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Abstract. Gastric cancer is a multifactorial disease and a 
leading cause of mortality and the risk factors for this include 
environmental factors and factors that influence host-pathogen 
interaction and complex interplay between these factors. 
Gastric adenocarcinomas are of two types, namely intestinal 
and diffuse type, and Helicobacter pylori (H. pylori) infection 
has been suspected of being causally linked to the initiation of 
chronic active gastritis, which leads to adenocarcinoma of the 
intestinal type. Even though most individuals with H. pylori 
infection do not show any clinical symptoms, long‑term 
infection leads to inflammation of gastric epithelium and 
approximately 10% of infected patients develop peptic ulcers 
and 1-3% of patients develop gastric adenocarcinoma. Among 
the several mechanisms involved in tumorigenesis, CagA 
and peptidoglycan of H.  pylori, which enter the infected 
gastric epithelial cells play an important role by triggering 
oncogenic pathways. Inflammation induced by H. pylori in 
gastric epithelium, which involves the cyclooxygenase-2/pros-
taglandin E2 pathway and IL-1β, is also an important factor 
that triggers chronic active gastritis and adenocarcinoma. 
H. pylori infection induced oxidative stress and dysregulated 
E-cadherin/β-catenin/p120 interactions and function also play 
a critical role in tumorigenesis. Environmental and dietary 
factors, in particular salt intake, are known to modify the 
pathogenesis induced by H. pylori. Gastric cancer induced 

by H. pylori appears to involve several mechanisms, making 
this mode of tumorigenesis a highly complicated process. 
Nevertheless, there are many events in this tumorigenesis that 
remain to be clarified and investigated.
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1. Introduction

Gastric cancer is a leading cause of cancer-related mortality 
worldwide, with nearly 1 million new cases and approxi-
mately 750,000 mortalities annually  (1). Gastric cancer is 
a multifactorial disease and the risk factors for this include 
environmental factors and factors that influence host-
pathogen interaction and complex interplay between these 
factors. Gastric cancer occurrence is more predominant in 
developing countries in Eastern Europe, South America, and 
Asia, accounting for approximately two thirds of all cases 
globally, with China representing approximately 42% of all 
new cases (2). Development of gastric cancer likely originates 
with the onset of chronic active gastritis and follows with 
atrophic gastritis, intestinal metaplasia, and dysplasia, eventu-
ally leading to gastric cancer (3). Besides environmental, diet 
and genetic factors, gastric cancer is closely associated with 
Helicobacter pylori (H. pylori) infection (4) and related host 
gene polymorphisms (5). Gastric adenocarcinomas constitute 
90-95% of gastric cancers and are of two types, intestinal and 
diffuse type. Although there is no known precursor lesion for 
the development of diffuse type of gastric cancers, H. pylori 
infection has been suspected of being causally linked to the 
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initiation of chronic active gastritis, which leads to adeno-
carcinoma (6). Infection of H. pylori is one of the thoroughly 
studied risk factors of gastric cancer.

After its identification in 1984, H. pylori was classified as 
a type I carcinogen and epidemiological studies indicated that 
H. pylori is the most common etiological agent for cancers that 
are related to infection (7,8). H. pylori is a gram-negative bacte-
rial pathogen and is colonized in gastric epithelium despite the 
harsh acidic environment, because of its ability to conduct 
urease-mediated breakdown of urea to ammonia to release 
ammonia and neutralize its surrounding environment (9). Even 
though most individuals with H. pylori infection do not exhibit 
any clinical symptoms, long-term infection potentially leads 
to inflammation of gastric epithelium and approximately 10% 
of infected patients develop peptic ulcers and 1-3% subjects 
develop gastric adenocarcinoma (10,11).

In this review, we address the molecular basis by which 
H. pylori acts as a carcinogen, the potential factors that enhance 
the risk from H. pylori and the accumulating epidemiological 
evidence for H. pylori infection and its effect on gastric cancer 
incidence.

