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Role of exosomes in the protection of cellular homeostasis
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ABSTRACT
Due to their ability to shuttle proteins, lipids and genetic material between distant cells, exosomes
promote extensive phenotypic changes in recipient cells, modulating immune responses, cellular
migration, cancer metastasis or the spreading of neurotoxic protein aggregates in neurodegenerative
diseases. Besides intercellular communication, exosome biogenesis and secretion permit the rapid
release of a selective repertoire of compounds, conferring cells with an additional mechanism to fight
alterations in protein, lipid or RNA homeostasis during stress or pathological conditions. Here, we
review the dual role of the different quality control mechanisms arising from the endolysosomal
system and the diverse situations that control the decision between degradation or secretion. The
crosstalk between exosome secretion and the different cellular degradation mechanisms confers an
additional layer of protection to maintain cellular integrity and homeostasis in a number of
physiological and pathological conditions.
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Introduction

Throughout their entire lifetime, cells are exposed to dif-
ferent harmful conditions, including thermal, physical,
chemical, and oxidative stresses, altogether contributing
to molecular damage. Cells have evolved various and
interconnected organelle-specific quality control mecha-
nisms to recognize and respond to this damage at differ-
ent subcellular locations of the cell, including the cytosol,
the endoplasmic reticulum (ER), the nucleus, mitochon-
dria and the plasma membrane.1-3 A complex network
of chaperones recognizes unfolded proteins and supports
their refolding. However, when refolding fails, chaper-
ones assist in protein degradation via the ubiquitin-pro-
teasome (UPS) or autophagy-lysosomal pathways.4

Notably, under some circumstances or when load of pro-
teins destined for degradation saturates the capacity of
the proteolytic systems, cells can defend themselves
against proteotoxicity through the release of toxic pro-
tein products to the extracellular media associated or not
to lipid vesicles or involving other types of unconven-
tional secretion.5-9

Exosomes are small lipid vesicles that are secreted to
the extracellular environment upon the fusion of endoso-
mal compartments with the plasma membrane.10 Once
in the extracellular milieu, exosomes can be taken up by
nearby cells or, after reaching the blood stream, they can
be taken up by distant cells, modulating the activity and

fate of receptor cells.11 Hence, exosomes are currently
being recognized as important mediators for cell-to-cell
communication in many physiological12 and pathologi-
cal situations, including immune response, cancer pro-
gression and metastasis, neuronal communication,
cardiovascular diseases and progression of neurodegen-
erative diseases.13-20

During the last years, a lot of effort has been placed
trying to elucidate the role of exosomes as vehicles for
cell-to-cell communication. However, less attention has
been placed on the impact that the biogenesis and secre-
tion of exosomes has in producing cells. Exosomes may
participate in the control of cellular homeostasis by pro-
moting the release of intracellular harmful components,
including proteins, lipids or nucleic acids. In this review,
we emphasize the role of exosomes as a quality control
mechanism that maintains intracellular homeostasis by
promoting the selective release of intracellular harmful
components. Clearance of damaged or toxic material,
including proteins, lipids and even nucleic acids through
exosomes, might alleviate intracellular stress and con-
tribute to the preservation of cellular homeostasis.21

Here, we outline the evidence that selective incorpo-
ration and release of cellular compounds in exosomes is
a quality-control strategy to alleviate intracellular stress
and preserve cellular homeostasis. We highlight our cur-
rent understanding on the physiological functions of
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exosomes and the endolysosomal system, and how they
interact to preserve cellular homeostasis.

The endolysosomal pathway in the control of
cellular homeostasis

The endolysosomal system is a highly dynamic compart-
ment in which different membrane compartments modu-
late intracellular protein and lipid trafficking through
regulated processes of internalization, sorting, recycling,
degradation or secretion. Endocytosis allows the internal-
ization of adhesion receptors, growth-factor receptor–
ligand complexes, nutrient transporters, lipids, extracellu-
lar material and pathogens. Vesicles formed from the
plasma membrane fuse and deliver their membrane and
protein content to Rab5- and EEA1-positive early endo-
somes, which later undergo conversion from Rab5- to
Rab7-positive endosomes.22 During this conversion, a sig-
nificant amount of the internalized content is recycled
back to the plasma membrane through Rab11-positive
recycling endosomes, while the remaining material is
sequestered in intraluminal vesicles (ILVs) in late endo-
somes, also known as multivesicular bodies (MVBs).23

