Chi et al., 2009; Schnatwinkel and Niswander, 2013).

Tip identity establishment and maintenance 
by cell competition
A recurring theme in branching morphogenesis by budding is 
that RTK signaling-dependent cell competition appears to main-
tain the identity of the tip cells (Fig. 2, B–E). As mentioned in 
the New branch formation by invasive collective cell migration 
section, leader cell identity for invasive branching in Drosophila 
trachea and blood vessels is mediated by FGF and VEGF signal-
ing, respectively, whereas the leader cell inhibits the followers 
through Notch signaling in both systems. Strikingly, chimeric 
analysis in Drosophila trachea reveals that mutant cells defective 
for FGF signaling never take the leader cell position (Ghabrial 
and Krasnow, 2006). Similarly, genetic mosaic analysis in mam-
mary glands shows that Fgfr2-null cells are progressively out-
competed by Fgfr2-positive cells in the TEBs (Lu et al., 2008), 
whereas Ret-null cells (Ret encodes the RTK receptor important 
for kidney branching; Schuchardt et al., 1994) are excluded from 
the tips of chimeric ureteric buds (Chi et al., 2009). Furthermore, 
this RTK-dependent cell competition is dose dependent, because 
ureteric bud cells with up-regulated RTK signaling (Sprouty1 
null cells) outcompete wild-type cells to occupy the branch tips 
(Chi et al., 2009). How tip cells inhibit the stalk cells in mam-
malian epithelial organs is not entirely clear, though TGF-β is 
a candidate for mammary gland (Nelson et al., 2006; Lu and 
Werb, 2008) and kidney (Rivitos et al., 1995). Taken together, a 

Figure 2.  New branch formation by budding. (A) New branches can form through two geometrically distinct processes, budding or clefting. Schematics 
of budding in Drosophila trachea (B) and mouse retina blood vessels (C), where budding occurs by an invasive form of collective migration. The identity 
of the protrusive tip cell is specified by high RTK signaling. A Delta/Notch-mediated lateral inhibition mechanism prevents follower cells from becoming 
leader cells. Schematics of budding in mouse mammary gland (D) and the ureteric bud of mouse kidney (E), where budding occurs by a noninvasive form 
of collective migration and regionalized cell proliferation. The stratified tip of the mammary gland, or TEB, has high FGF receptor (FGFR) activity and higher 
proliferation rate than the stalk, which contains two cell layers. The tip of the ureteric bud at this early stage is pseudostratified, and its identity is specified 
by high RET signaling activity. EGFR, EGF receptor; VEG​FR, VEGF receptor.



JCB • Volume 216 • Number 3 • 2017562

conserved role for RTK signaling appears to establish, as well 
as to maintain, the identity of cells at the branch tip.

New branch formation by patterned cell 
proliferation
Patterned cell proliferation operates at two levels: regionalized 
proliferation and oriented cell division. Regionalized prolifer-
ation at the branch tip appears important for formation of new 
branches by budding in most cases, except for Drosophila tra-
chea and blood vessels (Fig.  2, B–E). Studies using BrdU or 
radioactive thymidine labeling reveal a consistent pattern of 
higher proliferation in epithelial buds than in the stalks of many 
vertebrate organs (Bernfield et al., 1972; Goldin and Wessells, 
1979; Goldin and Opperman, 1980; Michael and Davies, 2004; 
Lu et al., 2008; Schnatwinkel and Niswander, 2013). This pat-
tern of high proliferative activity often mirrors the RTK activity 
(Costantini and Shakya, 2006; Patel et al., 2006) and could drive 
budding; in fact, elevated proliferation often precedes or coin-
cides with budding (Nogawa et al., 1998; Michael and Davies, 
2004; Schnatwinkel and Niswander, 2013). In contrast, local-
ized proliferation activity has never been observed to precede 
clefting at branch tips. Consistent with this difference between 
budding and clefting, blocking cell proliferation abolishes bud-
ding in cultured mouse lung (Goldin et al., 1984) and mammary 
gland (Ewald et al., 2008), whereas clefting in salivary gland 
still proceeds (Nakanishi et al., 1987; Spooner et al., 1989).