2. Events leading to gastric carcinogenesis following 
H. pylori infection

H. pylori infection of gastric epithelium leads to the develop-
ment of intestinal-type adenocarcinoma with the primary 
event being the transition from normal mucosa to chronic 
superficial gastritis. Subsequently, atrophic gastritis ensues 
followed by intestinal metaplasia, leading to dysplasia and 
adenocarcinoma (Fig. 1) (12). Men are twice as susceptible as 
women to the intestinal type of gastric adenocarcinoma (13). 
Notably, the location of infection and formation of gastritis 
influences the outcomes. Thus, corpus-predominant gastritis 
leads to gastric cancer, probably because of lower acid secre-
tion, whereas, infection of the gastric antrum, which increases 
acid production predisposes individuals to duodenal ulcer, 
actually decreases the risk of gastric cancer (14).

cag pathogenicity island and CagA. Several virulence 
factors present in H. pylori that are influenced by its genetic 
heterogeneity, are critical in the pathogenesis of gastric 
cancer. CagA, which is present in the DNA insertion 
element, cag pathogenicity island (cagPAI), was found to be 
important in carcinogenesis and thus, only H. pylori strains 
that contain cagPAI element enhance the risk of atrophic 
gastritis and gastric cancer, even though all strains of this 
bacterium can cause gastritis  (15,16). H. pylori CagA is a 
120  to 140‑kDa protein, which translocates into host cells 
following attachment of the bacteria to the cell. Inside the 
host cell, CagA is phosphorylated by Abl and Src kinases, on 
tyrosine residue at four distinct glutamate-proline‑isoleucine
‑tyrosine‑alanine (EPIYA) motifs present at the C-terminal 
region of the protein, leading to morphological changes 
in the cell, including increased cell migration (17,18). The 
number and phosphorylation status of these EPIYA motifs 
is a determinant and indicator of risk for gastric cancer (19). 
Tyr-phospho‑CagA activates tyrosine phosphatase (SHP-2) 
in the host cell, leading to sustained activation of ERK1/2, 
Crk adaptor, and C-terminal Src kinase  (20). Interaction 
between phosphor-CagA and SHP leads to cell elongation 

by different mechanisms  (21). Even non-phosphorylated 
CagA has pathogenic effects by causing aberrant activation 
of β-catenin, disruption of apical-junctional complexes, and a 
loss of cellular polarity (22). Additionally, non-phosphorylated 
CagA targets E-cadherin, the hepatocyte growth factor 
receptor c-Met, phospholipase C-γ, the adaptor protein Grb2, 
and other components that lead to proinflammatory and 
mitogenic responses, disruption of cell‑cell junctions, and 
loss of cell polarity (Fig. 1) (23). Preclinical studies confirmed 
a role for CagA in the pathogenesis of gastric cancer, by 
demonstrating that transgenic mice expressing CagA show 
gastric epithelial cell proliferation and carcinoma, in a CagA 
phosphorylation‑dependent manner (24).

Peptidoglycan. Along with CagA, H. pylori peptidoglycan 
can also be delivered into host cells and peptidoglycan 
binds with NodI (25), which triggers the NF-κB dependent 
pro‑inflammatory pathway and interleukin (IL)-8, an inflam-
matory cytokine, secretion. Peptidoglycan is also shown to 
activate the PI3K-Akt pathway leading to cell proliferation, 
migration and prevention of apoptosis (26).

Other virulence factors present in H. pylori include VacA 
and outer membrane proteins, which are associated with ulcer-
ation as well as gastric cancer (27,28).

3. Inflammatory response to H. pylori infection

COX-2⁄PGE2 pathway. Inflammation of gastric epithelium 
is known to be associated with the development of gastric 
cancer (29). There are several mechanisms by which inflam-
mation may promote cancer development and the induction 
of the cyclooxygenase-2/prostaglandin E2 (COX-2 ⁄ PGE2) 
pathway and activation of NF-κB and Stat3 appear to be major 
pathways (Fig. 2) (30). Besides these, innate immune responses 
through the TLR/MyD88 adapter signaling also play a role in 
tumorigenesis (31,32). In fact, it has been shown that almost 
all the gastric tumors show an induction of COX-2 expres-
sion (33) and H. pylori infection is known to lead to COX-2 
induction (34). Inflammation in combination with oncogenic 
activation, promotes tumorigenesis and also Wnt signaling 
activation (Fig. 2) with the accumulation of β-catenin, which 
facilitate tumor growth and this altered signaling has been 
observed in over 50% of gastric cancers (35). PGE2 signaling, 
through the EP4 receptor, is known to induce the expansion of 
CD133+ CD44+ cancer stem cells in intestinal tumors through 
the activation of PI3K and MAPK signaling (36), which poten-
tially aggravates tumor growth.