Ubiquitinated membrane proteins are recruited to endo-
somes by the ESCRT machinery. ESCRT-0, ESCRT-I and
ESCRT-II directly bind to ubiquitinated membrane pro-
teins, while ESCRT-III and the ATPase Vps4 drive
membrane-remodeling reactions that result in ILV invag-
ination and scission. ILV biogenesis can also occur
through ESCRT-independent mechanisms.24 Tetraspanin
proteins, such as CD63 and CD81, are proposed to act as
regulators of ILVs formation.25-28 The accumulation of
ceramide in the endosomal membrane is also relevant for
the formation of ILV.29 The effect of ceramide on ILV for-
mation has been proposed to be mediated by the local
production of its downstream metabolite sphingosine-1-
phosphate (S1P).30 Recently, it has been described that
not only membrane proteins but also cytoplasmic pro-
teins can be selectively packaged into ILVs through a
process called endosomal microautophagy (MA). MA
depends on the ESCRT machinery and the electrostatic
binding of Hsc70 to endosomal acidic phospholipids.
Hsc70 interacts and introduce into ILVs cytoplasmic pro-
teins containing KFERQ-motifs.31

Once ILV are formed, MVBs can degrade their cargo
by fusing with lysosomes or, alternatively, MVBs can
secrete their ILVs by fusing with the plasma membrane,
eliminating the incorporated components through secre-
tion to the extracellular environment. The molecular
mechanisms and cellular situations that regulate the fate
of MVBs are not completely understood. MVB are deco-
rated with tethering complexes (CORVET, HOPS) and
SNAREs (e.g. Stx7, Stx8, VTI1b and Vamp7) that

facilitate the fusion with lysosomes or with the plasma
membrane.32 Hence, 2 quality-control mechanisms con-
verge at the endolysosomal compartment for dealing
with damaged, unwanted or toxic intracellular compo-
nents. It can mediate the degradation and recycling of
damaged or toxic intracellular components through lyso-
somal degradation, or allow the sequestration and release
of these compounds in exosomes.

Role of exosomes in the preservation of
intracellular homeostasis

Exosomes were first described in the 80s as a cellular
mechanism by which reticulocytes get rid of the trans-
ferrin receptor (TfR) during their maturation into
erythrocytes. TfR molecules were found in small vesicles
inside endosomal compartments, which were released to
the extracellular medium upon exocytosis of these
endosomes, supporting the role of exosomes as vehicles
to eliminate unwanted cellular compounds.33,34 The
protein composition of exosomes supports the function
of exosomes as a cellular mechanism to get rid of obso-
lete, and toxic material. Misfolded and prion proteins
are released in exosomes35 and have been involved in
the propagation of neurodegenerative diseases, such as
Huntington disease, Alzheimer disease, and Parkinson
disease. Several self-aggregating neurotoxic proteins
including amyloid b, APP C-terminal fragments, Tau,
a-synuclein, SOD1 and the prion protein (PrP) can be
released from cells in exosomes.36-41 These findings
delineate a protein quality control pathway that, unlike
degradation-based mechanisms, promotes protein
homeostasis by exporting misfolded proteins through
exosomal route.

The extracellular release of RNAs or microRNAs in
exosomes may be a rapid way to regulate gene expression
during cellular activation or transformation. For example,
during an induced muscle atrophy process, myotubes
secrete miR-23 and miR-182 to the extracellular environ-
ment through exosomes. miR-182 represses FoxO expres-
sion and its extracellular release in exosomes allows FoxO
expression and the transcriptional program required for
the acquisition of atrophy phenotype.42,43 Similarly, upon
activation, lymphocytes down-modulate the intracellular
levels of miR-150 , a key repressor of lymphocyte differen-
tiation and function, by releasing it in exosomes.44 let-7
miRNAs generally play a tumor-suppressive role target-
ing oncogenes such as RAS or HMGA2. It has been pro-
posed that cancer cells release let-7 miRNAs via exosomes
into the extracellular environment to maintain their
oncogenesis.45 Inhibition of exosome secretion by silenc-
ing Rab27 proteins leads to impaired microRNA release
and increased miRNA activity in the parental cell.46
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Interestingly, exosomal miRNA secretion is a mechanism
whereby cells rapidly dispose miRNAs in excess of their
targets to adjust miRNA:mRNA ratio. Physiological (cell-
activation dependent) or artificial overexpression of
miRNA target sequences promotes a relative miRNA
enrichment in P-bodies and depletion from MVBs and
exosomes. Conversely, artificial overexpression of a
miRNA enriches it in MVBs and exosomes.47