Another type of patterned cell proliferation—oriented cell 
division—appears to contribute to clefting of lung branch tips. 
In mouse embryonic lung, live imaging of GFP–Histone 2B re-
vealed no regional differences in rates of cell division inside 
the tip before clefting. However, cells toward the center divide 
preferentially along the axis of flattening (Fig. 3 A, black arrow 
in the center panel), which helps expand the bud in the same 
direction in preparation for clefting (Schnatwinkel and Niswan-

der, 2013). It is not clear how the orientation of cell divisions in 
different regions of the branching lung tip is regulated; however, 
planar cell polarity (PCP) regulators and external compression 
by smooth muscle cells are possible candidates (see Physical 
constraint by basement membrane or smooth muscle cells in 
clefting; Yates and Dean, 2011; Kim et al., 2015).

A similar homogeneous distribution of mitotic cells within 
branch tips before clefting has also been described in mouse kid-
ney (Michael and Davies, 2004), which undergoes clefting by 
a similar sequence of enlarging, flattening, and clefting (Fig. 3, 
A and B; Watanabe and Costantini, 2004; Schnatwinkel and 
Niswander, 2013). Interestingly, cell division in kidney during 
ureteric bud branching occurs in a manner similar to lung, 
where premitotic cells first delaminate from the single-layered 
epithelium, complete cell division in the lumen, and reinsert 
back to the epithelium (Fig. 3, A and B; Packard et al., 2013; 
Schnatwinkel and Niswander, 2013). However, whether prefer-
ential orientation of cell division occurs in the clefting tips of 
kidney requires further examination. In sum, both regionalized 
proliferation and orientation of cell divisions can contribute to 
new branch formation, depending on the organ.

New branch formation by cell rearrangement 
and coordinated deformation
Besides proliferation, recent studies have highlighted the 
importance in branch tip clefting of actomyosin contractil-
ity, differential cell motility, ECM remodeling, and external 
physical restraints. These studies reveal unifying themes and  
organ-specific differences.

Contributions of actomyosin contractility 
to budding and clefting
One emerging theme is the contrasting roles of actomyosin 
contractility in the budding versus clefting mechanisms of new 

Table 1.  New branch formation by budding versus clefting

Cellular mechanisms Budding Clefting

Initiation of new branches Protrusion of a group of cells outward from an epithelium to 
generate a new branch tip (in blood vessels, Drosophila 
trachea, mammary gland, lung, kidney,a and pancreasb)

Separation of cells in a preexisting branch tip to generate 
two or more new branch tips (in salivary gland,c lung, 

kidney, and pancreasb)
Collective cell migration
  Invasive Drosophila trachea —

Blood vessels
  Noninvasive Mammary gland —

Lung (?)
Kidney (?)

Patterned cell proliferation
  Regionalized proliferation Lung —

Kidney
  Oriented cell division — Lung

Kidney (?)
Actomyosin contractility Not required in blood vessels and lung Salivary gland, kidney, 

Required in mammary gland (?) and pancreasb lung, pancreasb

Differential cell motilities Mammary gland Salivary gland
Pancreasb Pancreasb

Physical constraint
  By basement membrane — Salivary gland
  By smooth muscle cells — Lung

—, not yet described or established.
aUreteric bud in kidney.
bMechanisms of pancreas branching may be complex, including a unique process involving the formation of microlumens.
cSubmandibular salivary gland.
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branch formation: budding usually does not rely on actomy-
osin contractility, whereas clefting always does. A caveat for 
this process is that complex, sometimes contradictory, results 
exist in the earlier literature, which can often be explained by 
specific choices of inhibitors or organ culture conditions. We 
have omitted reviewing results using problematic inhibitors 
(e.g., the myosin inhibitor 2,3-butanedione monoxime; Ostap, 
2002) and will discuss results that appear contradictory superfi-
cially, but not fundamentally.