Infection of H.  pylori induces inflammation through 
CagA injection into host cells followed by the activation 
of SHP and TLRs leading to chronic active gastritis and 
eventually gastric cancer. However, the expression pattern 
of inflammation markers is not always comparable between 
gastritis and gastric cancer. Thus, IL-8 and IL-11 expression is 
predominantly induced in gastric cancer, whereas in gastritis 
mostly TNF-α expression is increased. It has been suggested 
that once tumor growth starts, tumor cells also contribute 
to the inflammation of local microenvironment through 
different pathways, known as ‘tumor-elicited inflammation’, 
which is different from infection-induced inflammation, 
thereby resulting in different cytokine profiles from H. pylori 
infection-induced gastritis  (29). Nevertheless, gastritis and 
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gastric cancer demonstrate common increases in inflamma-
tory cytokines CXCL1, CXCL2, CXCL5, CCL3, CCL4, and 
TLR2 (Fig. 2) (29). Inasmuch as these cytokines are effective 
in causing immune suppression, the ‘infection-associated’ and 
‘tumor- elicited’ inflammation appears to promote and accel-
erate gastric tumorigenesis by activating the COX-2/PGE2 
pathway and subsequent induction of tumor-promoting cyto-
kines.

IL-1β. Another important cytokine, IL-1β is known to 
play a role in a variety of cellular activities such as inflam-
matory response and acid secretion by gastric epithelium (37). 
Disturbances in the regulation of IL-1β are observed in several 
cancer types and in particular, in IL-1β gene polymorphisms 
including IL-1β -31 (T>C) and IL-1β -511 (C>T) which are 
closely related to gastric cancer (Fig. 1) (38,39). Of note, it 
has been shown that IL-1β-511T polymorphism is present in 
all the Mozambican subjects with intestinal metaplasia (40). 
This polymorphism is also associated with the prevalence of 
dysplasia (41), indicating that the IL-1β T alleles are related 
to premalignant gastric lesions. Apparently, the same poly-
morphism of IL-1β is involved in the intestinal type of gastric 
cancers, which are triggered by H. pylori infection and not 

diffusive type (42). IL-1β gene polymorphisms also increase 
the production of IL-1β, which suppresses gastric acid secre-
tion, and is related to the grade of gastric atrophy in patients 
with H. pylori infection (43). Additionally, H. pylori infection 
leads to elevated secretion of IL-1β and reduction in acid 
secretion (44). It has been suggested that a combination of 
IL-1β‑511T/T polymorphism and H. pylori infection aggra-
vates the development of gastric tumor more than either of 
these agents alone (45). Thus, infection of H. pylori promotes 
the expression of IL-1β, which leads to gastric carcinogen-
esis through its actions on both inflammatory and epithelial 
cells (46). Even though the precise molecular basis of these 
actions is not clear, it seems that hypochlorhydria and atrophic 
gastritis induced by IL-1β polymorphisms, which depends 
on H. pylori infection are critical in gastric cancer develop-
ment (47).

4. Oxidative stress induced by H. pylori

A primary factor that is important in the events that lead to 
the progression of the inflammation-to-carcinoma is oxidative 
DNA damage induced by H. pylori infection (48), which is 

Figure 1. Interaction between host responses, changes in gastric mucosa and environment during gastric carcinogenesis induced by Helicobacter pylori 
(H. pylori). A combination of several host responses, bacterial pathogen-mediated events, and environmental factors contribute to the precancerous cascade 
that culminates in gastric adenocarcinoma.
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probably due to infiltrating neutrophils, and also direct effects 
of H. pylori (49). Production of reactive oxygen species in the 
H. pylori-infected gastric epithelium is linked to the presence 
of cagPAI and contribute to the oxidative stress response in 
gastric epithelial cells (50). It is well known that H. pylori 
infection causes elevated level of polyamines, in particular 
spermine and this is associated with an induction of spermine 
oxidase (51). Action of spermine oxidase on spermine leads 
to the production of elevated levels of hydrogen peroxide, 
which is a powerful oxidizing agent and also contributes to 
the production of free radicals such as hydroxyl radical (52). 
Besides, H. pylori also activates macrophages which show a 
significant upregulation of spermine oxidase, contributing to 
oxidative stress and damage to the gastric epithelial cells (53). 
Besides, altered polyamine metabolism and overexpression of 
arginase enzyme in the infected gastric epithelium leads to 
lowered NO production and increased production of spermine 
and hydrogen peroxide.