Exosomes participate in the regulation of intracellular
RNA homeostasis by promoting the release of misfolded
or degraded RNA products. yRNAs are involved in the
degradation of structured and misfolded RNAs. Recent
analysis of the RNA content of exosomes by deep-
sequencing techniques has shown a remarkable enrich-
ment of yRNA fragments and mRNA degradation prod-
ucts in exosomes.48 Interestingly, exosomes may be also
involved in the release of toxic RNAs since expanded tri-
nucleotide repeat RNAs, such as the CAG repeats that
underlie RNA toxicity in Huntington disease, are
released from the cell in exosomes.49 Other evidences
support the relation between RNA degradation and
its export to extracellular vesicles. In this regard, proteins
involved in RNA processing are abundant in exosomes,
and secreted RNAs have almost twice shorter half-life
times than intracellular mRNAs.50,51 Altogether, all these
reports support that cells maintain intracellular RNA
homeostasis through the release of distinct RNA species
in extracellular vesicles.

Although less known, exosomes are involved in the
control of lipid homeostasis. Exosomes have been shown
to alleviate cholesterol accumulation in Niemann-Pick
type C disease, a lysosomal storage disease in which cells
accumulate unesterified cholesterol and sphingolipids
within the endosomal and lysosomal compartment.52

Antipsychotics drugs carry serious side effects such as
the disruption of lipid homeostasis. Antipsychotics indu-
ces intracellular accumulation of LDL and impair intra-
cellular cholesterol trafficking. When curcumin is
administrated to cells under the effects of antipsychotics
drugs, LDL is released into exosomes improving lipid
homeostasis.53

Genomic and mitochondrial DNA have been found in
exosomes. Evidence shows that genomic DNA is secreted
in exosomes by cancer cells. One of the fragments of
double stranded genomic DNA (dsDNA) secreted corre-
spond to mutations of the suppressor gene p53.54 Other
works also showed that exosomes released from tumor
cells lines contain high levels of ssDNA. Mitochondrial
DNA (mtDNA) has been found in glioblastoma and
astrocyte exosomes.55 Telomeric repeat-containing RNA
(TERRA) is release into exosomes by cells that present
telomere dysfunction.56,57 Although several works have
reported the presence of DNA in exosomes, the function

of exosomes in the regulation of DNA homeostasis is far
from been elucidated.

Degradation vs secretion to preserve
intracellular homeostasis

Whereas extracellular components and plasma mem-
brane receptors are transported to the degradation/secre-
tion pathway by the endosomal/exosomal pathway,
intracellular components are transported to the lysosome
by the process of autophagy, a ‘self-eating’ catabolic
pathway that is used by cells to capture their own
cytoplasmic components destined for degradation and
recycling.58 Autophagy can handle degradation not only
of cytosolic macromolecules, but also of much larger
structures such as excess or dysfunctional organelles,
protein aggregates and intracellular pathogens.

Autophagy begins when double-membraned struc-
tures called phagophores engulf portions of cytosol that
can include aggregates, lipids, carbohydrates, damaged
organelles or invading pathogens. The phagophore
expands and grows into a double-membrane compart-
ment, known as the autophagosome.59 Autophagosomes
must undergo a series of maturation steps in part by fus-
ing with endocytic vesicles, including early and late
endosomes and MVBs.60,61 The resulting hybrid organ-
elles, called amphisomes, are more acidic and fuse with
lysosomes to form degradative autolysosomes. Proper
maturation of the autophagosome requires an intact
endocytic trafficking pathway, components of the endo-
somal sorting complex required for transport (ESCRT)
pathway,62-64 and components involved in endocytic ves-
icle fusion.65,66 Autophagosomes traffic along microtu-
bules toward the microtubule-organizing center, where
lysosomes are concentrated, enabling fusion and degra-
dation of the contents by lysosomal hydrolases (Fig. 1).