Inhibition of actomyosin contractility in clefting-domi-
nant branching organs (Fig.  3, B and C) consistently inhibits 
branch formation. In mouse salivary gland, inhibiting myosin 
II activity by blebbistatin, or Rho kinase (ROCK) activity by 
Y-27632 or ROCK I siRNA (but not ROCK II siRNA; Daley et 
al., 2009; Hsu et al., 2013), all inhibit branching, even though 
shallow initial clefts still form (Daley et al., 2009). Similarly, 
mouse ureteric bud branching is strongly suppressed by inhib-
iting ROCK by Y-27632 or actin polymerization by cytochala-
sin D (Michael et al., 2005). A conflicting study found Y-27632 
stimulates rat kidney branching, but in mesenchyme-free Matri-
gel culture (Meyer et al., 2006).

Importantly, studies inhibiting actomyosin activity in 
the mouse lung, an organ using both budding (domain branch-
ing) and clefting (Fig. 3 A; terminal bifurcation), demonstrate 
differential requirements for actomyosin activity in budding 
versus clefting (Moore et al., 2005; Schnatwinkel and Niswan-
der, 2013). Although Moore et al. (2005) initially reported 
overall inhibition of lung branching by inhibiting ROCK or 
actin polymerization, deeper analyses by Schnatwinkel and 
Niswander (2013) revealed that either blebbistatin inhibition 
of myosin activity or ML7 inhibition of myosin light chain 
kinase (MLCK) disrupt bifurcation (clefting) without block-
ing domain branch formation (budding). Inhibition of myosin, 
but not MLCK, further altered domain branch position and the 
shape of bifurcating buds.

Inhibiting actomyosin activity in budding-dominant 
branching systems often fails to prevent new branch formation. 
In a 3D culture model of blood vessels, where budding is driven 
by the invasive form of collective migration (Fig. 2 C), Fischer 
et al. (2009) elegantly demonstrated that a local loss of cortical 
myosin preceded filopodia protrusion and tip cell outgrowth. In 
fact, global myosin inhibition by blebbistatin greatly enhanced 

Figure 3.  New branch formation by clefting. (A) Schematics of clefting (or terminal bifurcation) in mouse lung. The clefting tip of developing lung contains 
a single layer of cells that flattens before clefting. Within the tip, cells toward the center (dashed box in the center panel) divide preferentially parallel to 
the axis of flattening (black arrow in the center panel). Before clefting, smooth muscle cells differentiate at the future clefting site, which helps to deform the 
flattened tip to complete clefting. (B) Schematics of clefting in the ureteric bud of mouse kidney. The clefting tip of kidney contains a single layer of cells that 
also flattens before clefting. For cell proliferation, premitotic cells delaminate from the single-layered epithelium, complete cell division in the lumen, and 
then reinsert into the epithelium. (C) Schematics of clefting in mouse salivary gland. In these images, the clefting tip (bud) is stratified. The outer tip cells 
are more columnar and more regularly arranged than the inner tip cells. The outer tip cells also move much faster than the inner tip cells. Shallow clefts 
form stochastically with ECM invasion into the outer layer of epithelium, and they widen and stabilize to complete clefting. Clefting in all three systems is 
accompanied by microscopic perforations in the basement membrane toward the tip and accumulation of basement membrane components away from 
the tip. For each organ, a critically essential growth factor regulator is listed, although others contribute. GDNF, glial cell–derived neurotrophic factor.
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blood vessel branching, and local application of blebbistatin 
triggered filopodial extension of tip cells.