5. H. pylori and E-cadherin

E-cadherin, which is an adhesion molecule in epithelial tissues 
that is important in maintaining proper cellular architecture, 

is regulated by the binding of p120 to the cadherin juxtamem-
brane domain  (54). Furthermore, the cytoplasmic domain 
of E-cadherin interacts with β-catenin and p120, which, in 
turn, interact with the cytoskeletal component actin. It has 
been documented that there is a loss of E-cadherin func-
tion in gastric cancer, and in fact promoter methylation of 
E-cadherin gene is induced by H. pylori infection, leading to 
reduction in E-cadherin expression (55). Following H. pylori 
infection, the translocated CagA in the gastric epithelial 
cells binds with E-cadherin, resulting in the dissociation 
of the E-cadherin‑β‑catenin complex and accumulation of 
β-catenin in cytoplasm and nucleus, where it transactivates 
β-catenin‑dependent genes involved in carcinogenesis (23,56). 
Along with the downregulation of E-cadherin, a decreased 
expression or aberrant subcellular localization of p120, from 
membrane to the cytosol or nucleus, is commonly seen in 
gastric cancer (57). In the cytoplasm, p120 interacts with Rho 
GTPases and promotes motility and metastasis (58). Aberrant 
localization of p120 to the nucleus in gastric epithelia infected 
with H. pylori has been reported and p120 in nucleus can 
relieve transcriptional repression of the mmp-7 gene, which 
is involved in gastric tumorigenesis, leading to its enhanced 
expression (59).

Figure 2. Tumor inflammatory microenvironment: Interplay of factors derived from H. pylori and tumor cells. A crosstalk between tumor cell-derived 
inflammatory factors and macrophage-derived factors during infection of Helicobacter pylori (H. pylori) results in aggravation of the inflammatory micro-
environment and the tumor cells acquiring stem cell property and progression of tumor in gastric epithelium. Signaling through the TLR/MyD88/NF-κB 
pathways to activate cyclooxygenase-2 (COX-2) and production of prostaglandin E2 (PGE-2), release of cytokines such as TNF-α and production of ROS, in 
macrophages and in tumor cells facilitate this tumor inflammatory environment.
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6. Environmental factors and H.  pylori-mediated gastric 
carcinogenesis

Gastric adenocarcinoma is strongly influenced by dietary salt 
intake, with high salt intake aggravating tumorigenesis (60). 
Epidemiological studies indicated that high salt intake 
increases the prevalence of H. pylori infection (61) and the 
incidence of gastric adenocarcinoma in infected patients (62). 
Experimental studies indicated that a high-salt diet and 
H. pylori infection exert synergistic effects on the develop-
ment of premalignant lesions or gastric cancer (63), probably 
by elevating the production of inflammatory cytokines 
IL-1, IL-6 and TNF-α (64). However, the precise molecular 
events that underlie this synergistic effect on cancer devel-
opment are not known. It has been suggested that high salt 
increases the expression of CagA, the potential carcinogen 
in H. pylori (65), which may be the reason for the observed 
synergy between H. pylori and salt for gastric cancer induc-
tion (Fig. 1).

In addition to salt, other factors that influence H. pylori 
infection-associated gastric cancer include helminth infections 
and dietary antioxidant intake, both of which seem to have a 
negative effect on the ability of H. pylori to induce gastritis 
and thus cancer. On the other hand, cigarette smoking is a 
potential risk factor for enhancing the tumorigenesis induced 
by H. pylori infection (21).

7. Conclusion

Intestinal type gastric adenocarcinomas are known to be caus-
ally linked to H. pylori infection, which leads to the initiation 
of chronic active gastritis, and adenocarcinoma. Even though 
most individuals with H. pylori infection do not show any clin-
ical symptoms, 1-3% people with long-term infection develop 
gastric adenocarcinoma. Of the several mechanisms of the 
tumorigenesis induced by H. pylori, CagA and peptidoglycan 
of H. pylori, inflammation, oxidative stress and dysregulated 
E-cadherin/β-catenin/p120 interactions play an important role. 
Environmental and dietary factors, in particular salt intake and 
cigarette smoking are known to aggravate H. pylori‑induced 
carcinogenesis. Thus, H. pylori infection appears to invoke 
multi-thronged mechanisms, to induce gastric adenocarci-
noma. Nevertheless, many events in this tumorigenic process 
remain to be clarified and investigated.
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