In contrast to degradative autophagy, autophagy has
other role in unconventional secretion by a mechanism
called secretory autophagy.67 One of the best studied
example of secretory autophagy is the release of the
proinflammatory cytokine IL-1b that depends on the
autophagy factor Atg5 and the membrane-associated
small GTPase Rab8.68 Rab8a has been involved in the
vectorial sorting to plasma membrane of others secretory
autophagic cargo proteins like a-synuclein. In this
regard, Ejlerskov and colleagues showed evidence that
secretion of a-synuclein requires Atg5 and is increased
by lysosomal dysfunction.69 Moreover, silencing of
deacetylase HDAC6 increase the levels of acetylated
tubulin, impairing the fusion of autophagosomes with
lysosome and increasing the secretion of a-synuclein.
Interestingly, a -synuclein secretion has been reported to
be meditated by exosomes and the secretory autophagy
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pathways, underlining the crosstalk between both path-
ways to maintain cellular homeostasis. Autophagic cargo,
depending on certain circumstances can be destined for
autophagic degradation or secretion. Controlling auto-
phagosomal motility along microtubules toward minus-
end or plus-end could by an approach to direct autopha-
gosomal organelles toward degradation or secretion.

Lysosomes are the principal degradative organelle of
the cell.70 Lysosomes degrade and recycle unwanted or
damaged proteins and organelles to guarantee the con-
tinuous renewal of cellular constituents and to prevent
the accumulation of toxic components. Besides their
catabolic function, lysosomes contribute to different
physiological processes including cell signaling, energy
metabolism, plasma membrane repair, inflammation, or
cell death.71

Lysosomes contain a single membrane that isolates
and protects the cell from the acidic environment of the
lumen by an internal thick glycocalyx. Degradation in
the lysosomes is mediated by multiple acid hydrolases,

which include members of the proteases, peptidases, sul-
phatases, glycosidase, lipase and nuclease protein fami-
lies; this wide repertoire allows degradation of different
biological substrates including proteins, nucleic acids
and lipids.

It is well known how the flux of cargo through the
endolysosomal system and the induction of autophagy/
lysosomal degradation are adjusted by mTOR signaling
that integrates signaling from nutrients, growth factors,
and energy availability.72 Lysosomes respond to nutrients
availability by moving toward the plasma membrane,
whereas starvation results in a tighter perinuclear locali-
zation.73 Mitochondrial respiration is absolutely required
for lysosomal degradation since in cells that relay on
glycolysis as a consequence of mitochondrial dysfunc-
tion, there is an impairment of lysosomal degradation
and function.74

Lysosomes may also act as secretory organelles in
multiples cell types.75 Lysosome release their content to
plasma membrane as a mechanism for defense against

Figure 1. Degradation and secretion converge at the endolysosomal system. To ensure efficient function in the regulation of intracellu-
lar homeostasis, the endolysosomal system orchestrates endocytosis, MVB formation, exosome secretion, autophagy induction and
lysosomal degradation, coordinating the balance between the degradation and secretion mechanisms. Clearance of damaged or toxic
material, including proteins, lipids and nucleic acids through exosomes, secretory autophagy or secretory lysosomes might alleviate
intracellular stress and contribute to the preservation of cellular homeostasis. ER: Endoplasmic reticulum, MVB: Multivesicular body;
MTOC: Microtubule-organizing center.
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parasites and for plasma membrane repair.76,77 When
proteins destined for degradation saturates the capacity
of proteolytic system of the cell, as occurs in lysosome
storage diseases, cells can defend themselves against pro-
teotoxicity releasing dysfunctional lysosomes.78,79 Other
possibility is that cells compensate for lysosome malfunc-
tion by disposal of potentially toxic cargos in exosomes.
Hence, it starts to become evident that the functional
state of the lysosome affects the release of exosomes.80-82

Concluding remarks

To ensure efficient function in the regulation of intracellular
homeostasis, the endolysosomal system orchestrates endo-
cytosis, MVB formation, exosome secretion, autophagy
induction and lysosomal degradation, and coordinates the
balance between degradation and secretion mechanisms
(Fig. 1). The decision point between the 2 fatesmight be reg-
ulated by the cellular metabolic state, the nutrient availabil-
ity or by external signals. Cellular status may affect the
positioning of MVBs toward plasma membrane or perinu-
clear regions by switching microtubule motor proteins.
Kinesin proteins may direct MVBs to plus end microtubule
releasing MVBs as exosomes and dyneins family could
guideMVBs toward lysosomes.83 Understanding the signal-
ing and the molecular clues that determine the traffic of
cargo toward the lysosomes or the plasma membrane will
allow us to manipulate the flux between degradation and
secretion and could have immense relevance in the control
of different pathological situations such as neurodegenera-
tive or inflammatory diseases.
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