However, the mechanisms appear more complicated in 
mouse mammary gland organoid culture (Fig. 2 D). Although 
inhibiting ROCK by Y-27632 did not prevent branching, in-
hibiting either Rac (NSC23766) or MLCK (ML7) did block 
branching of mammary gland organoids (Ewald et al., 2008). 
Because these ex vivo organoids undergo a characteristic 
luminal clearance and filling process to become a “branch-
ing-competent” complex cyst (Ewald et al., 2008), treating 
the organoids at the complex cyst stage might help distinguish 
roles of Rac and MLCK in branching versus organoid remod-
eling. A study of budding in embryonic chick lung described 
prominent enrichment of actin filaments at the apical surface 
of forming buds, hinting at an apical constriction–mediated 
contractile budding mechanism (Kim et al., 2013). However, 
inhibition of new bud formation by the myosin II inhibitor 
blebbistatin was marginal and did not rule out a role for re-
gionalized proliferation (Figs. 2 I and 4 D with different y 
axes in Kim et al., 2013). We suggest that live imaging could 
distinguish the different possibilities.

To summarize, the published literature appears to support 
the concept that new branch formation by clefting requires ac-
tomyosin contractility, whereas budding may not. As discussed 
in New branch formation by patterned cell proliferation, re-
gionalized proliferation instead seems to be more crucial for 
budding (Fig. 2, D and E). Interestingly, recent work in mouse 
pancreas and salivary gland suggests that patterned actomyosin 
contractility, rather than global contractility, is more important 
for pancreas branching. Either globally activating or inacti-
vating contractility blocked pancreatic branching (Shih et al., 
2016), suggesting that either a certain level of contractility is 
critical or a pattern of contractility is important for branching. 
In both pancreas and salivary gland, outer (peripheral) cells at 
the branch tip have a characteristic columnar shape (Fig. 3 C); 
importantly, this columnar shape becomes either cuboidal or 
misshapen upon actomyosin perturbation to resemble inner cell 
shape (Hsu et al., 2013; Shih et al., 2016), suggesting possible 
differential contractility of outer versus inner cells. Whether 
these specific differences between outer and inner cells and lo-
cally tuned differences in contractility are crucial for branching 
remains to be determined.

Differential cell motilities in branching 
morphogenesis
In addition to differences in shape, differential motilities of 
outer and inner cells at branch tips (or epithelial “buds”) that 
could contribute to branching have been quantified in both 
mouse salivary gland and pancreas, but there are several differ-
ences. Outer cells touching the basement membrane move more 
than twice as fast as inner cells in tips (buds) of the salivary 
gland and show greater displacement (Fig. 3 C; Larsen et al., 
2006; Hsu et al., 2013). Cells in these two regions move at sim-
ilar speeds in the pancreas, and the major regional difference 
in pancreas involves directionality, with outer cells undergoing 
twofold greater displacement than inner cells (Shih et al., 2016). 
Although both systems require integrins to branch, integrin in-
hibition has different effects. Although inhibiting β1 integrin to 
disrupt cell–ECM interactions slows down outer cells in the sal-
ivary gland to rates comparable to inner cells (Hsu et al., 2013), 
it reduces the directionality of pancreatic outer cells without 
altering their velocity (Shih et al., 2016).

The most dramatic difference between salivary gland 
and pancreas involves opposite effects of perturbing the cell–
cell adhesion molecule E-cadherin. In salivary gland, block-
ing E-cadherin slightly slows the outer cells and significantly 
accelerates the inner cells, which eliminates the differential 
velocity and inhibits branching (Walker et al., 2008; Hsu et 
al., 2013). In contrast, pancreatic deletion of E-cadherin al-
most doubles the branching index and partially rescues the 
nonbranching phenotype of pancreatic β1-integrin deletion 
(Shih et al., 2016). Lastly, although both pancreas and sali-
vary gland seem to down-regulate E-cadherin in the outer 
cells, they seem to do so through distinct pathways. Although 
a fibronectin–Btbd7 axis is important for this regulation in the 
salivary gland (Sakai et al., 2003; Onodera et al., 2010), an in-
tegrin–Src axis appears to operate in the pancreas (Martinez- 
Rico et al., 2010; Shih et al., 2016). Taken together, these 
studies highlight ECM-associated differential cell behavior 
involved in branching, but the specific mechanisms can differ 
significantly in different organs.

Physical constraint by basement membrane 
or smooth muscle cells in clefting
In addition to its functions in cell motility, the basement mem-
brane plays other biochemical and biophysical roles in branch-
ing morphogenesis. For example, modulation of growth factor 
signaling by heparan sulfate proteoglycans and cleaved colla-
gen IV fragments has been described in many cases (Patel et al., 
2006, 2014; Rebustini et al., 2009; Crawford et al., 2010; Shah 
et al., 2011). A fundamental requirement for the ECM protein 
fibronectin in branching morphogenesis has been demonstrated 
in several branched organs (Sakai et al., 2003). Whether their 
mechanisms of action differ in clefting versus budding de-
serves further examination.

Classical studies established the importance of basement 
membrane in organ branching, with a general pattern of thinner 
basement membrane at branch tips during remodeling (Grob-
stein and Cohen, 1965; Bernfield and Banerjee, 1982; Moore 
et al., 2005). Recently, a deeper examination by live imaging 
reveals that the basement membrane at branch tips is remark-
ably dynamic (Harunaga et al., 2014). Surprisingly, the base-
ment membrane ECM at branch tips of salivary gland, lung, 
and kidney becomes perforated by numerous well-defined mi-
croscopic holes that facilitate pliability (Fig. 3). Additionally, 
the basement membrane as a whole constantly moves rearward 
away from the tip. Both the microscopic holes and the rearward 
movement require protease activity and actomyosin contractil-
ity (Harunaga et al., 2014). The rearward movement of base-
ment membrane hints at a potentially important mechanism for 
cleft formation: a stochastically formed nascent cleft (Sakai et 
al., 2003) could initiate, progress deeper, and become stabilized 
by basement membrane components (Kadoya and Yamashina, 
2010). This combination of pliability at the tip/bud with base-
ment membrane translocation and thickening at the cleft bottom 
to stabilize morphology may permit both rapid tip outgrowth 
and stabilization of clefts (Fig. 3 C). Laser ablation studies of 
the basement membrane should test these predictions.

Besides the ECM-based basement membrane, physical 
constraint can also be provided by cells. Kim et al. (2015) re-
ported recently that tip clefting in lung is always preceded by 
the local appearance of mesenchyme-derived smooth muscle 
cells at the future cleft. The differentiated smooth muscle cells 
locally deform and cleft the tip (Fig. 3 A). Globally inhibiting or 
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promoting smooth muscle differentiation disrupted lung bifur-
cation or clefting (Kim et al., 2015). Collectively, local physical 
constraints seem to be particularly important for clefting-medi-
ated branch formation, whether by ECM or cells.

What remains mysterious in salivary gland and lung is 
the origin of pattern formation. A key characteristic of a pattern 
generator is that either global activation or inhibition should dis-
rupt the pattern. The inhibitor studies by Kim et al. (2015) point 
to a key role for sonic hedgehog (SHH), because both activat-
ing SHH signaling by smoothened agonist (SAG) or inhibiting 
SHH by cyclopamine disrupt the stereotyped differentiation of 
smooth muscle and bifurcation. Interestingly, reaction-diffusion 
modeling using only three components—FGF10, SHH, and the 
SHH receptor—is sufficient to generate bifurcation patterns 
(Menshykau et al., 2012). Further efforts are clearly required to 
generate quantitative models with sufficient predictive power to 
explain cleft patterning.

Beyond epithelium: Contributions of other 
cell types
As we have seen, the epithelium of branching organs is crucial 
for branching morphogenesis. However, establishing the archi-
tecture of branched organs requires contributions from many 
other cell types, including the surrounding mesenchyme, as 
well as blood vessels and neurons.

The encapsulating mesenchyme adjacent to the basement 
membrane contributes to epithelial branching both biochemi-
cally and biophysically. A crucial function of the mesenchyme is 

to produce the ligands for key RTK receptors, including VEGF, 
FGFs, and glial cell–derived neurotrophic factor (Fig. 2, B–E; 
and Fig. 3; Lu and Werb, 2008). If certain growth factors are 
provided, mesenchyme-free cultures of many embryonic organs 
can generate branched structures (Shamir and Ewald, 2014), 
demonstrating that the epithelia themselves are able to branch. 
However, these branched structures often appear morphologi-
cally different from in vivo organs or whole-organ explant cul-
tures—for the most part, they appear to recapitulate budding and 
stalk elongation much more effectively than clefting (Morita and 
Nogawa, 1999; Qiao et al., 1999; Meyer et al., 2004; Steinberg 
et al., 2005; Ewald et al., 2008; Ghosh et al., 2011; Greggio et 
al., 2013; Huch et al., 2013). Thus, the epithelium may require 
interactions with the mesenchyme to prepattern local clefting 
signals. Importantly, studies using heterotypic recombinations 
of epithelium and mesenchyme from different organs have found 
the pattern of branching is often dictated by the tissue origin 
of the mesenchyme rather than the epithelium (Lubkin, 2008). 
For example, recombination of mammary gland epithelium with 
salivary gland mesenchyme yields an epithelial structure mor-
phologically similar to salivary gland even though it produces 
milk (Kratochwil, 1969; Sakakura et al., 1976). Lubkin (2008) 
suggests that viscosity of the mesenchyme largely determines 
epithelial morphology, which will be interesting to test exper-
imentally. To summarize, the epithelium appears competent to 
generate branches autonomously by budding, likely through 
RTK signaling–based cell competition, but it requires epithe-
lial–mesenchymal cross talk to generate local cleft patterning.

Figure 4.  Refining organ architecture by 
branch elongation and maturation. (A–C) 
Schematics of stalk elongation by cell elonga-
tion and intercalation in Drosophila trachea. 
(A) In response to the pulling force of the 
migrating tip cell, stalk cells elongate and in-
tercalate, resulting in >2-fold increased stalk 
length. (B) Schematics of stalk elongation by 
rosette-based convergent extension in verte-
brate kidney collecting duct. (C) Schematics 
of branch stalk elongation by cell prolifera-
tion in most mammalian epithelial organs. 
Some cells divide within the stalk, whereas 
some cells are deposited by the proliferating 
tip to elongate the stalk. (D) Schematics of 
the acinar branch tip in adult mouse salivary 
gland. During maturation, cells at the branch 
tip differentiate to become columnar cells that 
surround a relatively small cavity to form an 
acinus for saliva secretion. Homeostasis of the 
acinar cells is maintained by self-renewal with 
little contribution from the stalk. (E) Schematics 
of the alveolar branch tip in adult mouse lung. 
During maturation, lung cells at the branch tip 
differentiate into flat, squamous AT1 cells and 
columnar AT2 cells. AT2 cell–mediated self- 
renewal can be triggered by AT1 injury.
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Branched epithelial organs are also often “copatterned” 
with blood vessels and neurons, consistent with requirements 
for nutrition and neuronal regulation (Nelson and Larsen, 2015). 
Interestingly, diametrically opposed perfusion-independent 
roles for blood vessels in branching morphogenesis of lung 
and pancreas have been described. Although expression of a 
decoy VEGF receptor to reduce blood vessels inhibits branch-
ing and alters branching stereotypy of the lung (Lazarus et al., 
2011), blood vessels in the pancreas instead seem to restrict its 
growth and branching (Magenheim et al., 2011). It is not clear, 
though, whether vascularization itself requires signals from the 
epithelial cells. Consistently positive roles for parasympathetic 
innervation have been described in branching of both salivary 
gland and lung, though through different pathways. In the sal-
ivary gland, parasympathetic innervation maintains epithelial 
progenitor cells through acetylcholine/muscarinic M1 and EGF 
receptor signaling (Knox et al., 2010). Removing the parasym-
pathetic ganglion reduced but did not abolish branching (Knox 
et al., 2010). In contrast, laser ablation of parasympathetic neu-
rons on one side of the mouse lung completely halted branching 
on that side, and acetylcholine signaling does not appear to be 
required (Bower et al., 2014).

Interestingly, parasympathetic innervation in both sali-
vary gland and lung initiates after branching has started. In fact, 
salivary gland epithelial cells first secrete Wnt ligands to guide 
parasympathetic innervation, which in turn promotes epithelial 
growth and branching at later stages (Knosp et al., 2015). For 
other branching organs, the temporal sequence and interdepen-
dence of epithelial branching compared with recruitment of 
neurons and blood vessels need clarification.

Refining organ architecture by branch 
elongation and maturation
The overall morphology of a branched organ depends not only 
on the pattern of new branch formation, but also on the aspect 
ratio of branch stalks and tips. Diverse cellular mechanisms con-
trol branch stalk elongation and tip maturation, including cell 
rearrangement, elongation, proliferation, and differentiation.

Branch stalk elongation can occur by several mecha-
nisms: cell rearrangement by intercalation or convergent ex-
tension, cell elongation, and cell proliferation (Fig.  4, A–C; 
Andrew and Ewald, 2010). Elongation of Drosophila tracheal 
branches occurs without cell division; instead, the stalk cells 
elongate along the outgrowth axis and intercalate to elongate 
the branch (Fig. 4 A; Caussinus et al., 2008). Another type of 
cell rearrangement, rosette-based convergent extension, plays 
an important role in elongation of both mouse and Xenopus 
laevis kidney tubules (Fig. 4 B; Lienkamp et al., 2012). This 
convergent extension depends on both Wnt and PCP signal-
ing (Karner et al., 2009; Lienkamp et al., 2012). Additionally, 
PCP signaling directs the orientation of cell divisions to fur-
ther promote kidney tubule elongation (Fischer et al., 2006; 
Saburi et al., 2008). Oriented cell division is also important for 
regulating branch shape in mouse lung, where cell division is 
thought to orient longitudinally by default or to be modulated 
by the activity of extracellular signal–regulated kinase (Tang 
et al., 2011). In mammary gland and branching ureteric bud, 
mitosis at branch tips increases stalk length (Ewald et al., 2008; 
Chi et al., 2009), though it is not yet known how proliferation 
preferentially increases stalk length rather than diameter. Over-
all, different organs clearly employ different mechanisms to 
elongate branch stalks.

Maturation of branched organs often involves cell dif-
ferentiation at branch tips. At this stage, epithelial cells at the 
branch tips of salivary gland are slightly wedge-shaped cuboi-
dal cells surrounding a small lumen to form an acinus (Fig. 4 D; 
Aure et al., 2015). However, tip epithelial cells in lung have 
differentiated into two types of cells: flat, squamous alveolar 
type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells, 
which together surround a comparatively large lumen to form 
an alveolus (Fig. 4 E; Morrisey and Hogan, 2010). Branch tips 
of the mammary gland also form alveoli for lactation, which 
can regress and reform between pregnancies (Hennighau-
sen and Robinson, 2005; Akhtar et al., 2009, 2016; Akhtar 
and Streuli, 2013). For maturation of other branched organs, 
there are several excellent recent reviews for lung, kidney, and 
pancreas (Costantini and Kopan, 2010; Morrisey and Hogan, 
2010; Shih et al., 2013).

Future directions
Branching morphogenesis has been studied intensively, not 
only because it is an intrinsically beautiful, dynamic process, 
but also because it holds promise for regenerative medicine. 
Two important and related future goals for studying branching 
morphogenesis include achieving a quantitative understanding 
of this process and bringing regenerative medicine to fruition by 
replacing or regenerating impaired branched organs.

To achieve a full understanding of branching morpho-
genesis, we predict that recursive applications of quantitative 
observation, mathematical modeling, and precisely controlled 
experimental perturbations will be crucial. For quantitative ob-
servation, live organ imaging at high spatiotemporal resolution 
as well as local force measurements will be valuable. Recently, 
several high-resolution 3D imaging methods with low phototox-
icity have been developed, including dual-view inverted selec-
tive plane illumination microscope (Wu et al., 2013; Kumar et 
al., 2014) and lattice light-sheet microscopy (Chen et al., 2014).

For tracking the behavior of individual cells in the crowded 
cellular environment of developing organs, valuable tools will 
include chimeric labeling strategies such as Brainbow (Livet et 
al., 2007), photo-convertible dyes such as KikGR (Tsutsui et 
al., 2005; Hsu et al., 2013), and analysis software such as RACE 
(real-time accurate cell-shape extractor; Stegmaier et al., 2016). 
Application of advanced microscopy methods to chimerically 
labeled organs should help characterize cell dynamics and 
shape changes in more detail to catalyze new hypotheses. For 
quantitative modeling of branching morphogenesis, recently 
developed intracellular tension sensors will be useful (Kumar 
et al., 2016). For measuring tension and compression forces in 
live tissues, approaches such as oil microdroplet force-mapping 
will also be valuable (Campàs et al., 2014). For example, map-
ping actomyosin contractile forces during branch formation 
will help elucidate the different roles of actomyosin contrac-
tility in clefting versus budding. Complementary descriptive 
gene expression data can be obtained using single-cell or laser 
microdissection transcriptomic sequencing (RNA sequencing).

Once a speculative model is derived from descriptive ob-
servations, mathematical modeling can simulate the process, 
followed by tests of its experimental predictions to guide fur-
ther model refinement. Modeling signaling pattern formation by 
reaction-diffusion (Turing, 1952; Kondo and Miura, 2010) and 
mechanical interactions between different cells (Lubkin, 2008; 
Varner and Nelson, 2017) may be particularly illuminating. 
For example, a simplified model focusing on FGF and SHH 
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has provided initial limited success in explaining lung branch-
ing (Menshykau et al., 2012; Iber and Menshykau, 2013), 
and a cell-based model simulates cleft progression in salivary 
gland (Ray et al., 2013).

Besides further application of gene ablation and RNAi 
approaches, precise perturbations of specific proteins and local 
forces will be valuable. Recent advances in the temporal control 
of protein depletion using an auxin-inducible protein degra-
dation method (Nishimura et al., 2009) could be added to the 
Cre-LoxP gene ablation toolkit. For spatial control, laser-based 
inactivation and activation will be useful. For example, laser 
ablation can be used to measure tensile forces at specific lo-
cations or to ablate specific cells or ECM structures. Laser 
micropatterned activation or inactivation based on optogenetic 
switches (Zhang and Cui, 2015) and chromophore-assisted 
laser inactivation (Sano et al., 2014) will help test hypotheses 
and models. Photo-caged inhibitors and activators may also 
be useful (Lee et al., 2009). The rapid evolution of CRI​SPR-
Cas9–mediated genome-editing methods (Doudna and Char-
pentier, 2014; Wright et al., 2016) will accelerate development 
of novel perturbation methods.

Regenerative therapies could be achieved by transplan-
tation of tissue-specific stem cells/progenitors or gene ther-
apy to restore impaired organs or by implanting a functional 
bioengineered organ to replace damaged or lost organs. Both 
approaches are active areas of research. For stem cell therapy 
to be developed as a regenerative therapy, the locations of po-
tentially useful progenitor cells need to be identified. Although 
progenitor cells can reside in duct regions, recent studies reveal 
that such cells involved in homeostasis of mature lung and sali-
vary gland are located in terminal alveoli or acini (Fig. 4, D and 
E; Desai et al., 2014; Aure et al., 2015; Hauser and Hoffman, 
2015). Alternatively, successful restoration of both salivary 
gland and lacrimal gland function by transplantation of bioen-
gineered embryonic organ germs has been described in mice 
(Hirayama et al., 2013; Ogawa et al., 2013). Potential future 
embryonic stem cell or induced pluripotent stem cell rediffer-
entiation to organ-specific progenitors, organoids, or even func-
tional organs can be envisioned (Shamir and Ewald, 2014). All 
of these approaches will benefit from applying new knowledge 
about the mechanisms of normal branching morphogenesis to 
guide successful regenerative therapy.
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